Tuning By Spectra:
Computer tools for crafting
tuning systems from Korean
musical timbres and other sounds.

John Seales

— If ratios appear to be a new language, let it be
said that it is in actual fact a language so old that
its beginnings as an expression of the essential
nature of musical sound can only be conjectured.
In learning any new language, the results are more
immediate if a total plunge is made, so that the

new medium surrounds and permeates the thinking
1

— Harry Partch

Though we say that twelve-tone equal
temperament is our standard tuning, we rarely, if
ever, hear it in musical practice. Instruments that
produce pitch flexibly — the woodwinds, strings,
and voice — tune to other instruments in the
ensemble, not to a pure equal temperament. Even
the piano is not strictly 12-ET; its tuning is
stretched, and the amount of stretch is gracefully
varied along the range of the instrument (cite).
What the above examples have in common is the
mutual adapting of pitches so that their

combination sounds in tune.

" Harry Partch. Genesis of a Music: An
Account of a Creative Work, Its Roots

and Fulfillments (New York: Da Capo
Press, 1974), 77.



The inspiration for this article, and the
software described herein, is a vision of a
collection of notes tuning to each other
democratically, with no relationship between two
notes a priori more important than any other.
Tuning systems emerge in a bottom-up fashion
from a process of mutual adaption, resulting in
myriad surprising and beautiful structures.
Furthermore, the structures hold interesting
implications for modes, scales, melodies,
harmonies, and other musical parameters.

I begin with a look at the Pythagorean and
just diatonics to introduce ways of representing
and evaluating tuning systems. William Sethares’
method of measuring sensory dissonance then
provides a tool for selecting desirable intervals. I
investigate and expand upon the principles behind
Partch’s monophony and Lou Harrison’s collection
of “slendro” pentatonics in his Music Primer to
find a point of departure for new exploration, after
which I explain in detail how my tuning algorithm
works, and present a few examples of tunings
generated by it. Making sense of more complex
tunings requires a method of analysis, which I
present through a deeper look at the just diatonic. I
then use this method to reveal the intriguing
structures of tunings based on the spectra of
Korean percussion instruments, and of the
chromatic scale for a harmonic timbre, each
produced by my algorithm. I finish by introducing

ways of using tuning structures as compositional



resources, generating melody and harmony, and
other musical parameters.

For a reasonably large set of target
intervals, their possible arrangements in a tuning
are astronomical in number. In the past, this
profusion of possibilities virtually necessitated a
top-down approach because of the time and energy
required to design and implement a novel tuning
system. Tuning systems from the
Pythagorean/Chinese system, to just intonation, to
the tempered tunings and equal temperament, each
derive from the application of a small number of
controlling principles that make the system easier
both to reproduce and to defend to colleagues as
“rational.” Newer inventions such as Partch’s
monophony, non-12 equal temperaments, and
Michael Harrison’s Revelation tuning” are likewise
top-down designs.

Computer algorithms today offer new
possibilities for tuning system design. With
synthesizers, tunings can be created and realized
with ease, and discarded without regret. The
bewildering variety of structures that arise from
any possible arrangement of intervals can be
managed by software. In short, it is now feasible to
journey into a vast forest of tuning systems that

emerge in a bottom-up fashion without getting lost

2 Michael Harrison, “Music In Just
Intonation,”
http://michaelharrison.com/web/pure_i
ntonation.htm (accessed April 22,
2009).




in burdensome practical concerns. The beauty of
the structures that result from such methods make

the journey well worthwhile.

Pythagorean and just

diatonics

(Include rationale for the inclusion of this
section)

The “Pythagorean” tuning system is both
ancient and widespread. In the West, it was first
described by Boethius® but evidence exists of its
use 3500 years ago by the Babylonians®. It has
been used throughout recorded history (and
probably long into prehistory) by the Chinese”.

In this system the “good®” intervals are
those that can be expressed as ratios between

integers from one to four. These ratios include only

* Anicius Manlius Severinus Boethius,
Fundamentals of Music, Calvin M.
Bower, trans., ed. (New York: Yale
University Press, 1989).

* M.L. West "The Babylonian Musical
Notation and the Hurrian Melodic
Texts," Music & Letters 75:2,161-179.
> Ernest McClain and Ming Shui
Hung, "Chinese Cyclic Tunings in
Late Antiquity," Ethnomusicology,
23:2,205-224.

% In this context, I'm using the word
“good” in a technical sense: that the
interval in question is a goal in the
current design process. They are not
necessarily good or bad in any
absolute sense.



the octave and 3/2 perfect fifth, along with their
complements and octave equivalents. A
Pythagorean scale is generated by stacking 3/2
perfect fifths or 4/3 perfect fourths, duplicating the
resulting pitches in each octave. The tuning creates
pure fifths, but the tuning of seconds, sevenths,
thirds, sixths and tritones are unintended by-
products of the design process.

Graph theoretic notation is useful to
visualize the structure of this tuning — as it will be
for analyzing more complex examples. Depicting
notes as vertices and the desired intervals as edges,

the Pythagorean diatonic is a simple chain.
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With seven entities, there are twenty-one
possible pairings; so a tuning system of seven
notes contains twenty-one distinct intervals. In the
Pythagorean tuning, only six of them are “good.”
This poverty of relationships is a consequence of
having only one kind of target interval; with n
notes there are a maximum of n-1 instances of a

single target interval’.

