Two Steps to High Absolutive Syntax

Dan Brodkin | QP 1 | April 13

Abstract

Many ergative languages show High Absolutive Syntax: the absolutive internal argument moves to a position above all other arguments in the finite clause. The movement which underlies this configuration remains a matter of dispute. This paper investigates this movement in Mandar (South Sulawesi) and shows that it occurs in two steps. In this language, all arguments shift out of the vp when definite. In typical transitive contexts, this process feeds a second step of movement, driven by licensing, which places the absolutive argument in its high position. This step is called off only in a construction which allows this argument to be licensed in the vp.

1 Introduction

The Austronesian languages of the Philippines, Taiwan, and Western Indonesia show a complex system of alignment. In these languages, the verb shows a morphological alternation which influences the behavior of arguments with respect to case-marking, binding, and Ā-extraction. This alternation is classically referred to as one of voice (van der Tuuk 1864) and the overarching alignment termed a Philippine-type voice system (Chen 2017).

Despite minor terminological disputes in the literature, the languages of this area can broadly be characterized as showing High Absolutive Syntax. In these languages, one argument sits in a position above all others in the clause (Guilfoyle et al. 1992): the internal argument of a transitive verb, the external argument of an antipassive, or the applied argument of any of several applicative constructions (Keenan 1976a; Guilfoyle et al. 1992; Pearson 2000; Aldridge 2004). Those with overt case-marking and agreement, moreover, show morphologically ergative alignment: the argument of an intransitive verb patterns with the internal argument of a transitive verb (Gerdts 1988).

This paper investigates the movement operations which underlie High Absolutive Syntax in Mandar, a language of the South Sulawesi subfamily (Central Indonesia). In this language, I show that the High Absolutive configuration arises through two distinct steps. First, vp-internal arguments shift out of the vp when definite (Diesing 1992). Second, the absolutive argument moves to a position above all other arguments in the clause for reasons of licensing (Bittner 1994). This analysis breaks from recent proposals which derive the High Absolutive configuration from a single step of ‘object shift’ in the voice (Rackowski 2002; Aldridge 2004; Yuan 2018; Coon et al. 2020).

Evidence for this view comes from a context where the two steps of movement come apart. Like other Philippine-type languages, Mandar employs a special construction when the internal argument is definite but cannot interact with τ0. This construction appears in two contexts: non-finite clauses and clauses where the external argument undergoes Ā-extraction. In both contexts, the internal argument is forced to undergo the first step of movement but cannot undergo the second. The analogues of this construction pose a persistent problem for alternative approaches to High Absolutive Syntax which do not posit two steps of movement in other languages of the family.

The distribution of this construction suggests that the model of clause structure laid out below provides a productive means of understanding High Absolutive Syntax cross-linguistically. Beyond the South Sulawesi subfamily, many languages of the Austronesian and Mayan families employ a construction with parallel properties in the context above: intransitive verbal morphology, a special morpheme in τ0, and exceptional absolutive agreement with (or case-marking of) the internal argument. The analysis of Mandar developed below extends naturally to these cases.

The remainder of this paper is organized as follows. In Section 2, I introduce Mandar and lay out the voice system. In Section 3, I show that this language displays High Absolutive Syntax: in the basic transitive construction, the internal argument moves to a position above the external argument. In Section 4, I develop a model which derives this configuration in two steps: one linked to definiteness and another linked to licensing. In Section 5, I introduce the context where the two come apart. In Section 6, I show that the relevant context has no implicit link to Ā-extraction. In Section 7, I illustrate that this construction provides evidence for the first step of movement but not the second. I conclude with a cross-linguistic prospectus in Section 8.

1Deep gratitude to Jupri Talib and Nabila Haruna for their friendship and generosity with their knowledge of Mandar. Special thanks to Sandy Chung for her invaluable guidance throughout this project, to Judith Aissen, Pranav Anand, Jessica Coon, Jed Pizarro-Guevara, Justin Royer, Ivy Sichel, Tamisha Tan, Lisa Travis, Maziar, Toosarvandani, Erik Zyman, and Erik Zobel for discussion along the way. All errors are my own. This material is based upon work supported by the National Science Foundation under Grant No. 2018267201.
2 Mandar Background

Mandar is an Austronesian language spoken on the Indonesian island of Sulawesi. It belongs to the South Sulawesi subgroup, a primary branch of the Western Malayo-Polynesian subfamily (Smith 2017). The Indonesian census of 2000 reports 480,000 speakers, primarily on the southern coast of the province of West Sulawesi.

The English-language literature on Mandar has primarily focused on its position in the South Sulawesi subgroup (Mills 1975; Grimes and Grimes 1987). The Indonesian literature includes a grammar of the language (Pelenkahu et al. 1983), a description of adverbs (Sikki et al. 1987), and a compilation of traditional poetry (Muthalib and Sangi 1991). Recent generative work has touched on transitivity (Lee 2008), the structure of wh-questions, (Brodkin 2020), the voice system (Brodkin 2021c), the clitic system (Brodkin 2021b), and the agreement system (Brodkin 2021a).

The following section lays out basic facts about the language. First, I illustrate the basic word order (Section 2.1). Second, I introduce the agreement system (Section 2.2). Third, I present a sketch of the voice system: a set of morphological alternations on the verb which determine patterns of nominal licensing and condition two movement operations which apply to arguments in the clause (Section 2.3). The discussion is focused on the dialect of Polewali Mandar, the historical prestige variant of the language. When possible, I use data from descriptive sources. Elsewhere, I present data collected in work with two speakers from 2018 to the present.

2.1 Word Order

The following examples illustrate the basic shape of the Mandar clause. This language is verb-initial: in pragmatically neutral contexts, the verb precedes all of its arguments. Nominal arguments show no case-marking and pronouns typically drop. The verb often bears complex prefixal morphology. Similar patterns hold across South Sulawesi. 2

(1) Word Order: Verb-Initial

a. Pole=i lembong.
 come=3B wave
 ‘A wave came along.’
 Muthalib and Sangi 1991:4

b. Map-paqguru=aq pro basa Anggaris.
 ANT-teach=1B 1SG English
 ‘I teach English.’
 Friberg and Jerniati 2000:125

The basic word order of the language is vso. In clauses with two prosodically integrated arguments, the external argument (ext) precedes the internal argument (int; 2a). The ext, however, can also sit in the right periphery (2b).

(2) Postverbal Word Order: VSO when Prosodically Integrated

a. (, Na-anu=i iKacoq iAli !)
 3A-what=3B NAME NAME
 ‘Kacoq did something to Ali!’
 JT: 3.19, 28

b. (, Map-pamula=i bungabunga), (, iMurni).
 ANT-plant=3B flowers NAME
 ‘Murni is planting flowers.’
 Pelenkahu et al. 1983:195

The linear order of arguments does not reflect hierarchical asymmetry in the postverbal domain. While the ext may precede the int in (2a), the int appears to c-command the ext in clauses of this type (Section 3). The same pattern holds across the subfamily and the broader region (Friberg 1996; Finer 1997; Jukes 2006; Laskowske 2016).

This pattern has led the literature to the view that word order reveals little about the syntax of the languages of this region (Richards 1993; Finer and Basri 2020). The present paper adopts this view. I set word order aside below.

2.2 Agreement

Mandar shows an ergative-absolutive agreement system. Every finite matrix clause contains an absolutive agreement enclitic. This enclitic tracks the absolutive argument: the transitive int or the sole argument of an intransitive verb.

