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–– If ratios appear to be a new language, let it be 
said that it is in actual fact a language so old that 
its beginnings as an expression of the essential 
nature of musical sound can only be conjectured. 
In learning any new language, the results are more 
immediate if a total plunge is made, so that the 
new medium surrounds and permeates the thinking 
…1 

– Harry Partch 
 

 Though we say that twelve-tone equal 

temperament is our standard tuning, we rarely, if 

ever, hear it in musical practice. Instruments that 

produce pitch flexibly – the woodwinds, strings, 

and voice – tune to other instruments in the 

ensemble, not to a pure equal temperament. Even 

the piano is not strictly 12-ET; its tuning is 

stretched, and the amount of stretch is gracefully 

varied along the range of the instrument (cite). 

What the above examples have in common is the 

mutual adapting of pitches so that their 

combination sounds in tune.  

                                                
1 Harry Partch. Genesis of a Music: An 
Account of a Creative Work, Its Roots 
and Fulfillments (New York: Da Capo 
Press, 1974), 77. 



 The inspiration for this article, and the 

software described herein, is a vision of a 

collection of notes tuning to each other 

democratically, with no relationship between two 

notes a priori more important than any other. 

Tuning systems emerge in a bottom-up fashion 

from a process of mutual adaption, resulting in 

myriad surprising and beautiful structures. 

Furthermore, the structures hold interesting 

implications for modes, scales, melodies, 

harmonies, and other musical parameters.  

 I begin with a look at the Pythagorean and 

just diatonics to introduce ways of representing 

and evaluating tuning systems. William Sethares’ 

method of measuring sensory dissonance then 

provides a tool for selecting desirable intervals. I 

investigate and expand upon the principles behind 

Partch’s monophony and Lou Harrison’s collection 

of “slendro” pentatonics in his Music Primer to 

find a point of departure for new exploration, after 

which I explain in detail how my tuning algorithm 

works, and present a few examples of tunings 

generated by it. Making sense of more complex 

tunings requires a method of analysis, which I 

present through a deeper look at the just diatonic. I 

then use this method to reveal the intriguing 

structures of tunings based on the spectra of 

Korean percussion instruments, and of the 

chromatic scale for a harmonic timbre, each 

produced by my algorithm. I finish by introducing 

ways of using tuning structures as compositional 



resources, generating melody and harmony, and 

other musical parameters.  

 For a reasonably large set of target 

intervals, their possible arrangements in a tuning 

are astronomical in number. In the past, this 

profusion of possibilities virtually necessitated a 

top-down approach because of the time and energy 

required to design and implement a novel tuning 

system. Tuning systems from the 

Pythagorean/Chinese system, to just intonation, to 

the tempered tunings and equal temperament, each 

derive from the application of a small number of 

controlling principles that make the system easier 

both to reproduce and to defend to colleagues as 

“rational.” Newer inventions such as Partch’s 

monophony, non-12 equal temperaments, and 

Michael Harrison’s Revelation tuning2 are likewise 

top-down designs. 

 Computer algorithms today offer new 

possibilities for tuning system design. With 

synthesizers, tunings can be created and realized 

with ease, and discarded without regret. The 

bewildering variety of structures that arise from 

any possible arrangement of intervals can be 

managed by software. In short, it is now feasible to 

journey into a vast forest of tuning systems that 

emerge in a bottom-up fashion without getting lost 

                                                
2 Michael Harrison, “Music In Just 
Intonation,” 
http://michaelharrison.com/web/pure_i
ntonation.htm (accessed April 22, 
2009). 



in burdensome practical concerns. The beauty of 

the structures that result from such methods make 

the journey well worthwhile. 

  

Pythagorean and just 

diatonics 
 (Include rationale for the inclusion of this 

section) 

 The “Pythagorean” tuning system is both 

ancient and widespread. In the West, it was first 

described by Boethius3 but evidence exists of its 

use 3500 years ago by the Babylonians4. It has 

been used throughout recorded history (and 

probably long into prehistory) by the Chinese5. 

 In this system the “good6” intervals are 

those that can be expressed as ratios between 

integers from one to four. These ratios include only 

                                                
3 Anicius Manlius Severinus Boethius, 
Fundamentals of Music, Calvin M. 
Bower, trans., ed. (New York: Yale 
University Press, 1989). 
4 M.L. West "The Babylonian Musical 
Notation and the Hurrian Melodic 
Texts," Music & Letters 75:2, 161-179. 
5 Ernest  McClain and Ming Shui 
Hung, "Chinese Cyclic Tunings in 
Late Antiquity," Ethnomusicology, 
23:2, 205-224. 
6 In this context, I’m using the word 
“good” in a technical sense: that the 
interval in question is a goal in the 
current design process. They are not 
necessarily good or bad in any 
absolute sense. 



the octave and 3/2 perfect fifth, along with their 

complements and octave equivalents. A 

Pythagorean scale is generated by stacking 3/2 

perfect fifths or 4/3 perfect fourths, duplicating the 

resulting pitches in each octave. The tuning creates 

pure fifths, but the tuning of seconds, sevenths, 

thirds, sixths and tritones are unintended by-

products of the design process.  

 Graph theoretic notation is useful to 

visualize the structure of this tuning – as it will be 

for analyzing more complex examples. Depicting 

notes as vertices and the desired intervals as edges, 

the Pythagorean diatonic is a simple chain. 