7 This constraint holds unless the good
interval is the kth root of an interval of
equivalence. For instance, the circle of
fifths in equal temperament includes
12 perfect fifths from 12 notes: n



Zarlino, in 1558,
was the first to propose the deliberate use of purer-
sounding thirds than those in the Pythagorean
system®. His innovation was to increase the range
of integers for use in musical ratios from four to
six. Crucially, the inclusion of five among the
generating numbers dramatically enriches the
available good relationships between notes. A
graph of the just diatonic scale (Figure 2) is more
complexly connected than that of the Pythagorean;
out of the twenty-one intervals between seven
notes, eleven are good. The just diatonic is richer

in ideal intervals than the Pythagorean.
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Figure 2

In general, as we broaden the palette of
desirable intervals, we increase the potential
connections within a group of notes. However, this
expansion has psychoacoustical limits. It is
generally recognized that for harmonic timbres,
ratio intervals sound in tune when their numerator

and denominator are small integers, though the

instances of the target interval from n
notes.

8 Zarlino Gioseffo, Le istitutioni
harmoniche (Reprinted New York:
Broude Bros.) 1965.



precise cutoff is highly contested. An exploration
of the concept of sensory dissonance can help to
understand why this is so, and what limits for the
numerator and denominator are appropriate. In
addition, calibration of sensory dissonance is one
of several fruitful bases for the bottom-up

construction of tuning systems.
Sensory Dissonance

James Tenney identifies five distinct
concepts of dissonance and consonance that are
associated with overlapping periods of history’.
The last of these, cdc-5, is the conception of
dissonance as sensory roughness'’, caused by beats
between sinusoidal components of a complex
sound.

An oft-raised objection to CDC-5 as a
relevant concept of dissonance in music is the
“fact” that intervals between simple tones (sine
waves) are perceived to be relatively consonant at

small integer ratios. Since upper partials are not

? James Tenney, A History of
“Consonance” and “Dissonance”
(New York: Excelsior, 1988).

' This conception of consonance and
dissonance was introduced by
Helmholz in On the Sensations of
Tone. Helmholz’s ideas have proved a
major source of inspiration to
subsequent thinkers about tuning
systems, including Harry Partch and
William Sethares.



present in simple tones, consonance and
dissonance cannot be caused by their interaction.
However, Plomp and Levelt'' showed that ratio
intervals between simple tones were perceived as
consonant only when experienced musicians
served as test subjects, responding in accordance
with habit and training. Tests on non-musicians
show no preference for ratio intervals between
simple tones.

Hermann von Helmholz reported that the
maximum sensory dissonance occurs between
simple tones about 32 Hz apart in frequency'’. The
resulting beats at 32 Hz are too fast to be perceived
individually, and blur into an unpleasant
roughness. Plomp and Levelt refined Helmholz’s
observation, showing that 32 Hz was a good
estimate for maximum roughness only for tones
between about 500-1000 Hz. In fact, the interval of
maximum sensory roughness correlates to the
critical band" throughout the range of hearing.

Plomp and Levelt’s dissonance curve (Figure 3)

""R. Plomp and W. J. M. Levelt,
“Tonal consonance and critical
bandwidth,” Journal of the Acoustical
Society of America 38 (1965): 548-
560.

2 Hermann von Helmholz, On The
Sensations Of Tone As A Physiological
Basis For The Theory Of Music, New
York: Dover Publications, 1954.

" R.Plomp and W. J. M. Levelt,
“Tonal consonance and critical
bandwidth,” Journal of the Acoustical
Society of America 38 (1965): 548-
560.



shows a minimum at the unison, a maximum at

about .25 of the critical band, and a rapid falling
off as the two simple tones further diverge. The

vertical scale is ordinal; it corresponds to

subjective dissonance as perceived by test subjects.

Sensory
Dissonance
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Figure 3"

Using this curve, it is possible to calculate
sensory dissonance between any pair of simple
tones. Because complex tones are composed of
simple tones, the dissonance between complex
tones can be measured by summing the
interactions of all the constituent partials. This

method of measuring the sensory dissonance

'* The curve in Figure 3 is an
approximation of Plomp and Levelt’s
results parameterized by William
Sethares in Tuning,Timbre, Spectrum,
Scale, Appendix E.



between tones is discussed in William
Sethares’ 1998 book Tuning, Timbre, Spectrum,
Scale”. Sethares shows how to calculate a

) B Arts Computing 5/5/09 7:45 AM
“dissonance curve,” a graph whose x-axis is tl peJeted:

interval between the fundamentals of two tones,

and whose y-axis is the sensory dissonance of the
two tones at that interval.

Amplitude of partial is 1/n

Figure 4 shows a dissonance curve between

two sawtooth waves with eight harmonic partials.

Sensory

Dissonance 1 2 3 4 5 6 7 8 9 10 11 12

Figure 4

Semitones _— >

Those familiar with just intonation will be
unsurprised to see that minima in the curve occur
at intervals at ratios between the first eight
integers. The depths of the minima lessen with the

magnitude of the numbers in the numerator and

" William A. Sethares, Tuning,
Timbre, Spectrum, Scale, London:
Springer, 1998.



denominator, a result of the decreasing amplitude
of the partials.

If we increase the number of partials to
sixteen, we see the dissonance curve in Figure 5.
Even though partials 11-16 are present, their
amplitudes are insufficient in the sawtooth wave to

show up as a minimum in the dissonance curve.
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Figure 5: dissonance curve: the first 16 partials

of a sawtooth wave
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Figure 6: dissonance curve for the first 64

partials of a sawtooth wave.

Increasing the number of partials to 64
leads to a dissonance curve with a few more visible
minima (Figure 6) but none of these minima are at
ratios involving the number 13. Partch used 11 as
the limit in his system; an examination of
dissonance curves confirms the validity of his
judgment. It may still make sense to use ratios
involving 13, as long as the tuning designer is
conscious that they are likely to be quite dissonant.
In fact, including the 13 (or higher) limit chords is
one way of deliberately including dissonant
intervals in a tuning.

Dissonance curves can also be generated
for inharmonic timbres, or between two different

timbres. Figure 7c shows the dissonance as a
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harmonic timbre (Figure 7a) is moved in relation

that of the ideal circular membrane (Figure 7b).