(3) The Absolutive Enclitic

a. Na=lamba=aq daiq Maqassar.
 will=go=1b up.to city
 ‘I’ll go up to Makassar.’
 Friberg and Jerniati 2000:256

b. Paqguru=aq basa Mandar!
 teach!=1b Mandar
 ‘Teach me Mandar.’
 Friberg and Jerniati 2000:10

(4) The Ergative Prefix

a. Macoa=m=i, u-eppei=o.
 good=PFV=3b 1A-await=2b
 ‘Good, I’ll wait for you.’
 Friberg and Jerniati 2000:14

b. U-bei=o doiq assal maqellong=o
 1A-give=2b money if sing=2b
 I’ll give you money if you sing.’
 Sikki et al. 1987:141

(5) The Mandar Agreement System:

<table>
<thead>
<tr>
<th></th>
<th>ERG/A</th>
<th>ABS/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>u-</td>
<td>=aq</td>
</tr>
<tr>
<td>2</td>
<td>mu-</td>
<td>=o</td>
</tr>
<tr>
<td>3</td>
<td>na-</td>
<td>=i</td>
</tr>
</tbody>
</table>

There is no case-marking in the nominal domain. Neither nouns and pronouns show inflection when indexed with ergative or absolutive agreement. As such, morphological ergativity exists in the system of agreement alone.

2.3 Voice

Mandar verbs show a prefixal alternation which determines the absolutive argument. Transitive verbs bear the ergative prefix. These verbs contrast with those which bear antipassive prefixes: for instance, maN- (6) and me-(8a). The ergative and antipassive prefixes also contrast with other morphemes in the same position: for instance, the comitative si-(6c). The alternation between these prefixes is classically termed one of voice (van der Tuuk 1864).

(6) The Voice Alternation

a. Na-baca=i buku-u.
 3A-read=3b book-1g
 ‘He’s reading my book.’
 JT: 12.6, 104

b. Mam-baca=aq buku.
 ANT-read=1b book
 ‘I’m reading a book.’
 JT: 12.6, 84

c. Si-balibali=i.
 COM-fight=3b
 ‘They’re fighting together.’
 JT: 1.18, 394

The transitive voice (6a) and antipassive voice (6b) differ in two respects. First, they show different patterns of agreement. When the verb takes an ergative prefix, the INT triggers absolutive agreement: the enclitic in (6a) tracks buku-u ‘my book.’ When the verb takes an antipassive prefix, in contrast, the EXT triggers this agreement (6b).

Second, the two voices show different hierarchical asymmetries between the EXT and INT. When the verb bears the ergative prefix, the INT moves to a position above the EXT. When the verb bears an antipassive prefix maN-, the EXT moves to this position instead (Section 3). This step is a reflex of the agreement pattern above (Section 4).

3The final nasal of maN- assimilates in place to the following segment. It remains a nasal before voiced obstruents (→ mam- before b: 6b). Before all other segments, it denasalizes, yielding forms like map- (before p: 2b), mas- (before s: 28a), and maq- (before vowels: 54a).

4The terms “transitive” and “antipassive” are the conventional labels for the categories of “Patient Voice” and “Agent Voice” in the literature in Sulawesi (Martens 1988; Paul and Travis 2006). Following this literature, I assume that the antipassive INT is a type of oblique (Aldridge 2004).
2.3.1 The Morphological Decomposition

The antipassive prefix maN- is glossed as ANT. Nevertheless, this prefix is a portmanteau. It contains two morphemes: the 'true' antipassive prefix paN- and a separate intransitive prefix m-. The form maN- is underlingly m-paN-.

The antipassive component paN- can be seen without m-. In imperative contexts, for instance, the m- prefix is suppressed. As such, the antipassive prefixes do not show the portmanteau forms above: rather, they appear bare.

(7) Antipassive imperative: bare paN-
 a. Pan-doeq tappa=mo doloq.
 ANT-wash only=PFV for.now
 ‘Just wash for now!’
 Sikki et al. 1987:785
 b. Iqo pam-baca suraq diting=o!
 2SG ANT-read letter there=there
 ‘Read the letter over there!’
 Pelenkahu et al. 1983:193

The morpheme m- can also be seen without paN-. It surfaces with other p-initial prefixes as well: for instance, the antipassives pe- and paC-. The prefix m- combines with these to yield the parallel portmanteaux me- and maC-.

(8) Other Antipassives: Me-, MaC-
 a. iSitti mealli duriang annaq lassaq.
 NAME ANT-buy durian and langsat
 ‘Siti bought durians and langsat.’
 Sikki et al. 1987:333
 b. iRosma maq-baluq oto-nna.
 NAME ANT-sell car-3G
 ‘Rosma sold a car of hers.’
 Pelenkahu et al. 1983:189

The m- prefix also surfaces in other intransitive contexts. For instance, it appears on all unergative verbs in the language. In this context, it manifests in two ways. On some stems, it surfaces inside a portmanteau prefix ma- (underlingly m- + pa: 9a). On other stems, however, it surfaces as an infix -um- which follows the first consonant of the stem (or is prefixed to a vowel-initial verb: 9b). The majority of unergative verbs show this second pattern.

(9) Unergative Verbs: ma- or -um-
 a. Ma-endong=i kapang pole di pattarukkungang.
 itR-run=3b maybe from at jail
 ‘Maybe he escaped from jail.’
 Sikki et al. 1987:728
 b. Mau s-um-angiq, umm-ande=to=i.
 although itR-cry, itR-eat=also=3b
 ‘Although he was crying, he still ate.’
 Sikki et al. 1987:190

The prefix m- cannot combine directly with transitive verbal stems. The root √ala ‘take,’ for instance, surfaces in the antipassive voice as maq-ala (m-paN-ala). It cannot take a bare prefixal umm- like the unergative verbs above.

The prefix m- is the only voice morpheme which requires an antipassive prefix to combine with a transitive verbs. The ergative prefix, in contrast, occupies the same head as m- but selects for a null morpheme in the place of paN-.

(10) Transitive Stem + m-: Requires Antipassive Prefix
 a. Muaq maq-ala=o tola, b. Da mu-ala=i! c. Si-ala=aq iCiccioq.
 if ANT-take=2b another DON’T! 2A-take=3B COM-take=1B NAME
 ‘If you take another,’ ‘Don’t take it!’ ‘Cicci’ and I took each other.
 Muthalib and Sangi 1991:65 Pelenkahu et al. 1983:206 (got married); JT: 12.18,87

These facts suggest that the antipassive maN- spells out morphology which is distributed across two heads. The higher contains m-, while the lower hosts paN- and the other antipassive prefixes (pe-, paC-, and so on). The ergative prefix, in contrast, occupies the same head as m- but selects for a null morpheme in the place of paN-.

5There are minor lexicalized exceptions to this trend. Several verbs host both a p-initial prefix and an ergative prefix: for instance, u-pang-ipiq ‘1A-ANT-DREAM’ ‘I dream.’ The claim that the intransitive m- cannot combine with bare transitive stems, however, is exceptionless.
2.3.2 Voice and v

The two heads above can be equated with \(v^0 \) and voice\(^0 \). The ergative prefix and m- sit in voice\(^0 \): the head which introduces the external argument. The antipassive prefixes, in contrast, occupy the lower head which introduces causative semantics: namely, \(v^0 \) (Rackowski 2002; Harley 2013; Legate 2014). The following trees illustrate.

(11) The Voice Frames: voice and v

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>M-am-baca</td>
</tr>
<tr>
<td>ITN-ANT-read</td>
<td>'read' (antipassive)</td>
</tr>
<tr>
<td>b.</td>
<td>U-baca</td>
</tr>
<tr>
<td>1A-read</td>
<td>'I read' (transitive)</td>
</tr>
<tr>
<td>c.</td>
<td>Antipassive Voice:</td>
</tr>
<tr>
<td>voice (_{itr})</td>
<td>(v_{ant})</td>
</tr>
<tr>
<td>d.</td>
<td>Transitive Voice:</td>
</tr>
<tr>
<td>voice (_{itr})</td>
<td>u-</td>
</tr>
</tbody>
</table>

On this system, the ergative prefix and the intransitive m- expone the head which introduces the ext: voice\(^0 \) (Harley 2013). This pairing reflects a distributional fact: these prefixes never appear on predicates which lack an ext. Unaccusative verbs take neither prefix. Weather predicates show the same behavior.