 

Figure 1 
With seven entities, there are twenty-one 

possible pairings; so a tuning system of seven 

notes contains twenty-one distinct intervals. In the 

Pythagorean tuning, only six of them are “good.” 

This poverty of relationships is a consequence of 

having only one kind of target interval; with n 

notes there are a maximum of n-1 instances of a 

single target interval7.  

                                                
7 This constraint holds unless the good 
interval is the kth root of an interval of 
equivalence. For instance, the circle of 
fifths in equal temperament includes 
12 perfect fifths from 12 notes: n 



 Zarlino, in 1558, 

was the first to propose the deliberate use of purer-

sounding thirds than those in the Pythagorean 

system8.  His innovation was to increase the range 

of integers for use in musical ratios from four to 

six. Crucially, the inclusion of five among the 

generating numbers dramatically enriches the 

available good relationships between notes. A 

graph of the just diatonic scale (Figure 2) is more 

complexly connected than that of the Pythagorean; 

out of the twenty-one intervals between seven 

notes, eleven are good. The just diatonic is richer 

in ideal intervals than the Pythagorean. 

 

Figure 2 

In general, as we broaden the palette of 

desirable intervals, we increase the potential 

connections within a group of notes. However, this 

expansion has psychoacoustical limits. It is 

generally recognized that for harmonic timbres, 

ratio intervals sound in tune when their numerator 

and denominator are small integers, though the 

                                                              
instances of the target interval from n 
notes. 
8 Zarlino Gioseffo, Le istitutioni 
harmoniche (Reprinted New York: 
Broude Bros.) 1965. 



precise cutoff is highly contested. An exploration 

of the concept of sensory dissonance can help to 

understand why this is so, and what limits for the 

numerator and denominator are appropriate. In 

addition, calibration of sensory dissonance is one 

of several fruitful bases for the bottom-up 

construction of tuning systems.  

 

Sensory Dissonance 
 

James Tenney identifies five distinct 

concepts of dissonance and consonance that are 

associated with overlapping periods of history9. 

The last of these, cdc-5, is the conception of 

dissonance as sensory roughness10, caused by beats 

between sinusoidal components of a complex 

sound.  

An oft-raised objection to CDC-5 as a 

relevant concept of dissonance in music is the 

“fact” that intervals between simple tones (sine 

waves) are perceived to be relatively consonant at 

small integer ratios. Since upper partials are not 

                                                
9 James Tenney, A History of 
“Consonance” and “Dissonance” 
(New York: Excelsior, 1988). 
10 This conception of consonance and 
dissonance was introduced by 
Helmholz in On the Sensations of 
Tone. Helmholz’s ideas have proved a 
major source of inspiration to 
subsequent thinkers about tuning 
systems, including Harry Partch and 
William Sethares. 



present in simple tones, consonance and 

dissonance cannot be caused by their interaction. 

However, Plomp and Levelt11 showed that ratio 

intervals between simple tones were perceived as 

consonant only when experienced musicians 

served as test subjects, responding in accordance 

with habit and training. Tests on non-musicians 

show no preference for ratio intervals between 

simple tones.  

Hermann von Helmholz reported that the 

maximum sensory dissonance occurs between 

simple tones about 32 Hz apart in frequency12.  The 

resulting beats at 32 Hz are too fast to be perceived 

individually, and blur into an unpleasant 

roughness. Plomp and Levelt refined Helmholz’s 

observation, showing that 32 Hz was a good 

estimate for maximum roughness only for tones 

between about 500-1000 Hz. In fact, the interval of 

maximum sensory roughness correlates to the 

critical band13 throughout the range of hearing. 

Plomp and Levelt’s dissonance curve (Figure 3) 

                                                
11 R. Plomp and W. J. M. Levelt, 
“Tonal consonance and critical 
bandwidth,” Journal of the Acoustical 
Society of America 38 (1965): 548-
560.  
12 Hermann von Helmholz, On The 
Sensations Of Tone As A Physiological 
Basis For The Theory Of Music, New 
York: Dover Publications, 1954. 
13 R. Plomp and W. J. M. Levelt, 
“Tonal consonance and critical 
bandwidth,” Journal of the Acoustical 
Society of America 38 (1965): 548-
560. 



shows a minimum at the unison, a maximum at 

about .25 of the critical band, and a rapid falling 

off as the two simple tones further diverge. The 

vertical scale is ordinal; it corresponds to 

subjective dissonance as perceived by test subjects. 

 

 

 

Figure 314 

Using this curve, it is possible to calculate 

sensory dissonance between any pair of simple 

tones. Because complex tones are composed of 

simple tones, the dissonance between complex 

tones can be measured by summing the 

interactions of all the constituent partials. This 

method of measuring the sensory dissonance 

                                                
14 The curve in Figure 3 is an 
approximation of Plomp and Levelt’s 
results parameterized by William 
Sethares in Tuning,Timbre, Spectrum, 
Scale, Appendix E. 
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between tones is discussed in William 

Sethares’1998 book Tuning, Timbre, Spectrum, 

Scale15. Sethares shows how to calculate a 

“dissonance curve,” a graph whose x-axis is the 

interval between the fundamentals of two tones, 

and whose y-axis is the sensory dissonance of the 

two tones at that interval.  

Amplitude of partial is 1/n 

Figure 4 shows a dissonance curve between 

two sawtooth waves with eight harmonic partials.  