Figure 7a (Harmonic partials)

1 159 21423 265 292 316

Figure 7b (Ideal membrane partials)

0 1 2 3 4 5 6 7 8 9 10 11 12
Figure 7¢
Semitones: 0.90 1.17 242 4.87 6.55 7.92 8.03
Fractions: 3.16/3 2.14/2 2372 2.65/2 292/2 3.16/2 1.59/1

Figure 7d Decimal semitone heights for ratios
between the harmonic and membrane spectra
falling between unison and octave.

Dissonance curves can inform our choice limit for
ratio intervals, and are one method of scoring the
relative desirability of intervals in a tuning

algorithm. Before discussing such algorithms,



however, I will examine Harrry Partch’s
monophony, in the process developing several

tools for designing and analyzing tuning systems.

Partch's tonality diamond

In this section I see the tonality diamond as
a representation of all intervals between partials of
a harmonic timbre (with 11 partials.) This bolsters
the case for the software I introduced which favors
target intervals based on coinciding partials. Also I
introduce and broaden the concept of otonalities
and utonalities, which proves useful later in
analyzing algorithmically generated tunings.

In the field of new music's experimentation
with tuning systems, Harry Partch's influence is
extensive. His work directly influenced that of Lou
Harrison,'® Ben Johnston,'” and many others
including myself. Partch's seminal Genesis of a
Music explained the rationale and construction of
his tuning system, monophony, named for the fact

that all tones in the system are related to a single,

' Leta E. Miller and Frederic
Lieberman, Composing A World: Lou
Harrison, Musical Wayfarer, Urbana:
University of Illinois Press, 2004. 44-45
" Heidi Von Gunden, The Music of
Ben Johnston. Metuchen, Scarecrow,
1986.p11-13



fundamental tone. The "tonality diamond"®"
(Figure 8), originally invented by Max Meyer'" but
mainly associated with Partch and his followers,
represents the frequency ratios of the tones of the
system to the fundamental (designated as ‘1/1°.)
These tones are supplemented by several more to
fill relatively large gaps in the scale and make a
limited amount of modulation possible, but the
tonality diamond is the main organizing principle

of monophony.

' Harry Partch, Genesis of a Music:
An Account of a Creative Work, Its
Roots and Fulfillments, New York: Da
Capo Press, 1974.

' Max, F. Meyer, The Musician’s
Arithmetic. Columbia: University of
Missouri, 1929.



1 2 3 4 5 6 7 8 9 10 11

31 41 51 61 7/1 81 91 10/1 11/1

32 42 52 62 72 82 92 102 1172

33 43 513 63 73 83 93 103 1173

3/4 44  5/4 6/4 74 84 94 10/4 11/4

3/5 45 55 65 75 85 95 10/5 11/5

3/6 46 5/6 6/6 7/6 86 96 10/6 11/6

37 47 517 67 77 87 97 10/7 11/7

3/8 48 518 68 7/8 88 98 10/8 11/8

39 49 519 6/9 79 89 99 109 11/9

i 2
_ . %40—3/10 4/10 5/10 6/10 7/10 8/10 9/10 10/10 11/10

11| yir /11 3/11 4/11 5/11 6/11 7/11 &/11 9/11 10/11 11/11

Figure 8>

The division table on the right in Figure 8
is equivalent to Partch’s tonality diamond, by
reorienting, normalizing to [1,2), reducing, and

removing redundancies’'. The tonality diamond is

* Diagram 9. — The Expanded
Tonality Diamond. In: Partch, Harry.
Genesis of a Music, 159.
: To transform the raw table to
Partch’s representation involves three
operations. First, normalize all
fractions to between 1 and 2,
multiplying by 2 if they fall below this
range or dividing by 2 if they fall
above. Then reduce the fractions.
Finally, flip the table top to bottom and
rotate 45 degrees counterclockwise.
Partch kept 9/6 and 12/9
unreduced, with their reduced
equivalents 3/2 and 4/3 included in
smaller print. The n/n fractions are
partly reduced, with just powers of 2
cancelled —helpfully so, because the n



a compact representation of all the fractions
between integers 1 through 11, which are also the
first 11 partials of a harmonic sound. And they
coincide with the most salient sharp minima in a
dissonance curve between to sawtooth waves.

Rows of the division table are called
‘Otonalities’; they are proportional to harmonic
overtone series. Columns, proportional to an
undertone series, are ‘Utonalities.” A row and
column that share a square on the n/n diagonal are
inversions of one another. Together I call them an
“otonal-utonal pair.”

Division tables can be generated by
nonintegers representing the partials of an
inharmonic spectrum. Figure 11’°s division table
uses the experimentally measured first nine partials
of a G5 on a piano.

Because normalization involves the use of
2 as an interval of equivalence, it only applies to
inharmonic-timbre tonality diamonds if one of the
partials is equal to 2 (or at least very close.)
Generally speaking, then, the concept of
normalization does not apply to division tables
from inharmonic spectra. One might use the data in
Figure 11 to create slightly modified Otonalities
and Utonalities specifically designed for the sound

of a piano.

is the generating number for its row
and column.



10192940506.1 728394
1.010192940506.1 728394
051.015202530364247
030610131.72024273.1
020407101215172023
5002030507101214161.38
6.10.103040608101.11315
72010204050708101.113
830.1020304060.708101.1
95010203040506070810
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Figure 11

Lou Harrison's pentatonics

In this section I revisit the inspiration I
received from Lou Harrison’s Music Primer. His
playfulness in reordering the step-intervals of ratio
tunings — and pondering the unstated reasons for
his choices of what to present — inspired my vision
of tunings that favor ratio relationships without
following a top-down design.