(12) No ext \(\rightarrow \) No m-/ERG-

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>Sapeq=i mane.</td>
</tr>
<tr>
<td>snap=3b just now</td>
<td>'The branch] just snapped.'</td>
</tr>
<tr>
<td>Muthalib and Sangi 1991:199</td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td>Urang=i.</td>
</tr>
<tr>
<td>rain=3b</td>
<td>'It’s raining.'</td>
</tr>
<tr>
<td>Friberg and Jerniati 2000:147</td>
<td></td>
</tr>
</tbody>
</table>

Further evidence for this conclusion comes from a distributional fact. The ergative prefix and m- sit in complementary distribution with two prefixes which suppress the presence of an ext. The first is the passive prefix \(di- \) (13a). The second is the involuntary \(ti- \) (13b). Neither prefix allows an ext to be expressed in any way.

(13) Passive Constructions: No P-Prefix

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Muqaq (di-)-tambo=i.</td>
<td></td>
</tr>
<tr>
<td>if PASS-pay=3b</td>
<td>'If he is paid.'</td>
</tr>
<tr>
<td>Sikki et al. 1987:567</td>
<td></td>
</tr>
<tr>
<td>b. Ti-saka=m=i diqo posa.</td>
<td></td>
</tr>
<tr>
<td>INV-catch=PFV=3b that cat</td>
<td>'The cat was caught.'</td>
</tr>
<tr>
<td>Pelenkahu et al. 1983:209</td>
<td></td>
</tr>
</tbody>
</table>

These patterns suggest the following breakdown. The ergative prefix and m- occupy voice\(^0 \). The antipassive prefixes sit in \(v^0 \). The former c-commands and selects for the latter. I return to their precise functions in Section 4.

(14) The Voice System: Summary

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>voice (^0)</td>
<td>(v^0) +√ALA</td>
</tr>
<tr>
<td>antipassive</td>
<td>m- (paN^-, pe^-,...) m-(aq-ala)</td>
</tr>
<tr>
<td>transitive</td>
<td>ERG- (-) u-ala</td>
</tr>
<tr>
<td>comitative</td>
<td>si- (-) si-ala</td>
</tr>
<tr>
<td>passive</td>
<td>di- (-) di-ala</td>
</tr>
</tbody>
</table>

3 High Absolutive Syntax

In the languages of Western Indonesia and the Philippines, there is an old intuition that the voice alternation determines the relevant height of arguments in the clause. Despite terminological dispute over the term 'ergative,' there is consensus that the int sits above the ext in the transitive voice (Chung 1976; Keenan 1976b; Guilfoyle et al. 1992). In the antipassive, in contrast, the int remains low (Rackowski 2002; Aldridge 2004; Sabbagh 2016).
The following section establishes that Mandar conforms to this basic profile. In this language, patterns of variable binding, pronominal coreference, and extraction suggest that the int sits above the ext in the transitive clause. In the antipassive, however, the reversed pattern holds: the same tests suggest that the int never moves above the ext.

These patterns show that Mandar is a High Absolutive language: one where the absolutive argument moves to a position above all other arguments in the clause (Manning 1996; Bittner and Hale 1996a,b). In the antipassive voice, the ext moves to this position. In the transitive voice, the int moves instead. The following trees illustrate.

(15) **Antipassive: ext > int**

(16) **Transitive: int > ext**

The following section provides evidence for the model of transitive syntax in Tree 16. The evidence comes from three domains: restrictions on pronominal coreference (Section 3.1), patterns of variable binding (Section 3.2), and asymmetries in the domain of Ā-extraction (Section 3.3). These patterns suggest the analysis below.

(17) **Mandar shows High Absolutive Syntax**

a. The argument which triggers absolutive agreement moves above all other arguments in the clause.

b. Informally: The absolutive argument moves to spec, tp.

3.1 Condition C

The first diagnostic for High Absolutive Syntax comes from a pattern of pronominal co-reference. This pattern has the profile of a restriction linked to condition c. In Mandar, a pronominal absolutive argument cannot be coindexed with an r-expression inside any other argument in the clause. This pattern suggests that it moves to a position above all non-absolutive arguments.

This pattern can be seen from the distribution of possessive r-expressions. In a language like English, it is possible for an r-expression in the ext to be coindexed with a pronominal int. It is marked, however, for an r-expression in the int to be coindexed with a pronominal possessor of the ext. The following examples illustrate.

(18) **English: ext > int for Condition c**

 a. [ext John’s, mother] saw [int him,].
 b. ??[ext His, mother] saw [int John,].

In transitive clauses in Mandar, this constraint cuts the other way. In this case, an r-expression in the ext cannot be coindexed with a pronominal int. Such examples sit on a pari with the reverse in English (*He, saw John’s, mother*). It is unmarked, however, for an r-expression in the int to be coindexed with a pronoun in the ext.

(19) **Mandar: Transitive int > ext for Condition c**

 a. *Na-ita=i 3a-see=3b her mom-3g name iM: *Nina,*’s mom saw her,’
 JT: 1.19, 21
 b. Na-ita=i 3a-see=3b name mom-3g iNina, ’Her, mom saw Nina,’
 JT: 1.19, 15

This pattern suggests that transitive clauses in English and Mandar show different hierarchical asymmetries between the int and ext. In English, the transitive ext moves to spec, tp. In Mandar, in contrast, it is the transitive int that moves to this position instead (16). This split yields the pattern of condition c violations above.
3.2 Variable Binding

The second diagnostic for High Absolutive Syntax comes from patterns of variable binding. In Mandar, the absolutive argument can bind a variable in any other argument in the clause. Non-absolutive arguments, in contrast, cannot do so. This pattern provides further evidence that the absolutive argument moves to $spec,TP$ (17).

3.2.1 Background: The Syntax of Quantification

To observe this pattern, it is necessary to take a minor detour into the syntax of quantification. Mandar has a universal quantifier $nasang$ 'every.' This element floats to second position and precedes the absolutive enclitic (20).

(20) The Universal Quantifier: Nasang

a. Pura=$nasang=m=i$ kaweng?
 Already=$every=PFV=3B$ married
 'Are they already all married?'
 Friberg and Jerniati 2000:202
b. Na-sio=$nasang=i$ miqoro anaq-na.
 3A-order=$every=3B$ sit child-3G
 'He ordered every one of his kids to sit.'
 Sikki et al. 1987:1113

The floated quantifier $nasang$ can construe with any argument in the clause. In the transitive voice, it can associate with the int (20b) or the ext (21a). In a ditransitive, it can associate with the non-absolutive theme (21b).

(21) Nasang: Construes with Any Argument

a. Pura=$nasam=band=i$ mu-urung lima-nna?
 Already=$really=3B$ 2A-kiss hand-3G
 'Did every one of you kiss her hand?'
 JT: 3.19, 281
 1A-introduce=$every=1B$ kid
 'She introduced the students to me.'
 JT: 3.11, 100

The same pattern holds with oblique arguments. The comitative verbs in (6c) can introduce comitative arguments inside a pp. Experiencer verbs typically introduce the source argument inside of a pp as well. The arguments inside of these pp can construe with $nasang$ (22).

(22) Non-Absolutive Arguments: Float Nasang

a. Si-alla=$nasang=aq$ [conl sola kandiq-u;].
 com-fight=$every=1B$ with sibling-1G
 'I fight with every one of my siblings.'
 JT: 1.18, 29
b. Mongeq=$nasang=aq$ [conl lao di kottaq-u].
 love=$every=1B$ to at GF-1G
 'I loved every one of my girlfriends.'
 JT: 1.18, 39

The quantifier $nasang$ generally cannot surface in adnominal positions. Nevertheless, there is evidence that it forms a constituent with its associate at some point in the derivation. First, it does occur adnominally in the fixed collocation ia $nasang$ 'they' (23a). Second, the string ia-$nasanna$ can be used as an adnominal quantifier (23b).

(23) Nasang: Adnominal

a. Tarapassa [ia=$nasang$].
 forced 3=$every$
 'All of them were forced.'
 Pelenkahu et al. 1983:227
b. Taweq, [Puang ia-$nasan-na$].
 pardon sir 3 every-3G
 'Excuse me, all my good sirs.'
 Muthalib and Sangi 1991:225

As a result, I assume that $nasang$ originates in an adnominal position. Presumably, this element reaches its surface position by the same process which linearizes other second-position elements in the language (Brodkin 2021b). This conclusion provides the necessary background for the discussion which follows.