 

Figure 4 

 

 

Those familiar with just intonation will be 

unsurprised to see that minima in the curve occur 

at intervals at ratios between the first eight 

integers.  The depths of the minima lessen with the 

magnitude of the numbers in the numerator and 

                                                
15 William A. Sethares, Tuning, 
Timbre, Spectrum, Scale, London: 
Springer, 1998. 
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denominator, a result of the decreasing amplitude 

of the partials.  

If we increase the number of partials to 

sixteen, we see the dissonance curve in Figure 5. 

Even though partials 11-16 are present, their 

amplitudes are insufficient in the sawtooth wave to 

show up as a minimum in the dissonance curve. 

 

5 

 

Figure 5: dissonance curve: the first 16 partials 

of a sawtooth wave 
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Figure 6: dissonance curve for the first 64 

partials of a sawtooth wave.  

 

 Increasing the number of partials to 64 

leads to a dissonance curve with a few more visible 

minima (Figure 6) but none of these minima are at 

ratios involving the number 13. Partch used 11 as 

the limit in his system; an examination of 

dissonance curves confirms the validity of his 

judgment. It may still make sense to use ratios 

involving 13, as long as the tuning designer is 

conscious that they are likely to be quite dissonant. 

In fact, including the 13 (or higher) limit chords is 

one way of deliberately including dissonant 

intervals in a tuning. 

 Dissonance curves can also be generated 

for inharmonic timbres, or between two different 

timbres. Figure 7c shows the dissonance as a  
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harmonic timbre (Figure 7a) is moved in relation 

that of the ideal circular membrane (Figure 7b). 

 

Figure 7a  (Harmonic partials) 

 
Figure 7b (Ideal membrane partials) 

 

Figure 7c  
 
Semitones: 0.90 1.17 2.42 4.87 6.55 7.92 8.03 

Fractions: 3.16/3 2.14/ 2 2.3/2  2.65/2  2.92/2 3.16/2 1.59/1     

Figure 7d Decimal semitone heights for ratios 
between the harmonic and membrane spectra 
falling between unison and octave.  
 
 

 

Dissonance curves can inform our choice limit for 

ratio intervals, and are one method of scoring the 

relative desirability of intervals in a tuning 

algorithm. Before discussing such algorithms, 



however, I will examine Harrry Partch’s 

monophony, in the process developing several 

tools for designing and analyzing tuning systems. 

 

 

Partch's tonality diamond 
  

 In this section I see the tonality diamond as 

a representation of all intervals between partials of 

a harmonic timbre (with 11 partials.) This bolsters 

the case for the software I introduced which favors 

target intervals based on coinciding partials. Also I 

introduce and broaden the concept of otonalities 

and utonalities, which proves useful later in 

analyzing algorithmically generated tunings.  

 In the field of new music's experimentation 

with tuning systems, Harry Partch's influence is 

extensive. His work directly influenced that of Lou 

Harrison,16 Ben Johnston,17 and many others 

including myself. Partch's seminal Genesis of a 

Music explained the rationale and construction of 

his tuning system, monophony, named for the fact 

that all tones in the system are related to a single, 

                                                
16 Leta E. Miller and Frederic 
Lieberman, Composing A World: Lou 
Harrison, Musical Wayfarer, Urbana: 
University of Illinois Press, 2004. 44-45 
17 Heidi Von Gunden, The Music of 
Ben Johnston. Metuchen, Scarecrow, 
1986. p11-13 



fundamental tone.  The "tonality diamond18" 

(Figure 8), originally invented by Max Meyer19 but 

mainly associated with Partch and his followers, 

represents the frequency ratios of the tones of the 

system to the fundamental (designated as ‘1/1’.) 

These tones are supplemented by several more to 

fill relatively large gaps in the scale and make a 

limited amount of modulation possible, but the 

tonality diamond is the main organizing principle 

of monophony. 

  

                                                
18 Harry Partch, Genesis of a Music: 
An Account of a Creative Work, Its 
Roots and Fulfillments, New York: Da 
Capo Press, 1974.  
19 Max, F. Meyer, The Musician’s 
Arithmetic. Columbia: University of 
Missouri, 1929. 



 

 
 

, 1 2 3 4 5 6 7 8 9 10 11 

1 1/1 2/1 3/1 4/1 5/1 6/1 7/1 8/1 9/1 10/1 11/1 

2 1/2 2/2 3/2 4/2 5/2 6/2 7/2 8/2 9/2 10/2 11/2 

3 1/3 2/3 3/3 4/3 5/3 6/3 7/3 8/3 9/3 10/3 11/3 

4 1/4 2/4 3/4 4/4 5/4 6/4 7/4 8/4 9/4 10/4 11/4 

5 1/5 2/5 3/5 4/5 5/5 6/5 7/5 8/5 9/5 10/5 11/5 

6 1/6 2/6 3/6 4/6 5/6 6/6 7/6 8/6 9/6 10/6 11/6 

7 1/7 2/7 3/7 4/7 5/7 6/7 7/7 8/7 9/7 10/7 11/7 

8 1/8 2/8 3/8 4/8 5/8 6/8 7/8 8/8 9/8 10/8 11/8 

9 1/9 2/9 3/9 4/9 5/9 6/9 7/9 8/9 9/9 10/9 11/9 

10 1/10 2/10 3/10 4/10 5/10 6/10 7/10 8/10 9/10 10/10 11/10 

11 1/11 2/11 3/11 4/11 5/11 6/11 7/11 8/11 9/11 10/11 11/11 

 

Figure 820 

 The division table on the right in Figure 8 

is equivalent to Partch’s tonality diamond, by 

reorienting, normalizing to [1,2), reducing, and 

removing redundancies21. The tonality diamond is 

                                                
20 Diagram 9. –  The Expanded 
Tonality Diamond. In: Partch, Harry. 
Genesis of a Music, 159. 
21 To transform the raw table to 
Partch’s representation involves three 
operations. First, normalize all 
fractions to between 1 and 2, 
multiplying by 2 if they fall below this 
range or dividing by 2 if they fall 
above. Then reduce the fractions. 
Finally, flip the table top to bottom and 
rotate 45 degrees counterclockwise.  