In contrast to Partch’s top-down design,
Lou Harrison took a more relaxed and less rigorous
approach to the exploration of tunings. The list of
pentatonic modes in his Music Primer (Figure 12)

are presented “at random”** But analysis of this list

22 Lou Harrison, Music Primer;
Various Items About Music To 1970.
New York, C. F. Peters, c1971. 29.



reveals a no less active interest in the profusion of
desirable intervals they contain.
Some "Slendro” types follow: v& v& 1€ v& 1S

749178 £97817
Tésge7 1 1973676
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Figure 12: pages
29-30 of the Music Primer showing the
"slendro" modes.

Now I examine further the pentatonics that
reorder the intervals 7/6,7/6, 8/7,8/7, and 9/8.
Harrison wasn’t explicit about his criteria for
including or excluding orderings of these intervals;
perhaps a thorough examination of possible

orderings and their total interval content can



suggest a possible motivation.

For each distinct permutation of the
intervals®, there is an interval table in Figure 13
showing the total intervallic content of the
pentatonic.

a) pentatonic "7/6 8/7 9/8 7/6 8/7"
1 776 4/3 372 T7/4
1 8/7 97 32
1 9/8  (21/1¢

1 7/6
1

b) pentatonic "8/7 7/6 9/8 7/6 8/7"
1 8/7 43 372 74
1 7/6  (21/1¢ (49/3.
1 9/8  (21/1¢
1 7/6
1

¢) pentatonic "7/6 8/7 9/8 8/77/6"
1 76 4/3 372 1277
1 817 97  (72/4¢
1 9/8  9/7
1 8/7
1

» Because there is only one 9/8, it can
be fixed in the middle position,
eliminating duplicates by rotation
without loss of generality. Fitting the
8/7 intervals in two of the remaining
four slots, (and the 7/6’s in what’s left)
gives us four choose two, or six
permutations. These six modes include
two inversionally symmetrical pairs;
eliminating these duplicates leaves us
four distinct orderings with respect to
rotation and inversion.



d) pentatonic "8/7 8/7 9/8 7/6 7/6"
1 8/7  (64/4¢ (72/4¢ 12/7
1 817 97 312
1 9/8  (21/1¢
1 7/6
1

Figure 13

The ratios in parentheses, with their relatively large
numerators and denominators, are not sensory
consonances” and are unlikely to have been target
intervals. From this standpoint, permutations a)
and c) are preferable in that they are more suffused
with “good” small integer ratios. Indeed, of the
five pentatonics using these intervals in the music
primer, three are of type a, one of type b, one of
type ¢, and none of type d. Harrison’s relaxed
approach favors tunings with more small ratios in
four of five cases.

Pentatonics being a relatively simple case,
an exhaustive working out of possibilities is not
prohibitive, while an intuitive approach is certainly

viable. For a more complex case, say a chromatic

** It is possible for fractions with large
integer numerator and denominator to
be sensory consonances if they are
extremely close in value to a small
integer ratio, but these parenthesized
ratios are not of this type. 64/49 is a
very sharp M3, about 28 cents sharp of
9/7.72/49 is 36 cents flat of 3/2.21/16
is 28 cents flat of 4/3.49/32 is 28 cents
flat of 14/9. They are accidental by-
products of the arrangement of the
target small-number fractions.



tuning with intervals from a 11-limit division table,
the myriad possibilities make a rigorous approach
impractical, while an intuitive approach is liable to
miss many good solutions.

Using computer programs to explore
possible arrangements of target intervals is a way
to manage the complexity involved. A computer
can exhaustively work through a very large
number of cases, presenting to the user only the
results that best fit the musical material at hand.
The method presented below has proved useful in
the exploration and construction of a variety of

novel tunings.

Insert harmonic 11-limit example.

“Spectral Tuner”: software
designed for exploring
tuning systems, with

examples.

The “Spectral Tuner” is an application for
generating tunings based on sound spectra. Given a
simplified representation of a sound spectrum,
(several partial values and their associated
amplitudes,) and a starting position for each of the
notes in the tuning, the Spectral tuner retunes the
notes (within an allowed range,) optimizing for

maximal coincidence of partials the number of



partials. It has tools to analyze the structure of the
resultant tuning, which is usually a closely packed
subset of a Tonnetz, as the following examples
show. Though outside the scope of this article to
dicuss, the Spectral Tuner also generates melodies
and chords using the weighted graph of
probabilities that is its structure.

Below is a tour of the program’s features
by way an example using a harmonic spectrum
with 11 partials. Following that, more examples
flesh out the program’s further capabilities.

Upon starting the program, the user sees the

“Tuning Frame” as shown in Figure 14.

N o Untitled Tuning

Load Tuning Clear Tuning )

Tuning Workflow --> (" Add Notes Tune Up " Export .tun File Save Tuning )

Tuning Analysis --> Interval Table ) Cliques )

Generate --> (_Generate Melody " Generate Chords )

Figure 14

In the top row are the “Load Tuning” and
“Clear Tuning” buttons. With the “Load Tuning”
button, the user can recall a previously saved

tuning, in order to alter it or explore it analytically.



“Clear Tuning” discards the current tuning in order
to start afresh.

In the center of the frame is a large
rectangular space, initially empty. In this space,
“Note Gauges” give visual feedback about the state
of the tuning.

Below the gauge frame there is a row of
four buttons labeled “Tuning Workflow.” By
working with these buttons in order, you may add
notes to the tuning by defining their characteristics,
use the Spectral Tuners’ algorithm to tune the
notes, export the resulting tuning to a ‘.tun’ file*,
and save the tuning in a proprietary format so that
you can reload and work on it later.

At the bottom of the frame, there are two
amenities for “Tuning Analysis.” The “Interval
Table” button displays a half-matrix of intervals in
the tuning, labeling them with the appropriate ratio
when the interval is a ratio between partial values,
and a dash when it isn’t.