3.2.2 Variable Binding and High Absolutive Syntax

The absolutive argument binds into all other arguments in the clause when construed with $nasang$. This pattern can be seen most clearly in the transitive voice. In this context, the transitive int, can bind a variable in the ext.
Transitive: Quantified \textit{int} binds into \textit{ext}

a. Na-salili=\textit{nasang},=i kindoq-\textit{na}, sanaeke
 3A-miss=every=3B mom-3G child
 ‘Her, mother misses every, child.’
 JT: 11.23, 31

b. Na-allai=\textit{nasang},=i guru-\textit{nnu}, passikola
 3A-scold=every=3B teacher-3G student
 ‘His, teacher scolded every, student.’
 JT: 3.11, 90

This pattern reflects the specific structural privilege of the absolutive argument. While non-absolutive arguments may associate with the same floated quantifier, they cannot bind variables inside the \textit{ext}. This pattern can be seen in ditransitive constructions: here, the \textit{int} can associate with \textit{nasang} but cannot bind into the \textit{ext} (25).

Quantified Non-Absolutives: No Binding into the \textit{EXT}

a. Na-pasissang=\textit{nasang},=aq sola-nna-\textit{i,j} \textit{sanaeke},
 3A-introduce=every=1B friend-3G child
 ‘Her, friend showed me every, child.’
 JT: 3.11, 100

b. Na-kiringan=\textit{nasang},=aq panulis-na-\textit{i,j} \textit{buku},
 3A-send.to=every=1B author-3G book
 ‘Its, author sent me every, book.’
 JT: 4.16, 58

The same pattern holds with quantified oblique arguments. The comitative verbs with \textit{si}-, for instance, do not allow quantified obliques to bind into the absolutive \textit{ext} (26a). Experiencer verbs, in the same vein, do not allow their quantified source arguments to bind into the absolutive experiencer (26b).

Quantified Obliques: No Binding into the \textit{ABS}

a. Si-alla=\textit{nasang},=i kandiq-na-\textit{i,j} \textit{sanaeke}, [com= sola
 com-fight=every=3B sibling-3B with \textit{anaq}].
 child
 ‘His, sibling fought with every, child.’
 JT: 1.18, 78

b. Pallaq=\textit{nasang},=i sola-nna-\textit{i,j} [obl= lao di \textit{tau}].
 be.cold=every=3B friend-3G to at man
 ‘His, friend was cold to every, person.’
 JT: 1.18, 99

This fact suggests that patterns of variable binding systematically reflect hierarchical asymmetries. The binding pattern in (24), then, provides an argument for the hypothesis in (17): the absolutive argument moves to SPEC,TP.

3.3 The Extraction Asymmetry

The final piece of evidence for High Absolutive Syntax comes from an asymmetry in the A-domain. In the transitive voice, Mandar allows only the \textit{int} to undergo A-extraction. In this context, the \textit{ext} cannot be extracted (27b).

The Ergative Extraction Constraint

a. Iqo, u-salili \textit{ti},
 2sg 1A-miss
 ‘I miss you.’
 Muthalib and Sangi 1991:157

b. *Innai, na-salili=o \textit{ti},
 who 3A-miss=2B
 im: ‘Who misses you?’
 JT: 4.2, 295

This constraint reflects a corner of a broader pattern: \textit{non-absolutive arguments cannot be extracted}. The same effect surfaces in the antipassive voice. Here, the absolutive \textit{ext} can be extracted (28a) but the \textit{int} cannot (28b).

Antipassive Voice: Absolutives-Only Extraction

a. iKacoq, mas-saka manuq \textit{ti}.
 NAME ANT-catch chicken
 ‘Kacoq is catching chickens.’
 Sikki et al. 1987:52

b. *Apa, mas-saka=i iKacoq \textit{ti} ?
 what ANT-catch=3B NAME
 im: ‘What is Kacoq catching?’
 JT: 4.2, 297
This constraint holds across all voice frames in the language. Alongside the transitive and antipassive voices, for instance, Mandar has a comitative voice formed with the prefix *si-. In this voice, one argument triggers absolutive agreement. The other argument can surface bare (29a). This argument, however, cannot extract (29b). 6

(29) Comitative Voice: Absolutes-Only Extraction

a. *Si-issang=aq iting Nina=o!
 com-know=1b that NAME=there
 'I know that Nina!'
 JT: 11.20, 55

b. *Innai, si-issang=o t, ?
 who com-know=2b
 IM: 'Who do you know?'
 JT: 11.20, 82

These patterns suggest that Mandar does not allow non-absolutive arguments to undergo Ā-extraction. The same constraint recurs across the languages of Western Indonesia and the Philippines (Keenan 1972; Guilfoyle et al. 1992; Rackowski and Richards 2005) and in High Absolutive languages further afield (Tada 1993; Bittner 1994).

The standard analysis derives this pattern from a locality constraint on Ā-extraction (Aldridge 2004). On this analysis, the restrictions above reflect the type of height-based Ā-asymmetry which holds in nominative-accusative languages as well (Shlonsky 1992; Erlewine and Branan 2020). Specifically, they arise from the constraint in (30).

(30) The Locality Constraint on Extraction

Ā-extraction strictly targets the highest argument in the clause.

The constraint in (30) provides convergent evidence for the analysis in (17). On this view, the extraction pattern provides a clue that the absolutive is always highest in the clause. This analysis converges with the binding facts laid out above. As such, I take it as a final point in favor of the High Absolutive analysis above. 7

6The same pattern holds over constructions which lack voice marking entirely: for instance, those with experiencer verbs.

7An alternative analysis would link this extraction constraint to case-discrimination (Otsuka 2006; Deal 2017). On this view, non-absolutive arguments would be unable to undergo Ā-extraction because the relevant extraction probes would be relativized to target absolutive arguments alone. This approach faces three immediate and fatal problems. First, morphological case plays a central role in the phenomena which definitively involve case-discrimination, and this category is absent in Mandar. As such, the case-discrimination analysis would be forced to assume discrimination for abstract Case- a notion of increasingly dubious theoretical status and one without empirical grounding in the language. Second, the case-discrimination analysis fails to capture the generalization that the absolutive argument- which can extract- can be independently shown to be highest in the clause. These patterns weaken the conceptual strength of this analysis. Third, moreover, the case-discrimination analysis fails empirically. In Mandar, there is one context where arguments indexed with absolutive agreement cannot undergo Ā-extraction (Example 92b). In this context, the unextractable absolutive arguments can be shown to remain relatively low in the clause (Section 7). On the locality analysis, it is expected that this type of absolutive argument will be unable to extract. The case-discrimination approach, however, would require an additional stipulation to rule out the extraction of this argument: namely, that in the presence of multiple absolutive arguments, only the higher can undergo Ā-extraction. This modification makes the case-discrimination analysis indistinguishable from the locality alternative. As such, I take the case-discrimination analysis to be empirically unworkable and I set it aside.
4 The Two-Step Model

The preceding section has argued that Mandar shows High Absolutive Syntax: the absolutive argument moves to a position above all other arguments in the clause (17). This conclusion establishes a similarity between Mandar and other languages of Western Indonesia and the Philippines. The empirical patterns above are widespread in the languages of the region (Keenan 1972; Richards 1993). Alongside related facts concerning scope and word order, they provide evidence for High Absolutive Syntax across the region (Guilfoyle et al. 1992; Rackowski 2002).

Despite consensus over its existence, however, the literature is divided on how High Absolutive syntax comes to be. On the classical approach, this configuration arises when the absolutive argument moves to spec,TP to be licensed—on a par a nominative (Campana 1992; Guilfoyle et al. 1992; Bittner and Hale 1996a). More recent work, however, assumes no movement of the sort. Rather, it postulates a step of object shift which places the int above the ext within the voiceP alone (Aldridge 2004; Yuan 2018; Coon et al. 2020). I schematize these two approaches below.