Partch kept 9/6 and 12/9 
unreduced, with their reduced 
equivalents 3/2 and 4/3 included in 
smaller print. The n/n fractions are 
partly reduced, with just powers of 2 
cancelled—helpfully so, because the n 



a compact representation of all the fractions 

between integers 1 through 11, which are also the 

first 11 partials of a harmonic sound. And they 

coincide with the most salient sharp minima in a 

dissonance curve between to sawtooth waves.  

 Rows of the division table are called 

‘Otonalities’; they are proportional to harmonic 

overtone series. Columns, proportional to an 

undertone series, are ‘Utonalities.’ A row and 

column that share a square on the n/n diagonal are 

inversions of one another.  Together I call them an 

“otonal-utonal pair.” 

 Division tables can be generated by 

nonintegers representing the partials of an 

inharmonic spectrum. Figure 11’s  division table 

uses the experimentally measured first nine partials 

of a G5 on a piano.  

 Because normalization involves the use of 

2 as an interval of equivalence, it only applies to 

inharmonic-timbre tonality diamonds if one of the 

partials is equal to 2 (or at least very close.) 

Generally speaking, then, the concept of 

normalization does not apply to division tables 

from inharmonic spectra. One might use the data in 

Figure 11 to create slightly modified Otonalities 

and Utonalities specifically designed for the sound 

of a piano.  

  

         

                                                              
is the generating number for its row 
and column. 



 

 1.00 1.99 2.99 4.03 5.08 6.13 7.22 8.35 9.49 

1.00 1.00 1.99 2.99 4.03 5.08 6.13 7.22 8.35 9.49 

1.99 0.50 1.00 1.50 2.03 2.55 3.08 3.63 4.20 4.77 

2.99 0.33 0.67 1.00 1.35 1.70 2.05 2.41 2.79 3.17 

4.03 0.25 0.49 0.74 1.00 1.26 1.52 1.79 2.07 2.35 

5.08 0.20 0.39 0.59 0.79 1.00 1.21 1.42 1.64 1.87 

6.13 0.16 0.32 0.49 0.66 0.83 1.00 1.18 1.36 1.55 

7.22 0.14 0.28 0.41 0.56 0.70 0.85 1.00 1.16 1.31 

8.35 0.12 0.24 0.36 0.48 0.61 0.73 0.86 1.00 1.14 

9.59 0.11 0.21 0.32 0.42 0.54 0.65 0.76 0.88 1.00 

Figure 11  

  

 

Lou Harrison's pentatonics 
 In this section I revisit the inspiration I 

received from Lou Harrison’s Music Primer. His 

playfulness in reordering the step-intervals of ratio 

tunings – and pondering the unstated reasons for 

his choices of what to present – inspired my vision 

of tunings that favor ratio relationships without 

following a top-down design. 

 In contrast to Partch’s top-down design, 

Lou Harrison took a more relaxed and less rigorous 

approach to the exploration of tunings. The list of 

pentatonic modes in his Music Primer (Figure 12) 

are presented “at random”22 But analysis of this list 

                                                
22 Lou Harrison, Music Primer; 
Various Items About Music To 1970. 
New York, C. F. Peters, c1971. 29. 



reveals a no less active interest in the profusion of 

desirable intervals they contain. 

 

 

 Figure 12: pages 
29-30 of the Music Primer showing the 
"slendro" modes. 
  

   

 Now I examine further the pentatonics that 

reorder the intervals 7/6, 7/6, 8/7, 8/7, and 9/8. 

Harrison wasn’t explicit about his criteria for 

including or excluding orderings of these intervals; 

perhaps a thorough examination of possible 

orderings and their total interval content can 



suggest a possible motivation.  

 For each distinct permutation of the 

intervals23, there is an interval table in Figure 13 

showing the total intervallic content of the 

pentatonic.  
a) pentatonic "7/6 8/7 9/8 7/6 8/7" 

 1 7/6 4/3 3/2 7/4  

  1 8/7 9/7 3/2  

   1 9/8 (21/16)  

    1 7/6  

     1  

 

b) pentatonic "8/7 7/6 9/8 7/6 8/7" 

 1 8/7 4/3 3/2 7/4  

  1 7/6 (21/16) (49/32)  

   1 9/8 (21/16)  

    1 7/6  

     1        

                                                

c) pentatonic "7/6 8/7 9/8 8/7 7/6" 

 1 7/6 4/3 3/2 12/7  

  1 8/7 9/7 (72/49)  

   1 9/8 9/7  

    1 8/7  

     1  

                                               

                                                
23 Because there is only one 9/8, it can 
be fixed in the middle position, 
eliminating duplicates by rotation 
without loss of generality. Fitting the 
8/7 intervals in two of the remaining 
four slots, (and the 7/6’s in what’s left) 
gives us four choose two, or six 
permutations. These six modes include 
two inversionally symmetrical pairs; 
eliminating these duplicates leaves us 
four distinct orderings with respect to 
rotation and inversion. 