The “Cliques” button shows graphically
how the notes in the tuning are related to each
other by ratio intervals, and elucidates the structure
of the tuning. On top of the stack of windows is a
graph of the entire tuning, underneath which are
windows for each of the cliques—fully connected
subgraphs—in the tuning. The graphs’ appearance

and interpretation are detailed in the tuning

3« tun” is a common file format for

synthesizers to realize non-standard
tunings.



‘igure 15

example below.

The “Generate” row is on the bottom.
Pressing these buttons sends midi information to a
software synthesizer that explores some
possibilities of the tuning. Melodic, and harmonic,
and rhythmic features of the output are derived
from a representation of the tuning as a weighted

graph.

(S XeNe) Add Notes

Interval Pattern: 2212221 Root Note: 60
M Use midi numbers as initial pitches?
List initial pitches:

izl Use midi numbers as anchor pitches?

List Anchor pitches:

epsilon 0.4

_ Create Spectrum 3 “ Load Spectrum 4
choose spectrum o monic 9-limit (B
__ Done _Cancel

Tuning Example 1: Harmonic

spectrum with 11 partials.

The “Add Notes” button produces the “Add
Notes” frame, which offers a broad set of options
for the notes’ characteristics. The Add Notes frame

is shown in its initial state in Figure 15.

Together, the “Interval

Pattern” and “Root Note” fields determine the midi



numbers to which notes will be assigned. In the
initial state, the notes would be
60,62,64,65,67,69,71,72—the C major scale. The
differences between adjacent midi numbers are the
sequence shown in the “Interval Pattern” field.

In this case, I’'m going to tune up an octave-
sized chromatic scale, so my interval pattern is: 1 1
1111111111-12ones. I could define initial
pitches of any value whatever to associate with
these midi numbers. However, in this instance, I
want their initial pitches to be identical to the equal
temperament tuning of these midi numbers, so |
leave the checkbox “Use midi numbers as initial
pitches?” checked.

“Anchor pitches” are the center of the
range of pitches that is allowed for a particular
note. Like the initial pitches, you can define them
as any numbers at all, but in this case I will use

their midi numbers as anchor pitches.
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eNo Add Notes

Interval Pattern: 11111111 RootNote: g0

@ Use midi numbers as initial pitches?
List initial pitches:
@ Use midi numbers as anchor pitches?

List Anchor pitches:

epsilon 0.4

Create Spectrum _Load Spectrum

choose spectrum ‘o rmonic 11-limit B

Done Cancel

“Epsilon” is the pitch interval that is
allowed for the notes above and below the anchor
pitch. The default value is 0.4 semitones, slightly
less than a quarter tone. It’s important to set the
value of epsilon less than half the smallest distance
between anchor pitches so that the notes cannot
tune themselves into a unison (unless you wish
them to.)

The “Create Spectrum” button is explained
below; for this example, we use
the default “Harmonic 11-limit”
spectrum. Clicking “Done”

finalizes the choices and returns focus to the
Tuning Frame.

Back in Tuning Frame, fields for note
gauges, spectrum, “Aligned Partials,” and
“Consonance Score” now appear. (See Figure 17.)
The “gauge frame” is now populated with “note
gauges,” showing the tuning of each note in
reference to its anchor pitch — the center of the

note’s permitted pitch range. Note gauges are



labeled above with the midi number to which they
are assigned; below the note gauge is the decimal

midi number that designates the exact pitch of the
note.

Even before tuning, there are 5 aligned
partials® and a “consonance score” of 2.832. For
each pair of coinciding partials, the minimum of
the two amplitudes is the consonance score.
Summing these values for all aligned partials gives

you the consonance score of the tuning.

* Partials 1,2,3.4,5 of note 72 align
with partials 2,4,6,8,10 of note 60.



[ YaXe) Untitled Tuning

(Load Tuning ) (Clear Tuning

60 61 62 63 64 65 66 67 68 69 70 71

F T E T ot

60.0 61.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0 70.0 71.0

Spectrum: Harmonic 11-limit

Aligned Partials: s Consonance Score: 2.82
Tuning Workflow --> (" Add Notes " Tune Up " Export .tun File ) (Save Tuning
Tuning Analysis -->  ("Interval Table (Cliques )
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Figure 17

The next step in the process is to press
“Tune Up.” The program may work for several
minutes or even hours depending on the number of
notes and the complexity of spectra involved. This
tuning took about three minutes.

In the middle of the tuning process, the

Tuning Frame may look something like Figure 18:

72.0



untitled tuning

( Load Tuning Clear Tuning )
60 61 62 63 64 65 66 67 68 69 70 71
mEn k I
60.0 tuning
Spectrum: Harmonic 11-limit
Aligned Partials: 27 Consonance Score: 13.07
Tuning Workflow --> (" Add Notes ) Tune Up ) " Export .tun File ) ( Save Tuning |
Tuning Analysis -->  ("Interval Table ) (_Cliques

Generate --> " Generate Melody

Figure 18

( Generate Chords )

The word “tuning” appears in red under the

gauge whose position is currently being optimized

against the rest. Pitches that have already moved

from their initial state are shown in yellow-green,

and notes for which no improved tuning was found

appear in green.

Figure 19 shows the Tuning Frame at the

completion of the tuning process.
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untitled tuning

(" Load Tuning ) (_Clear Tuning )

Spectrum: Kkwaengwari

Aligned Partials: 25

Tuning Workflow -->  (“Add Notes )

Tuning Analysis --> (" Interval Table )

Generate --> ( Generate Melody )

Consonance Score: 20.98

( Tune Up Export .tun File

Save Tuning )

(_Cliques _

_Generate Chords )

Figure 19
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Now a .tun file can be exported so that the

tuning can be realized on a synthesizer, and the

tuning saved so it can be reloaded in a future

session; the tuning workflow is finished.

Pressing the “Interval Table” button

displays a table the shows intervals that are ratios

between the values of the partials of the spectrum.