The following section investigates the syntax which underlies the High Absolutive configuration in Mandar. In this language, I argue, neither of the two accounts above is sufficient. Rather, the two steps above are each independently necessary. Like many languages of the region, Mandar requires that definite objects shift out from the vp. Nevertheless, this process demonstrably does not place them above other arguments in the clause. Rather, the High Absolutive configuration arises from a second step linked to agreement and, ultimately, nominal licensing.

The resultant model of High Absolutive Syntax is one which involves two steps. The first is a step of object shift in the vp. The second is a step of licensing-related movement in the tp. The following tree illustrates.

(33) The Two-Step Model to High Absolutive Syntax

The remainder of this section is structured as follows. First, I lay out the definiteness effect (Section 4.1). Second, I present evidence for a process of object shift which moves arguments within the vp (Section 4.2). Third, I show
that this movement does not place its target above all arguments in the thematic domain (pace the model in Tree 32: Section 4.2.3). Fourth, I lay out a model which implicates licensing-related movement in the \(\text{TP} \) (Section 4.3). Fifth, I provide derivational sketches of both transitive and antipassive clauses (Section 4.4).

4.1 The Definiteness Effect

The Mandar voice system shows a definiteness effect. The antipassive construction can only be used when the \(\text{INT} \) is \textit{indefinite}: specifically, when its referent is new to the hearer and not contextually entailed (Roberts 2003). The transitive voice, in contrast, can only be used when the \(\text{INT} \) is definite. The same split holds across the South Sulawesi subfamily (Valkama 1995; Friberg 1996; Jukes 2006; Laskowske 2016) and has been recognized in the languages of the Philippines since colonial times (de San José Blancas 1610; Bloomfield 1917; Adams and Manaster-Ramer 1988).

The following examples illustrate this pattern. The first shows the antipassive voice in a presentational context (34a). The second shows it in a narrative (34b). In both cases, its \(\text{INT} \) lacks a pre-established referent in the discourse.

(34) \textit{Antipassive: Indefinite INT}

\begin{enumerate}[a.]
\item Mam-baca=aq diqe buku=e.
\textit{ANT-read=1B this book=here} \hspace{1cm} 'I’m reading this book.'
\textit{JT: 12.6, 78}
\item Me-ala=i bau wattu diqo.
\textit{ANT-catch=3b fish time that} \hspace{1cm} 'He caught fish at that time.'
Pelenkahu et al. 1983:153
\end{enumerate}

The transitive voice, in contrast, is required when the \(\text{INT} \) is definite. The following examples illustrate. The first involves a context where the referent of the \(\text{INT} \) can be inferred from common knowledge (35a). The second involves a context where the referent of the \(\text{INT} \) has an overt linguistic antecedent (35b): namely, the fish in (34b).8

(35) \textit{Transitive: Definite INT}

\begin{enumerate}[a.]
\item U-pelambiqi=i genaq maraqdia!
\textit{1A-meet=3b just.now queen} \hspace{1cm} 'I just met the queen (of England)!'
\textit{JT: 3.9, 206}
\item Na-ande diqo bau=o.
\textit{3A-eat that fish=there} \hspace{1cm} 'He ate the fish.'
Pelenkahu et al. 1983:159
\end{enumerate}

The two voices exist in complementary distribution. The antipassive voice cannot be used when the \(\text{INT} \) is definite (36a). The transitive voice, in contrast, cannot be used when the \(\text{INT} \) is indefinite (36b). This pattern suggests that the voice alternation fundamentally reflects a type of definiteness effect (Milsark 1974; Rackowski 2002).

(36) \textit{The Two Voices: Complementary Distribution}

\begin{enumerate}[a.]
\item 'Maq-itai=aq iNina.
\textit{ANT-seek=1B NAME} \hspace{1cm} im: 'I’m looking for Nina.'
\textit{JT: 6.21, 132}
\item *U-alli=i talagae.
\textit{1A-buy=3B tomato} \hspace{1cm} im: 'I bought (the) tomatoes.'
\textit{JT: 6.29, 284}
\end{enumerate}

4.2 Object Shift

The patterns above establish a connection between the definiteness of the \(\text{INT} \) and its position in the clause. When the \(\text{INT} \) is definite, Mandar requires the transitive voice (36). In this voice, the \(\text{INT} \) moves to a high position (16). As such, the \(\text{INT} \) will always occupy a higher position when it is definite than when it is not.

This correlation suggests the presence of a positional constraint on definite objects (Diesing 1992). Like the Germanic languages, Mandar and its relatives generally do not allow the \(\text{INT} \) to remain in the \(\text{VP} \) when definite. As

8Note that Mandar lacks a definite article. Nevertheless, the language shows different strategies for marking various types of definite \textit{NP}. Nominals whose referents lack an overt discourse antecedent but are contextually unique are typically expressed as bare \textit{NPs} (e.g. global and situational definites; Hawkins 1978; (35a)). Nominals whose referents have overt discourse antecedents, however, are typically construed with the demonstrative \textit{diqo} ‘that’ (e.g. strongly familiar \textit{NPs}; Roberts (2003) or strong definites; Schwarz (2009); (35b)).
such, much work on the languages of the Philippines has posited an operation of object shift which moves the int out of this domain (Rackowski 2002; Aldridge 2004; Sabbagh 2016). This process applies obligatorily when the int is definite, on a par with parallel phenomena in Germanic (Diesing 1992; Collins and Thráinsson 1996). This analysis has inspired a view which derives the High Absolutive configuration from object shift alone (Tree 32; Rackowski 2002; Aldridge 2004; Yuan 2018; Coon et al. 2020).\(^9\) This view implicates the following assumptions.

(37) **The Object Shift Analysis: Assumptions** (Rackowski 2002)
 a. There is an operation which moves the int to a low position outside of the vp.
 b. This operation applies exclusively to definite arguments.
 c. This operation places the int above the ext.

The following section investigates assumptions (37b)-(37c) and finds them unsupported. In Mandar, it is clear that definite arguments do not remain in the vp. The process which moves them out of this domain, however, does not apply to definite nominals alone: rather, it targets all arguments in the vp in the presence of a certain \(v^0\). Moreover, it does not place these arguments in a position above the ext. These patterns are restated below.

(38) **Object Shift in Mandar**
 a. There is indeed an operation which moves the int to a low position outside of the vp. \((\text{per 37a})\)
 b. This operation does not apply exclusively to definite arguments. \((\text{pace 37b})\)
 c. This operation does not place the int above the ext. \((\text{pace 37c})\)

4.2.1 Background: Pseudo-Incorporation

These patterns can be observed through their interaction with pseudo-incorporation. Mandar allows focused constituents to prosodically ‘incorporate’ into the verb when they remain in the vp. This pattern provides a diagnostic for an element’s position with respect to the vp: if it cannot incorporate, it has moved outside of this constituent.

The examples below illustrate the relevant construction. The primary correlate of pseudo-incorporation is prosodic: the verb and incorporand form a single phonological unit (Brodkin 2021b). Nevertheless, its occurrence can be detected in written examples through the position of second-position enclitics. In clauses without pseudo-incorporation, these enclitics follow the verb (39a). In those with pseudo-incorporation, however, they follow the incorporand (39b).

(39) **2P Enclitics and Pseudo-Incorporation**
 a. Ma-tindo\(^\text{itR}\)-\(\text{sara}\)\(^\text{aq}\) \(\text{di ranjang}\), \(\text{i}tr\)-\(\text{sleep}\)=\(\text{real}y\)=\(\text{1b}\) \(\text{at}\) \(\text{bed}\)
 \(\text{JT: 3.25, 32}\)
 b. Ma-tindo \(\text{di ranjang}\)=\(\text{band}\)=\(\text{aq}\).
 \(\text{i}tr\)-\(\text{sleep}\) \(\text{at}\) \(\text{bed}\)=\(\text{real}y\)=\(\text{1b}\)
 \(\text{Muthalib and Sangi 1991:136}\)

This process targets only the material inside the vp (Brodkin 2020). Locative modifiers, for instance, regularly undergo this process. The following examples show it with the adverbs \text{sau} ‘out’ (40a) and \text{indini} ‘here’ (40b).