d) pentatonic "8/7 8/7 9/8 7/6 7/6" 

 1 8/7 (64/49) (72/49) 12/7  

  1 8/7 9/7 3/2  

   1 9/8 (21/16)  

    1 7/6  

     1  

Figure 13 
 

The ratios in parentheses, with their relatively large 

numerators and denominators, are not sensory 

consonances24 and are unlikely to have been target 

intervals. From this standpoint, permutations a) 

and c) are preferable in that they are more suffused 

with “good” small integer ratios. Indeed, of the 

five pentatonics using these intervals in the music 

primer, three are of type a, one of type b, one of 

type c, and none of type d.  Harrison’s relaxed 

approach favors tunings with more small ratios in 

four of five cases.  

 Pentatonics being a relatively simple case, 

an exhaustive working out of possibilities is not 

prohibitive, while an intuitive approach is certainly 

viable. For a more complex case, say a chromatic 

                                                
24 It is possible for fractions with large 
integer numerator and denominator to 
be sensory consonances if they are 
extremely close in value to a small 
integer ratio, but these parenthesized 
ratios are not of this type. 64/49 is a 
very sharp M3, about 28 cents sharp of 
9/7. 72/49 is 36 cents flat of 3/2. 21/16 
is 28 cents flat of 4/3. 49/32 is 28 cents 
flat of 14/9. They are accidental by-
products of the arrangement of the 
target small-number fractions. 



tuning with intervals from a 11-limit division table, 

the myriad possibilities make a rigorous approach 

impractical, while an intuitive approach is liable to 

miss many good solutions.   

 Using computer programs to explore 

possible arrangements of target intervals is a way 

to manage the complexity involved. A computer 

can exhaustively work through a very large 

number of cases, presenting to the user only the 

results that best fit the musical material at hand.  

The method presented below has proved useful in 

the exploration and construction of a variety of 

novel tunings. 

 

Insert harmonic 11-limit example. 

 

“Spectral Tuner”: software 

designed for exploring 

tuning systems, with 

examples.  
 The “Spectral Tuner” is an application for 

generating tunings based on sound spectra. Given a 

simplified representation of a sound spectrum, 

(several partial values and their associated 

amplitudes,) and a starting position for each of the 

notes in the tuning, the Spectral tuner retunes the 

notes (within an allowed range,) optimizing for 

maximal coincidence of partials the number of 



partials. It has tools to analyze the structure of the 

resultant tuning, which is usually a closely packed 

subset of a Tonnetz, as the following examples 

show. Though outside the scope of this article to 

dicuss, the Spectral Tuner also generates melodies 

and chords using the weighted graph of 

probabilities that is its structure.  

 Below is a tour of the program’s features 

by way an example using a harmonic spectrum 

with 11 partials. Following that, more examples 

flesh out the program’s further capabilities.  

 Upon starting the program, the user sees the 

“Tuning Frame” as shown in Figure 14. 

 

Figure 14 
 

 In the top row are the “Load Tuning” and 

“Clear Tuning” buttons. With the “Load Tuning” 

button, the user can recall a previously saved 

tuning, in order to alter it or explore it analytically. 



“Clear Tuning” discards the current tuning in order 

to start afresh. 

 In the center of the frame is a large 

rectangular space, initially empty. In this space, 

“Note Gauges” give visual feedback about the state 

of the tuning. 

 Below the gauge frame there is a row of 

four buttons labeled “Tuning Workflow.” By 

working with these buttons in order, you may add 

notes to the tuning by defining their characteristics, 

use the Spectral Tuners’ algorithm to tune the 

notes, export the resulting tuning to a ‘.tun’ file25, 

and save the tuning in a proprietary format so that 

you can reload and work on it later.  

 At the bottom of the frame, there are two 

amenities for “Tuning Analysis.” The “Interval 

Table” button displays a half-matrix of intervals in 

the tuning, labeling them with the appropriate ratio 

when the interval is a ratio between partial values, 

and a dash when it isn’t. 

 The “Cliques” button shows graphically 

how the notes in the tuning are related to each 

other by ratio intervals, and elucidates the structure 

of the tuning. On top of the stack of windows is a 

graph of the entire tuning, underneath which are 

windows for each of the cliques–fully connected 

subgraphs–in the tuning. The graphs’ appearance 

and interpretation are detailed in the tuning 

                                                
25 “.tun” is a common file format for 
synthesizers to realize non-standard 
tunings. 



example below. 

 The “Generate” row is on the bottom. 

Pressing these buttons sends midi information to a 

software synthesizer that explores some 

possibilities of the tuning. Melodic, and harmonic, 

and rhythmic features of the output are derived 

from a representation of the tuning as a weighted 

graph.  

 

Tuning Example 1: Harmonic 

spectrum with 11 partials.  

 The “Add Notes” button produces the “Add 

Notes” frame, which offers a broad set of options 

for the notes’ characteristics. The Add Notes frame 

is shown in its initial state in Figure 15. 

 

 
 

 Together, the “Interval 

Pattern” and “Root Note” fields determine the midi 

Figure 15 



numbers to which notes will be assigned. In the 

initial state, the notes would be 

60,62,64,65,67,69,71,72–the C major scale. The 

differences between adjacent midi numbers are the 

sequence shown in the “Interval Pattern” field. 