The upper-right half matrix (where the row midi

numbers are lower than the column midi numbers)

(Generate Bombs )



displays the intervals between the row note and the
column note. The lower-left half matrix shows the
interval between the row note and the column note
raised by the size of the cycle. In this case the
cycle size is the octave, so the entries in the lower
left half matrix are the expected complementary
intervals to those in the upper right. In general,
however, the size of the cycle may be something
other than an octave.

Clicking the “Cliques” button generates a

series of graphs that further illustrate the structure

ano harm-11 chromatic: All Notes

Figure 21

of the tuning. Thicker lines denote higher
consonance scores between the two notes, and they
are color coded with red lines for the strongest
consonances, violet the weakest, and gradations in
the order of the rainbow. The size of the circle
around a midi number is proportional to its

centrality — the sum of the weights of edges that



connect to it. The top frame (Figure 21) has all the
notes in the tuning, presented for reference. It is
not generally a clique.

Each clique frame has a button to show the
interval matrix for the notes that appear on it, and
the ability to label the edges with the ratio interval
they represent. Also, pressing the “listen” button,
plays notes on the clique frame arpeggiated, then
as a chord. (To hear the notes, there must be a
synthesizer programmed with the tuning’s .tun file
and set up to receive the Spectral Tuner’s midi
output.)

The value of the cliques is twofold. These
note collections, fully connected with relative
sensory consonances, are good candidates for use
as chords or scales. Furthermore, patterns in the
cliques enable an understanding of the structure of
the tuning as a whole. In general, tunings generated
by the spectral tuner can be modeled as closely
packed subsets of a Tonnetz, as this, and following
examples show.

The five cliques shown in Figure 22 are
subsets of the C major scale, and together show a
scale that is close, but not identical to the most
common version ofthe Just diatonic scale.

ige Label:

ano harm-11 chromatic: Clique 12, mixed

-1 chromatic: Cligue 14, mixe
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(Y 377
structure of the

standard Just Diatonic,
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Figure 23 that the

algorithmically generated tuning uses the same
intervals in a slightly different arrangement. The
new tuning adds a justly tuned d minor triad at the
expense of the G major triad of the Just Diatonic.
To my ear, the triads represented by each of the
five triangles in Figure 23, and seventh chords
represented by adjacent triangles are compellingly
clean and stirring.



Six more cliques in Figure 24 constitute

another diatonic: D-flat major. _—

ano harm-11 chromatic: Clique 5, mixed

(interval Table ( Edge Labels )

Edge Labels

[YaYe) harm-11 chromatic: Clique 9, utonality

ano harm-11 chromatic: Clique 3, mixed

Edge Labels )

‘igure 24

The cliques of Figure 24 can be synthesized
into the diatonic shown in Tonnetz notation in
Figure 25. As before, triangles and rhombi
represent well tuned triads and seventh chords.
While the wide 9/7 major third sounds odd on its
own, in a triad it blends very well to my ear.



The four justly tuned seventh chords in the
diagram below are interesting both for their sonic
and conceptual variety: a septimal m7, a dominant
with a septimal Major triad and quinatal m7,
septimal half-diminished, and quintal m7.
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Figure 25

Further cliques
point toward more diatonics that fill in the circle of

harm-11 chromatic: Clique 15, otonality

Figure 26

fifths between C and D-flat major. Figure 26
shows a clique that includes a C dominant seventh.
This points to a diatonic scale in the key of F, as
shown in the Tonnetz of Figure 27. The justly
tuned triads sound very clean and distinctive, not
least of which the exotic septimal diminished triad
and dominant seventh.
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Figure 27

The clique frame in Figure 28 includes e-
flat, and points toward a B-flat major diatonic

8no harm-11 chromatic: Clique 2, mixed

diagrammed in Figure 29. To the palette of triads
and seventh chords is added the septimal-major E-
flat triad, the septimal-minor c triad and seventh
chord, and the septimal a diminished triad and
half-diminished seventh chord.
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Figure 29
a

Figure 31. This diatonic adds to the diversity of

seventh chords with its septimal A-flat major
seventh.
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Figure 30

Finally, the D-flat major diatonic of Figure
32 has a variant suggested by the clique of Figure
33. Indeed, the diatonic of A-flat major is
diagrammed in Figure X. A further exotic form is
the E-flat dominant with a septimal major triad.
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The diagrams for diatonic scales can be
merged into a single graph, shown in Figure X.
The 7/5 diminished fifths (d-a flat, a-e flat, e-b flat,
c-g flat, g-d flat) are difficult to show on the two-
dimensional images, but are part of justly tuned
diminished triads. With these triads taken into
account, there are 16 triads and 15 seventh chords
and 5 diatonic scales.
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figure 35

Tuning Example 2: Kkwaengwari

augmented triads

The Kkwaengwari is a small Korean
metallaphone, with a dense raucous sound, used in
Korean “Nong-ak” (farmer’s music) and its concert

music

ano Add Notes

descendant

Interval Pattern: 44 4 4 4 4 4 4 Root Note: 36

Samulnori. In

W™ Use midi numbers as initial pitches?

List initial pitches:

this example,
W Use midi numbers as anchor pitches?

the Spectral

List Anchor pitches:

Tuner will use

epsilon 1.75

its inharmonic

« Create Spectrum Load Spectrum
B spectrum tune
choose spectrum Kkwaengwari 'i‘
three octaves of
_ Done Cancel

an augmented
triad. By
showing the process of the tuning’s creation, I visit
further features of the program. Also I analyze the
result by looking for patterns in the cliques, and
find that the tuning is a closely packed collection
of notes in a Tonnetz.

In the Add Notes frame (Figure 35) I input an
interval pattern of 4 4 4 4 4 4 4 4 4 — three octaves
of stacked major thirds, and a root note of 36, to

explore a deeper than normal kkwaengwari



sound”’. So, this tuning concerns midi numbers
36,40,44,48,52,56,60, 64,68,72. Again, I will use
midi numbers as initial and anchor pitches.