(40) **Pseudo-Incorporation: Locative Elements**
 a. Na=ma-\(\text{sara}\) \text{sau}=\(\text{band}\)=\(\text{aq}\).
 \(\text{will}-\text{ttr}\)-\(\text{try}\) \(\text{out}\)=\(\text{real}y\)=\(\text{1b}\)
 \(\text{Muthalib and Sangi 1991:358}\)
 b. Mas-\(\text{sikola}\) \text{dini}=\(\text{i}\).
 \(\text{ANT}-\text{school}\) \(\text{here}\)=\(\text{3b}\)
 \(\text{Friberg and Jerniati 2000:202}\)

The same process cannot target adjuncts which originate outside this domain. Temporal modifiers, for instance, cannot undergo pseudo-incorporation (41a). Durational modifiers, in the same vein, cannot undergo the same (41b).

\(^9\)The precise landing site of this movement varies with assumptions about the existence of \text{voice}\(^0\) and its position with respect to \(v^0\). The accounts of this type agree, however, that the process places the int at the upper bound of the thematic domain: e.g. \(v^0\) in models that lack a voice (Rackowski 2002). For many such approaches, moreover, the phasehood of the \(v^0/v^\text{voice}\) plays an important role (Aldridge 2004).
Pseudo-Incorporation: No High Adjuncts

a. "Lamba marondong=p=aq
go tomorrow=IPFV=1b
im: 'I'll go tomorrow.'
JT: 11.20, 315

b. "Mam-eang san-jang=aq.
ant-fish one-hour=1b
im: 'I fished for an hour.'
JT: 11.20, 309

The same facts hold over the pseudo-incorporation of arguments. As above, this process cannot target arguments outside of the vp. Neither the transitive int nor the ext, for instance, cannot be pseudo-incorporated.

Pseudo-Incorporation: No VP-External Arguments

a. "Na-bokoq yau=boi.
3A-bite 1sg=again
im: 'It bit me again!'
JT: 3.25, 79

b. "Na-ande posa=i!
3A-eat cat=3b
im: 'A cat ate it!'
JT: 3.25, 89

These facts suggest that pseudo-incorporation diagnoses an element’s position with respect to the vp. If an element cannot undergo this process, it is not in the vp. This pattern provides evidence for object shift below.

4.2.2 Pseudo-Incorporation and Object Shift

This process shows an interaction with voice. The transitive constructions which allow the int to be definite systematically ban pseudo-incorporation. The constructions which do not allow the int to be definite, in contrast, do allow pseudo-incorporation. This pattern holds regardless of the definiteness of the int. I restate this pattern below.

The Pseudo-Incorporation Generalization

a. The constructions which allow the int to be definite do not allow the int to pseudo-incorporate.
b. The constructions which force the int to be indefinite do allow the int to pseudo-incorporate.

The following section illustrates this trend. I begin with antipassives. The verbs in this voice do not allow their ints to be definite (4.1). Moreover, they allow them to undergo pseudo-incorporation when focused (44).

Antipassives: Pseudo-Incorporation of the int

a. Man-dundu apa=i annaq maqdoya?
ant-drink what=3b so that stay awake?
'What is he drinking to stay awake?'
JT: 6.21, 98

b. Maq-baluj balenga mariri=bo=i.
ant-sell pan yellow=again=3b
'He’s selling yellow pans again.'
NH: 6.18, 148

The reversed pattern holds in contexts where the int can be definite. Ditransitive constructions provide one such context. These constructions typically involve an applicative suffix on the verb (45). They allow the int to be either definite (45a) or indefinite (45b). In either case, absolutive agreement targets the applied goal.

Ditransitive: Definite or Indefinite int

a. Be-ngan=aq hape-u!
give!-ben=1b phone-1g
'Give me my phone!'
JT: 3.11, 43

b. U-be-ngan=o doiq.
1a-give-ben=2b money
'I'll give you money.'
Sikki et al. 1987:139

Ditransitive verbs systematically do not permit the pseudo-incorporation of the int (46). This restriction holds even when the int is indefinite and focused (46a). As such, the pattern cannot be linked to properties of the int.
Ditransitives: No Pseudo-Incorporation of the \(\text{int} \)

 \(3A:\text{send-BEN} \) letter=1B
 IM: ‘He sent me letters!’
 JT: 3.25, 98

b. *U-be-ngan hape-u=i.
 \(1A:\text{give-BEN} \) phone-1G=3B
 IM: ‘I gave him my phone.’
 JT: 3.25, 108

The same facts hold across all constructions which allow the \(\text{int} \) to be definite. The comitative construction, for instance, allows the \(\text{int} \) to be definite (29). Nevertheless, it does not allow it to undergo pseudo-incorporation when indefinite (47a). Experiencer verbs show the same pattern: they ban pseudo-incorporation of an indefinite \(\text{int} \) (47b).

Other Constructions: No Pseudo-Incorporation of the \(\text{int} \)

a. *Si-ita kanene=aq.
 \(\text{com-see} \) crocodile=1B
 IM: ‘I locked eyes with a crocodile.’
 JT: 4.2, 71

b. *Marakkeq kanene=aq.
 \(\text{fear} \) crocodile=1B
 IM: ‘I fear crocodiles.’
 JT: 4.2, 76

This pattern suggests a systematic difference in the position of the \(\text{int} \) across these two types of construction. The antipassive construction does not allow the \(\text{int} \) to be definite and does not allow it to leave the \(\text{VP} \). The transitive voice, the comitative, and the experiencer construction, in contrast, allow the \(\text{int} \) to be definite and systematically force it to leave the \(\text{VP} \). This pattern can be localized to differences in the featural content of \(v^\theta \): the antipassive voice contains a \(v^\theta \) which does not force movement (49), while the other constructions contain a \(v^\theta \) that does (48).

Antipassive: No Movement; No Definiteness

Transitive: Movement; Definiteness

This step of movement has two consequences. First, it allows the \(\text{int} \) to be definite. Second, it rules out the possibility of pseudo-incorporation. The ditransitive construction, which shows this movement, allows the \(\text{int} \) to be definite and bans pseudo-incorporation. The antipassive constructions, which lacks it, forces the \(\text{int} \) to be indefinite but allows it to undergo pseudo-incorporation. The following table summarizes these patterns.

<table>
<thead>
<tr>
<th>(v^\theta)</th>
<th>(\text{INT} \to \text{DEF?})</th>
<th>(\text{INT} \to \text{PN?})</th>
<th>(+\text{EPP?})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antipassive</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Transitive</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Comitative</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
</tbody>
</table>

4.2.3 The Landing Site of Object Shift

The process above does not place the \(\text{INT} \) above the \(\text{EXT} \). The tree in (51) illustrates. This analysis contrasts with the alternative view in (52), where object shift places the \(\text{INT} \) above the \(\text{EXT} \) (Rackowski 2002; Aldridge 2004; Tree 32).
This pattern can be seen clearly in constructions where the INT is definite but not absolutive. In this context, the two accounts make different predictions. The present account holds that the INT should not c-command the EXT: object shift alone does not put it in a position above this argument (51). The rejected alternative makes the opposite prediction: under all circumstances, a definite INT should c-command the EXT (52).

These predictions can be tested in the ditransitive construction. This construction allows the INT to be definite but does not allow it to trigger absolutive agreement (45). Moreover, it allows the EXT to trigger ergative agreement (thus ruling out the possibility that the EXT moves to a higher position). In this context, the rejected alternative account in (52) predicts that a definite INT should c-command the EXT.

This prediction is not borne out. The ditransitive INT does not appear to c-command the EXT on any of the diagnostics laid out in Section 3. For instance, it is able to float the quantifier nasang. Nevertheless, it is not able to bind a variable inside of the EXT (53a). In this respect, it contrasts with the transitive INT, which triggers absolutive agreement and can bind into the EXT (53b).