 In this case, I’m going to tune up an octave-

sized chromatic scale, so my interval pattern is: 1 1 

1 1 1 1 1 1 1 1 1 1 – 12 ones. I could define initial 

pitches of any value whatever to associate with 

these midi numbers. However, in this instance, I 

want their initial pitches to be identical to the equal 

temperament tuning of these midi numbers, so I 

leave the checkbox “Use midi numbers as initial 

pitches?” checked. 

 “Anchor pitches” are the center of the 

range of pitches that is allowed for a particular 

note. Like the initial pitches, you can define them 

as any numbers at all, but in this case I will use 

their midi numbers as anchor pitches. 



 “Epsilon” is the pitch interval that is 

allowed for the notes above and below the anchor 

pitch. The default value is 0.4 semitones, slightly 

less than a quarter tone. It’s important to set the 

value of epsilon less than half the smallest distance 

between anchor pitches so that the notes cannot 

tune themselves into a unison (unless you wish 

them to.)  

 The “Create Spectrum” button is explained 

below; for this example, we use 

the default “Harmonic 11-limit” 

spectrum. Clicking “Done” 

finalizes the choices and returns focus to the 

Tuning Frame. 

 Back in Tuning Frame, fields for note 

gauges, spectrum, “Aligned Partials,” and 

“Consonance Score” now appear. (See Figure 17.) 

The “gauge frame” is now populated with “note 

gauges,” showing the tuning of each note in 

reference to its anchor pitch – the center of the 

note’s permitted pitch range. Note gauges are 

Figure 16 



labeled above with the midi number to which they 

are assigned; below the note gauge is the decimal 

midi number that designates the exact pitch of the 

note. 

  Even before tuning, there are 5 aligned 

partials26 and a “consonance score” of 2.832.  For 

each pair of coinciding partials, the minimum of 

the two amplitudes is the consonance score. 

Summing these values for all aligned partials gives 

you the consonance score of the tuning.  

                                                
26 Partials 1,2,3,4,5 of note 72 align 
with partials 2,4,6,8,10 of note 60. 



 The next step in the process is to press 

“Tune Up.” The program may work for several 

minutes or even hours depending on the number of 

notes and the complexity of spectra involved. This 

tuning took about three minutes. 

 In the middle of the tuning process, the 

Tuning Frame may look something like Figure 18: 

Figure 17 



 

Figure 18 
 
  

 The word “tuning” appears in red under the 

gauge whose position is currently being optimized 

against the rest. Pitches that have already moved 

from their initial state are shown in yellow-green, 

and notes for which no improved tuning was found 

appear in green. 

 Figure 19 shows the Tuning Frame at the 

completion of the tuning process. 



 

Figure 19 

 Now a .tun file can be exported so that the 

tuning can be realized on a synthesizer, and the 

tuning saved so it can be reloaded in a future 

session; the tuning workflow is finished.  

 Pressing the “Interval Table” button 

displays a table the shows intervals that are ratios 

between the values of the partials of the spectrum.  

The upper-right half matrix (where the row midi 

numbers are lower than the column midi numbers) 

Figure 20 



displays the intervals between the row note and the 

column note. The lower-left half matrix shows the 

interval between the row note and the column note 

raised by the size of the cycle. In this case the 

cycle size is the octave, so the entries in the lower 

left half matrix are the expected complementary 

intervals to those in the upper right. In general, 

however, the size of the cycle may be something 

other than an octave.  

 Clicking the “Cliques” button generates a 

series of graphs that further illustrate the structure 

of the tuning. Thicker lines denote higher 

consonance scores between the two notes, and they 

are color coded with red lines for the strongest 

consonances, violet the weakest, and gradations in 

the order of the rainbow.  The size of the circle 

around a midi number is proportional to its 

centrality – the sum of the weights of edges that 

Figure 21 



connect to it. The top frame (Figure 21) has all the 

notes in the tuning, presented for reference. It is 

not generally a clique. 

 Each clique frame has a button to show the 

interval matrix for the notes that appear on it, and 

the ability to label the edges with the ratio interval 

they represent. Also, pressing the “listen” button, 

plays notes on the clique frame arpeggiated, then 

as a chord. (To hear the notes, there must be a 

synthesizer programmed with the tuning’s .tun file 

and set up to receive the Spectral Tuner’s midi 

output.) 

 The value of the cliques is twofold. These 

note collections, fully connected with relative 

sensory consonances, are good candidates for use 

as chords or scales. Furthermore, patterns in the 

cliques enable an understanding of the structure of 

the tuning as a whole. In general, tunings generated 

by the spectral tuner can be modeled as closely 

packed subsets of a Tonnetz, as this, and following 

examples show.  

The five cliques shown in Figure 22 are 
subsets of the C major scale, and together show a 
scale that is close, but not identical to the most 
common version of the Just diatonic scale. 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Using a hybrid 

Tonnetz/staff notation 
that mirrors that was 
used in Figure 2 to 
demonstrate the 
structure of the 
standard Just Diatonic, 

Figure 23 that the  
 
algorithmically generated tuning uses the same 
intervals in a slightly different arrangement. The 
new tuning adds a justly tuned d minor triad at the 
expense of the G major triad of the Just Diatonic. 
To my ear, the triads represented by each of the 
five triangles in Figure 23, and seventh chords 
represented by adjacent triangles are compellingly 
clean and stirring.    

Figure 22 

Figure 23 



Six more cliques in Figure 24 constitute 
another diatonic: D-flat major.  