The default value for epsilon, 0.4
semitones, makes sense for a relatively dense
tuning that includes half steps (like the default
major scale.) In this sparser tuning, I will allow a
wider range for the notes, 1.75 semitones.

The “Create Spectrum” button allows the
user to specify a new spectrum for tuning. My
process for measuring and inputting the
kkwaengwari spectrum is detailed below.

I recorded a sample of a kkwaengwari from
a Samulnori percussion ensemble class. Using the

¥ software tool (screenshot in

“Sonic Visualizer
Figure 36) I measured the partials at frequencies
294,482.1,588, 828.8,960, and 1133.8 Hz. By
hovering the mouse over one of the colored lines
that indicates a strong partial, I find an estimate of
its frequency. By taking several measurements
along its temporal length, I can obtain a fairly
reliable estimate of its pitch. Doing this for each of

the partials gets a reasonably full representation of

the sound. Making measurements this way takes

*" The original kkwaengwari’s base
frequency is close to midi note 62.

8 Chris Cannam, Christian Landone,
and Mark Sandler, Sonic Visualiser:
An Open Source Application for
Viewing, Analysing, and Annotating
Music Audio Files, in Proceedings of
the ACM Multimedia 2010
International Conference.



judgment; experience is required to determine
which partials are important to the sound and
which are too faint or too masked by other partials

to be significant.

Wi Sonic Visualiser: /Users/johnseales/Documents/Korea sounds/kkwaengwari.wav (modified)
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de: 25 - 21 [N Linear Bl
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Window | 4096 75 (93.75% %)
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_<p.._.._..w - — I -
|

Click and drag to navigate

Figure 36

I then divide each frequency by that of the
fundamental (the lowest frequency.) The resulting
list of ratios between partials and the fundamental,
along with their relative strengths, is termed its
“spectrum” in the Spectral Tuner. For the
kkwaengwari, the spectrum’s partials are:
1,1.64,2.0,2.82,3.27,3.86. The amplitudes I
approximated at 1.0,0.88,0.77,2.1,0.76,0.86.



figure 37

When I click the “Create Spectrum” button,

I see the frame in Figure 37, into which I type the

SO Untitled Spectrum

List values of partials 1 1.64 2.0 2.82 3.27 3.86

List intensities of partials 1.0 0.88 0.77 2.1 0.76 0.§

" Save Spectrum : " Save Spectrum As '

values for partials and amplitudes. I then click
“Save Spectrum,” so that I can reuse it for later
tunings.

After saving the spectrum, Spectral Tuner
returns focus to the Add Notes frame, (Figure 38)
whose choices 1 finalize by clicking “Done.” Focus
returns to the Tuning Frame, with note gauges,

spectrum, the “Aligned Partials” and “Consonance

Score.” The numbers above the note gauges are the
midi numbers to which the notes are assigned;
below are their exact pitches. Even before tuning,
there are 7 aligned partials, because one of the
aligned partials is 2, so each of the octaves will
initially be in tune. The ‘consonance score’ is the
sum, for every coincidence of partials, of the

minimum amplitude of the two partials.
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((Generate Experimental ) ( Generate Bombs )

Figure 38

After pressing “Tune Up,” the program
worked for about five minutes. Figure 39 shows
the Tuning Frame when the tuning process is
finished:

untitled tuning

((Load Tuning ) (Clear Tuning )

4 1
Spectrum: Kkw
Algned Partials: 35 Consonance Score: [20.08
Tuning Workflow -->  ("Add Notes ) (Tune Up ) (Export tun file ) (‘Save Tuning )
Tuning Analysis -->  ('Interval Table ) (_Cliques )
Generate > ( Generate Weiody ) ( Generate Chords ) ( Generate Experimental ) ( Generate Bombs )

Figure 39
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8006 i M3: All Notes intervals
36 40 44 48 52 56 60 64 68 72 8no M3: All Notes.

36 = 3.86/ | 3.86/ | - - - 3.86/ | - - - (Interval Table ) (Edge Labels )
3.27 | [2.82 1 E— -
40 - - 3.27/|[1.64/ ] - = 3.27/|[3.86/ | - B
2.82 |1
44 - = - - [164/] - [2.82/] - [3:86/] -
1 1 1
48 386/ - = = 3.27/|3.86/|3.27/] [3.86/ | - 3.86/
1 2.82 |[2.82 ||1.64 ||1.64 1
52 - = = = = 3.86/ | [2.82/ ] - 3.86/ | -
3.27 ||1.64 1.64
56 2.82/ | - 3.86/ | - = = = 2.82/|3.27/] 2.82/
1 1 164 ||1.64 |1
60 - - = = - - - [3.86/[3.86/] -
3.27 | 2.82
64 1.64/ | - - - - = = = 3.27/ | |1.64/
1 2.82 |1
68 - - - - - - - - - -
2 - 3.86/ | [3.86/ | - = = 3.86/ | - = -
3.27 | 2.82 1

Figure 5

gure 41 The interval table in figure
40 and the graph for all
notes in figure 41 give the first opportunities for
analysis of the tuning, after which we look for
patterns in the cliques. The two largest cliques
have four notes, and their graphs are shown in

Figure 42.
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(_Edge Labels
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2.82/1.64 3.86/ 2.82

Figure 42

A look at the ratios labeling the edges of
the two graphs shows that they are mirror images
of each other. In fact they are the inverse of each
other. Clique 4 is labeled an otonality, which can
be seen by the ratios incident to midi number 44.
Those same intervals are incident upon midi
number 72 in Clique 9, but they are descending
intervals so they are in fact the inverse. Cliques 4
and 9 are an otonal-utonal pair.