4.3 Licensing Movement

The preceding section has shown that object shift does not place the INT above the EXT (51). Rather, the High Absolutive configuration must arise through a second step: one which moves the absolutive argument to SPEC.TP.

The following subsection links this second step of movement to licensing. On this view, the absolutive argument moves to SPEC.TP when it triggers absolutive agreement. This movement is linked to an abstract requirement for licensing (Vergnaud 1977). Its motivation lies in a pattern common to High Absolutive languages: the absence of a means to license the INT within the VP (Bok-Bennema 1991; Guilfoyle et al. 1992; Bittner and Hale 1996a,b).

The resultant model is one which derives the High Absolutive configuration in two steps. This view holds that the transitive INT moves to its final position through two steps. The first step moves it to SPEC.VP and sets up a configuration where must move further to be licensed. The second moves it to SPEC.TP as a byproduct of licensing.

4.3.1 Absolutive Licensing in τ⁰

The first piece of evidence for the Two-Step model comes from the locus of absolutive licensing. Morphologically ergative languages fall into two groups with respect to this property. In High Absolutive languages, the absolutive
argument is consistently licensed by a head high in the clause (t^0: Bok-Bennema 1991). In Low Absolutive languages, however, the absolutive argument is (typically) licensed by something lower (for instance, v^0: Legate 2006).

In Mandar, the absolutive argument is licensed by t^0. This licensing relationship is spelled out by the absolutive agreement enclitic (2.2). Two facts suggest that this clitic sits in t^0. First, it surfaces in second position. Second, it disappears in non-finite contexts. In this respect, it resembles nominative licensing in English.

4.3.1.1 The Position of Agreement

In Mandar, the absolutive agreement enclitic appears in second position (Brodkin 2021b). In verb-initial clauses, it follows the verb (54a). When a preverbal auxiliary appears, however, it must follow this instead (54b).

(54) **Absolutive Agreement: High in the Middle Field**

<table>
<thead>
<tr>
<th>a. Maq-ala=i angga sa-lessorang.</th>
<th>b. Tapiq indang=i meloq maq-ala.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANT-take=3b until one-thousand</td>
<td>but NEG=3b want ANT-take</td>
</tr>
<tr>
<td>'He took until a thousand.'</td>
<td>'But he didn’t want to take any.'</td>
</tr>
<tr>
<td>Sikki et al. 1987:126</td>
<td>Sikki et al. 1987:2</td>
</tr>
</tbody>
</table>

The ergative prefix, in contrast, is strictly verb-adjacent. This asymmetry suggests a difference in positions: absolutive agreement sits in t^0 (Brodkin 2021b) and ergative agreement in $voice^0$. I restate this view in (55).

(55) **The Mandar Agreement Schema**

| a. The absolutive agreement enclitic sits in t^0. |
| b. The ergative agreement prefix sits in $voice^0$. |

4.3.1.2 The Distribution of Agreement

The claims above find support from patterns of agreement in non-finite clauses. In Mandar, there are several non-finite constructions which retain the ergative prefix but lose absolutive agreement. These constructions invariably lack aspectual morphology. These properties are restated in (56) below.

(56) **Non-Finite Constructions: Three Properties**

| a. The absolutive agreement enclitic disappears. |
| b. The morphology in $voice^0$ is retained (e.g. the ergative prefix, m-) |
| c. The morphology in asp^0 disappears (e.g. aspectual enclitics) |

These patterns show that the absolutive enclitic sits above the ergative prefix. Moreover, the parallel between the absolutive enclitic and asp^0 suggests that it sits in the middle field: e.g. in t^0 (56c).

The first non-finite construction of interest is a type of temporal adjunct clause. This construction indexes the absolutive argument with a genitive suffix on the verb (57). It lacks absolutive agreement.

(57) **Temporal Adjunct Clauses**

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>first 1A-see-2G suddenly in.love=1B to.you</td>
</tr>
<tr>
<td>'When I first saw you, I fell in love straightaway.'</td>
</tr>
<tr>
<td>itr-sleep-1G ANI-dream-1G 2SG-3G 1A-dream</td>
</tr>
<tr>
<td>'When I sleep, when I dream, it’s you who I dream of.'</td>
</tr>
</tbody>
</table>

This construction shows the prefixes in $voice^0$ (57b). Nevertheless, it cannot contain aspectual morphology. Mandar has a range of aspectual enclitics which surface in second position and linearly precede absolutive agreement (58a). These enclitics cannot appear in the temporal adjunct clauses which lack absolutive agreement (58b).
Temporal Adjunct Clauses: No Aspect, No Absolutive Agreement

a. Lao=bo=i di mesa maq-ua=bo=m=i "Buai=aq mating el!"
 go=again=3b in one ANT-say=again=PFV=3b open!=1A for me here!
 ‘He went up again to another one and said again, “Open up for me!”’ Pelenkahu et al. 1983:216

b. [voice p U-ita-mmu=(*bo/*mo)] sannang=m=aq.
 1A-see-2G=again/ PFV happy=PFV=1B
 ‘When I saw you (again/then), I was glad.’ JT: 11.5, 819

The second non-finite construction of interest is the type of clause which appears as the complement to a control verb. This type of clause contains the morphology in voice\(^0\) (59). This pattern suggests that it projects up to voice\(^p\).

Complement Control

a. Mappulopulo=pa beqeq-na, nappa meloq=i [voice, mang-gereq mesa].
 be.dozens=IFV goat=3G then want=3B ANT-slaughter one
 ‘Once he has dozens of goats, then he will want to slaughter one.’ Sikki et al. 1987:833

b. U-cowa=band=i [voice, mo-labu di kappung-mu].
 1A-try=really=3B ANT-harbor in village-your
 ‘I’m really trying to harbor in your village’ (= ‘to marry you’) Muthalib and Sangi 1991:352

These complement clauses show the properties in (56). They show no agreement with the absolutive argument. Moreover, they cannot contain aspectual enclitics (60).

Control Complement Clauses: No Aspect, No Absolutive Agreement

a. *Meloq=bo=aq [voice, map-perau=(*bo/*mo) pattulung-taq].
 want=again=1B ANT-request=again/ PFV support-2G
 ‘I want once again to ask for your support again.’

These patterns suggest two conclusions. First, the absolutive agreement enclitic bears some connection to the functional structure in the middle field- for instance, to \(t^0\). Second, it sits in a position above the ergative prefix (55). These observations sets the stage for the analysis of High Absolutive Syntax below.

4.3.2 The Second Step

In Mandar, I argue that the absolutive argument moves to its high position as a byproduct of the agreement schema above. On this view, the absolutive argument triggers agreement on spec,\(_\)\(_\) to be licensed (Guilfoyle et al. 1992). This pattern follows from the following claim: across all constructions, the absolutive argument cannot be licensed within the voice (Bok-Bennema 1991). This system forces this argument to be licensed by \(t^0\) (Raposo 1987; Schütze 1993). This resultant agree relation then forces it to move to spec,\(_\)\(_\).

The agreement system provides evidence for this view. In Mandar, the absolutive argument does triggers agreement on \(t^0\) (55). The argument which triggers this agreement, moreover, c-command all others in the clause: it binds variables in other arguments and shows privilege in the system of Ā-extraction (3). These patterns suggest that the process of agreement is connected to the process which places the absolutive argument in its high position.

The following subsection illustrates the Two-Step model in action. This system derives the High Absolutive configuration in two steps: object shift (Section 4.2) and licensing movement (Section 4.3). Recall that this split finds empirical support in constructions where the int is definite but not absolutive: in these cases, it appears to have left the vp but nevertheless does not c-command the ext (4.2.3). These patterns provide decisive evidence against any approach which derives the High Absolutive configuration from a single step of object shift (Tree 32; Rackowski 2002; Aldridge 2004; Yuan 2018; Coon et al. 2020).

4.4 Two Derivational Sketches

The following section lays out derivations for the transitive and antipassive clauses in (61a) and (61b). The tree in (61c) illustrates the starting point for both derivations: the merger of the verb and its int.