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

The cliques of Figure 24 can be synthesized 
into the diatonic shown in Tonnetz notation in 
Figure 25. As before, triangles and rhombi 
represent well tuned triads and seventh chords. 
While the wide 9/7 major third sounds odd on its 
own, in a triad it blends very well to my ear.  

Figure 24 



The four justly tuned seventh chords in the 
diagram below are interesting both for their sonic 
and conceptual variety: a septimal m7, a dominant 
with a septimal Major triad and quinatal m7, 
septimal half-diminished, and quintal m7.  

 
Figure 25 
 
 Further cliques 
point toward more diatonics that fill in the circle of 

fifths between C and D-flat major. Figure 26 
shows a clique that includes a C dominant seventh. 
This points to a diatonic scale in the key of F, as 
shown in the Tonnetz of Figure 27. The justly 
tuned triads sound very clean and distinctive, not 
least of which the exotic septimal diminished triad 
and dominant seventh. 
 

Figure 26 



Figure 28 

 
Figure 27 
 

The clique frame in Figure 28 includes e-
flat, and points toward a B-flat major diatonic 

diagrammed in Figure 29. To the palette of triads 
and seventh chords is added the septimal-major E-
flat triad, the septimal-minor c triad and seventh 
chord, and the septimal a diminished triad and 
half-diminished seventh chord.  
 
 
 
 
 
 
 
 
 

In Figure 30, the clique frame also includes 
a-flat, suggesting the E-flat diatonic shown in 
Figure 31. This diatonic adds to the diversity of 
seventh chords with its septimal A-flat major 
seventh. 
 

Figure 29 



 

 
 
 
 

 
Figure 31 

 
 
 
 
 

Finally, the D-flat major diatonic of Figure 
32 has a variant suggested by the clique of Figure 
33. Indeed, the diatonic of A-flat major is 
diagrammed in Figure X. A further exotic form is 
the E-flat dominant with a septimal major triad.  

Figure 30 



 
 

 
Figure 33 
 
 
 

 
 

The diagrams for diatonic scales can be 
merged into a single graph, shown in Figure X. 
The 7/5 diminished fifths (d-a flat, a-e flat, e-b flat, 
c-g flat, g-d flat) are difficult to show on the two-
dimensional images, but are part of justly tuned 
diminished triads. With these triads taken into 
account, there are 16 triads and 15 seventh chords 
and 5 diatonic scales.  
 
 

 

 

 

 

 

Figure 32 

Figure 34 



 

 

 

Tuning Example 2: Kkwaengwari 

augmented triads 
 

 The Kkwaengwari is a small Korean 

metallaphone, with a dense raucous sound, used in 

Korean “Nong-ak” (farmer’s music) and its concert 

music 

descendant 

Samulnori. In 

this example, 

the Spectral 

Tuner will use 

its inharmonic 

spectrum tune 

three octaves of 

an augmented 

triad. By 

showing the process of the tuning’s creation, I visit 

further features of the program. Also I analyze the 

result by looking for patterns in the cliques, and 

find that the tuning is a closely packed collection 

of notes in a Tonnetz. 

In the Add Notes frame (Figure 35) I input an 

interval pattern of 4 4 4 4 4 4 4 4 4 – three octaves 

of stacked major thirds, and a root note of 36, to 

explore a deeper than normal kkwaengwari 

Figure 35 



sound27. So, this tuning concerns midi numbers 

36,40,44,48,52,56,60, 64,68,72. Again, I will use 

midi numbers as initial and anchor pitches.  

 The default value for epsilon, 0.4 

semitones, makes sense for a relatively dense 

tuning that includes half steps (like the default 

major scale.) In this sparser tuning, I will allow a 

wider range for the notes, 1.75 semitones.  

 The “Create Spectrum” button allows the 

user to specify a new spectrum for tuning. My 

process for measuring and inputting the 

kkwaengwari spectrum is detailed below. 

 I recorded a sample of a kkwaengwari from 

a Samulnori percussion ensemble class. Using the 

“Sonic Visualizer28” software tool (screenshot in 

Figure 36) I measured the partials at frequencies 

294, 482.1, 588, 828.8, 960, and 1133.8 Hz. By 

hovering the mouse over one of the colored lines 

that indicates a strong partial, I find an estimate of 

its frequency.  By taking several measurements 

along its temporal length, I can obtain a fairly 

reliable estimate of its pitch. Doing this for each of 

the partials gets a reasonably full representation of 

the sound. Making measurements this way takes 

                                                
27 The original kkwaengwari’s base 
frequency is close to midi note 62. 
28 Chris Cannam, Christian Landone, 
and Mark Sandler, Sonic Visualiser: 
An Open Source Application for 
Viewing, Analysing, and Annotating 
Music Audio Files, in Proceedings of 
the ACM Multimedia 2010 
International Conference. 



judgment; experience is required to determine 

which partials are important to the sound and 

which are too faint or too masked by other partials 

to be significant. 

 

Figure 36 
 I then divide each frequency by that of the 

fundamental (the lowest frequency.) The resulting 

list of ratios between partials and the fundamental, 

along with their relative strengths, is termed its 

“spectrum” in the Spectral Tuner. For the 

kkwaengwari, the spectrum’s partials are: 

1,1.64,2.0,2.82,3.27,3.86. The amplitudes I 

approximated at 1.0,0.88,0.77,2.1,0.76,0.86.  



  When I click the “Create Spectrum” button, 

I see the frame in Figure 37, into which I type the 

values for partials and amplitudes. I then click 

“Save Spectrum,” so that I can reuse it for later 

tunings.  