Cliques 3 and 6 (Figure 43) form another
otonal-utonal pair, as do Cliques 7 and 2. (Figure
44) Otonal/utonal pairs are typical features of the
cliques within tunings created by the Spectral
Tuner, and can be an important compositional
impetus. The three remaining cliques, 1, 3, and 8,

are singletons.
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Interval Table Edge Labels

Figure 43

800 i M3: Clique 7, otonal & M O i M3: Clique 2, utonality

((Interval Table )

Interval Table

(nterval Table )

Edge Labels

2.82/1.64

Cmenarrabie) CinsnarTabe) Cinenarabe) Cesge anes )

Figure 45



A synthesis of the tunings relationships in a single
Tonnetz is shown in Figure 46. The edges shown
are the minimum to show the tuning’s structure;

the rest of the intervals in the tuning could

gonsistently be included in the Tonnetz, but Figure
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Figure 46
Tuning Example 3: Pyeon-

Gyeong and Harmonic

pentatonic.

The pyeon-gyeong is a court music
instrument used in the Royal Ancestor Shrine
Ceremony, its sixteen stones tuned approximately
to 12ET midi numbers 72 through 87. 1 combined
its spectrum with a harmonic spectrum with 7
partials, and used the hybrid spectrum to tune a
two octave pentatonic scale. The interval table and
cliques, as before, are key to an analysis of the
tuning.

Because 1.52 is very close to 3/2 and 2.33

is very close to 7/3, the pyeon-gyeong and



harmonic timbers mesh together very well to create
strong consonances. Figure 47 lists approximate
congruencies between the intervals in the tuning
and whole number ratios. Figures 48 and 49 show

the interval table and graph for the finished tuning.

1.52/1.00 ~3/2

2/1.52 ~4/3

7/233  ~3/1

4/152 ~8/3
Figure 47

enNoO pyeon-harm intervals
48 50 53 55 58 60 62 65 67 70 72
48 - 2.33/ |2/ 2.33/ | - 2/ 2.33/ | |4/ = = 4/
2 1.52| |1.52 1.00/ |1.00 ||1.52 1.00
50 - - - 2/ 2.33/ | |4/ 2/ - 4/ - -
1.52| |1.52 ||2.33] |1.00 1.52
53 = = = 2.33/ | - 1.52/ |- 2/ 233/ | - =
2 1.00 1.00/ |[1.00
55 = = = = 2.33/ | - 1.52/ | [4/ 2/ 2.33/ | -
2 1.00 |[2.33) |1.00 |1.00
58 = = = = = = = = 4/ 2/ =
2.33| |1.00,
60 2/ 2.33/ | |4/ = = = 2.33/ |2 2.33/ | - 2/
1.00/ [1.00 ||1.52 2 1.52| |1.52 1.00
62 4/ 2/ ‘ = 4 | - = = = 2/ 2.33/ |[4/
2.33| [1.00 1.52 1.52| |1.52 |[2.33
65 1.52/ | - 2/ 2.33/| - = = = 2.33/| - 1.52/
1.00 1.00/ |[1.00 2 1.00
67 = 1.52/ | |4/ 2/ 2.33/ | - = = = 2.33/ | -
1.00 |[2.33] |1.00 |1.00 2
0 - - - 4 |\ fr - - - - - -
2.33] |1.00
72 - 2.33/ | 2/ 233/ | - 2/ 2.33/ | |4/ - - -
2 1.52| |1.52 1.00/ |1.00 ||1.52
[ XeXe) Untitled Tuning: All Notes
(Interval Table )

(listen )
Listen )




‘igure 48 Figure 49

As in the previous examples, looking for
patterns in the cliques helps to conceptualize the
structure of the tuning. In Figure 50, six cliques

with similar structures together compose 10 of the

11 tones in the tuning.
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Synthesizing the relationships between the
ten notes represented in the previous cliques, the

beginnings of a Tonnetz appears. Two cliques

Untitled Tuning: Clique 13, utonality 8no

Untitled Tuning: Cligue 3, otonality.

Interval Table Edge Labels

152/ 1.00

Interval Table

Edge Labels

containing the remaning midi note 72 (Figure 51)

allow us to assemble the Tonnetz completely.
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Because of the density of relationships, I
use three figures. Figure 52 contains two views
that together show most of the relationships, and
Figure 53 is a skeleton containing all notes of the

tuning in a sparser, more readable form.
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Figure 53

In this article I’ve

presented a method of designing tuning systems in

. . . Paul Nauert 4/30/09 5:18 PM
which the arrangement of pitches is a result of pejeted: developed

saturating the tuning with a set of target intervals.

I’ve also developed a method of analyzing the

structure of ratio-based tunings that is effective

both for historical tunings and those that have b
Paul Nauert 4/30/09 5:19 PM

Deleted: Finally I’ve shown that the structure of a tuning is a compositional
resource that can inform any parameter of musical composition. -

algorithmically generated, Finally, I’ ve touchg




ways of using the structure of tunings to generate
music.
One area that merits further exploration is

. Paul Nauert 4/30/09 5:19 PM
the phenomenon of beats. Some tunings, such| pejeted: to explore more fully

Michael Harrison’s “revelation” tuning,

deliberately employ beats as part of the structure of
the tuning, and they are a potential parameter for
creating new tunings algorithmically. Also, the

dissonance curve model can be developed further.

, . . Paul Nauert 4/30/09 5:20 PM
The model I've used for this article can be | peleted: curves
augmented to take into account psychoacoustilsENEECSIEEERZ ML
Deleted: of dissonance

effects of the critical band and of masking. The use

of tunings to generate melodies and other
parameters of music is a field with much room for
exploration.

Beyond that, there is a universe to explore
in the many types of ratio-based tunings: their
structures, their affect, their suitability to various
kinds of music. It promises to be a delightful and

bountiful process of discovery.
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