 After saving the spectrum, Spectral Tuner 

returns focus to the Add Notes frame, (Figure 38) 

whose choices I finalize by clicking “Done.” Focus 

returns to the Tuning Frame, with note gauges, 

spectrum, the “Aligned Partials” and “Consonance 

Score.” The numbers above the note gauges are the 

midi numbers to which the notes are assigned; 

below are their exact pitches. Even before tuning, 

there are 7 aligned partials, because one of the 

aligned partials is 2, so each of the octaves will 

initially be in tune. The ‘consonance score’ is the 

sum, for every coincidence of partials, of the 

minimum amplitude of the two partials.  

Figure 37 



 

Figure 38  
 After pressing “Tune Up,” the program 

worked for about five minutes. Figure 39 shows 

the Tuning Frame when the tuning process is 

finished: 

 

Figure 39 



  

 

 

 

 

 

 

 

 

 

The interval table in figure 

40 and the graph for all 

notes in figure 41 give the first opportunities for 

analysis of the tuning, after which we look for 

patterns in the cliques. The two largest cliques 

have four notes, and their graphs are shown in 

Figure 42.

 

Figure 40 

Figure 4 Figure 5 

Figure 41 



                                               Figure 42 
 A look at the ratios labeling the edges of 

the two graphs shows that they are mirror images 

of each other. In fact they are the inverse of each 

other. Clique 4 is labeled an otonality, which can 

be seen by the ratios incident to midi number 44. 

Those same intervals are incident upon midi 

number 72 in Clique 9, but they are descending 

intervals so they are in fact the inverse.  Cliques 4 

and 9 are an otonal-utonal pair. 

 Cliques 3 and 6 (Figure 43) form another 

otonal-utonal pair, as do Cliques 7 and 2. (Figure 

44) Otonal/utonal pairs are typical features of the 

cliques within tunings created by the Spectral 

Tuner, and can be an important compositional 

impetus. The three remaining cliques, 1, 3, and 8, 

are singletons. 



 

                                          
Figure 43 

Figure 44 

Figure 45 



A synthesis of the tunings relationships in a single 

Tonnetz is shown in Figure 46. The edges shown 

are the minimum to show the tuning’s structure; 

the rest of the intervals in the tuning could 

consistently be included in the Tonnetz, but Figure 

46 has been simplified for readability. 

 

 

 

 

 

 
 
 
Figure 46 
Tuning Example 3: Pyeon-

Gyeong and Harmonic 

pentatonic.  
 The pyeon-gyeong is a court music 

instrument used in the Royal Ancestor Shrine 

Ceremony, its sixteen stones tuned approximately 

to 12ET midi numbers 72 through 87.  I combined 

its spectrum with a harmonic spectrum with 7 

partials, and used the hybrid spectrum to tune a 

two octave pentatonic scale. The interval table and 

cliques, as before, are key to an analysis of the 

tuning.  

 Because 1.52 is very close to 3/2 and 2.33 

is very close to 7/3, the pyeon-gyeong and 



harmonic timbers mesh together very well to create 

strong consonances. Figure 47 lists approximate 

congruencies between the intervals in the tuning 

and whole number ratios. Figures 48 and 49 show 

the interval table and graph for the finished tuning. 

 1.52/1.00 ~ 3/2 

 2/1.52      ~ 4/3 

 7/2.33      ~ 3/1 

 4/1.52      ~ 8/3 

Figure 47 

 

 

  

 

 

 

 



 

 

 

 

 

 

 As in the previous examples, looking for 

patterns in the cliques helps to conceptualize the 

structure of the tuning. In Figure 50, six cliques 

with similar structures together compose 10 of the 

11 tones in the tuning.  

  

 

 

 

 

 

 

Figure 48 Figure 49 

Figure 50 



 

 

 

 

 

 

 

 

 

 

 

 

 

 Synthesizing the relationships between the 

ten notes represented in the previous cliques, the 

beginnings of a Tonnetz appears. Two cliques 

containing the remaning midi note 72 (Figure 51) 

allow us to assemble the Tonnetz completely.   

 

  

 



 Because of the density of relationships, I 

use three figures. Figure 52 contains two views 

that together show most of the relationships, and 

Figure 53 is a skeleton containing all notes of the 

tuning in a sparser, more readable form.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 In this article I’ve 

presented a method of designing tuning systems in 

which the arrangement of pitches is a result of 

saturating the tuning with a set of target intervals. 

I’ve also developed a method of analyzing the 

structure of ratio-based tunings that is effective 

both for historical tunings and those that have been 

algorithmically generated. Finally, I’ve touched on 

Figure 53 
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ways of using the structure of tunings to generate 

music.  

One area that merits further exploration is 

the phenomenon of beats. Some tunings, such as 

Michael Harrison’s “revelation” tuning, 

deliberately employ beats as part of the structure of 

the tuning, and they are a potential parameter for 

creating new tunings algorithmically. Also, the 

dissonance curve model can be developed further. 

The model I’ve used for this article can be 

augmented to take into account psychoacoustical 

effects of the critical band and of masking. The use 

of tunings to generate melodies and other 

parameters of music is a field with much room for 

exploration. 

Beyond that, there is a universe to explore 

in the many types of ratio-based tunings: their 

structures, their affect, their suitability to various 

kinds of music. It promises to be a delightful and 

bountiful process of discovery. 
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