(61) The Derivational Sketch: the VP
The two clauses above differ with respect to the definiteness of the **int**: in (61a) it is definite, while in (61b), it is not. This split forces the two **vps** above to merge with different types of **v⁰**. This pattern arises from the positional constraint in Section 4.1: in Mandar, a definite **int** in (61a) cannot stay in the **vp**. The transitive **v⁰** forces arguments to shift out of the **vp**, while the antipassive **v⁰** does not (48)-(49). As such, only the transitive **v⁰** can merge above the clause in (61a). The antipassive **v⁰**, in contrast, is free to merge in (61b).

(62) **The Definiteness of the int → Choice of v⁰**

a. **Definite int** → Transitive **v⁰**

```
  INTDEF
    VP
    
    VP
    V
  VP
```

b. **Indefinite int** → Antipassive **v⁰**

```
  V
  VP
    VP
    V
  VP
```

The next head to merge is **voice⁰**. This head introduces the **ext**. In Mandar, the transitive **v⁰** typically occurs with the transitive **voice⁰**. The intransitive **voice⁰**, in contrast, typically occurs with an antipassive **v⁰**. As such, I take the transitive and intransitive **voice⁰**s to select for the transitive and antipassive **v⁰**s. This pattern yields the trees in 63.

(63) **The Choice of v⁰ → The Choice of voice⁰**

a. **Transitive v⁰** → Transitive **voice⁰**

```
  EXT
    voice
    
    voice⁰
    voice⁰
  VP
```

b. **Antipassive v⁰** → Intransitive **voice⁰**

```
  EXT
    voice
    
    voice⁰
    voice⁰
  VP
```

The transitive and antipassive **voice⁰**s show different patterns of nominal licensing. The most obvious difference lies with the **ext**. The transitive **voice⁰** hosts agreement with this argument (yielding the ergative prefix in 61a). The intransitive **voice⁰**, however, does not (its form is the invariant *m*). I connect this split to a difference in licensing: the transitive **voice⁰** licenses its **ext** while the intransitive **voice⁰** does not.

The two voices differ further with respect to the licensing of the **int**. Neither voice frame contains a **vp** that agrees with the **int**. This fact suggests that neither frame allows the **int** to be licensed in this domain. In the contexts where the **int** must be licensed, the resultant licensing configuration forces the **int** to leave the **vp**. As this pattern plays a central role in Section 5, I restate it below.

(64) **The Low Licensing Generalization**

a. Neither the transitive nor the antipassive **v⁰** can license the **int**.

b. This pattern forces the **int** to leave the **vp** when it needs to be licensed.
This pattern underlies the split in (65). The merger of t^0 gives rise to the High Absolutive configuration in Tree 33. In both transitive and antipassive clauses, this head agrees with the highest unlicensed argument in the voice_p. In a transitive clause, this is the int_t: the ext_t, having agreed with voice_p, is no longer active (Chomsky 1999; Ershova 2019). In the antipassive, this is the ext. The argument which triggers this agreement then moves to spec_tp.\(^{10}\)

(65) The Licensing Schema in voice_p \rightarrow Absolutive Movement to spec_tp

a. Transitive: ext_t licensed; int_t \rightarrow spec_tp

b. Antipassive: ext_t unlicensed; ext_t \rightarrow spec_tp

The system thus derives the High Absolutive configuration in the following way. First, the choice of v^0 is constrained by the definiteness of the int_t: when the int_t is definite, the transitive v^0 must be used (4.1). This pattern forces the int_t to undergo a step of object shift which places it below the ext_t (4.2). Moreover, it sets up a licensing configuration which will eventually force the int_t to interact with t^0. When this head merges in, it attracts the closest unlicensed argument to spec_tp: thus deriving the High Absolutive configuration in two steps (Tree 33).

The remainder of this paper provides justification for the Two-Step model from a separate empirical domain.

\(^{10}\)Here two comments on the antipassive construction are in order. The first concerns licensing. In Mandar, the antipassive int_t never triggers agreement. I take this pattern to suggest that it does not require licensing. This pattern may hold for one of two reasons. First, the antipassive int_t is a type of oblique. Second, this argument may be small enough that it lacks the need for licensing. It is strictly indefinite, and this property may suggest that it lacks layers of structure present on definite nominals (Pereltsvaig 2006). It seems a reasonable assumption that only nominals which contain these layers of structure require licensing (Massam 2001; Danon 2001). As such, it may require no licensing at all. The second comment concerns the following constraint: the transitive voice cannot be used when the int_t is indefinite (4.1). In other words, the vp is forced to merge with the antipassive v^0 when it contains no definite arguments. This pattern, however, does not reflect a derivational constraint on the distribution of the antipassive v^0: rather, it stems from an independent property of the language. In Mandar, the absolutive argument cannot be an indefinite. This pattern reflects a common property of subjects cross-linguistically (Aissen 2003) with direct parallels in the languages of the Philippines (Adams and Manaster-Ramer 1988).
5 The Quirky Intransitive Construction

The Two-Step model provides the means to understand a specific construction common to the languages of the Philippines and Sulawesi: the *quirky intransitive*. This construction is used when two conditions hold: (i) the int is definite and (ii) it cannot interact with \(t^0 \). In these languages, these conditions are met in two contexts: (i) in certain non-finite clauses and (ii) in clauses with extraction of the ext (where the ext must interact with \(t^0 \); 3.3).

The quirky intransitive construction shows two consistent properties in the languages of the region. First, it recruits a prefix which is canonically associated with the antipassive voice: the intransitive voice \(m- \). Second, it marks the int in a way that is impossible in typical antipassive clauses: for instance, with absolutive agreement (across Sulawesi) or with special case-marking (across the Philippines and Taiwan: Adams and Manaster-Ramer 1988; Sabbagh 2016). The following examples illustrate its shape in Mandar.

(66) *Mandar: The Quirky Intransitive*

a. Meloq=aq [\text{\text{voicer} man-dundu=i}].	b. Apa \text{\text{man}}-bokkoq=aq?
"want=1b qt\text{-drink}=3b"	"what qt\text{-bite}=1b"
JT: 4.2, 329	JT: 1.19.78

'I want to drink it.'

The quirky intransitive construction raises an empirical challenge for alternative approaches to High Absolutive Syntax. This is because it appears to allow a definite int to remain beneath the ext. As a result, the approaches which link High Absolutive Syntax to object shift are forced to deny the presence of object shift in this context (Rackowski 2002; Rackowski and Richards 2005). The approaches which link High Absolutive Syntax to licensing, moreover, fail to explain why the presence of a definite int requires the use of this particular construction.

The remainder of this paper shows that the Two-Step Model provides a clear means to understand the syntax of this construction. The following section lays out its basic morphological properties in Mandar and across the South Sulawesi subfamily. Section 7 demonstrates that this construction permits object shift but licenses the int within the vp, obviating the need for licensing movement in the tp. Section 6, moreover, shows that this construction has no inherent connection to Ā-movement: rather, it occurs in a set of contexts where the int cannot be licensed by \(t^0 \).

5.1 The Quirky Extraction Problem

In Mandar, there is a tension between shift of the int and Ā-extraction of the ext. The antipassive voice cannot be used with a definite int (67). This pattern holds because the int must shift out of the vp when definite (Section 4.2). This process forces the appearance of the transitive v\(^0 \) and voice\(^0 \), causing the int to interact with \(t^0 \) (Section 4.4).

These conditions cannot hold, however, in any clause where the ext undergoes Ā-extraction. In such a context, the ext must interact with \(t^0 \) and behave as the highest argument in the clause (Section 3.3). It cannot extract in the transitive voice (67b). As such, neither voice can be used in a context where the ext extracts and the int is definite.

(67) *The Definiteness-Extraction Problem*

| a. *Maq\text{-\text{itai}}=aq \text{\text{iNabila}.} & b. *Innai, na\text{-\text{itai}}=i \text{\text{iNabila} t}_i |
| ANT\text{-\text{seek}}=1B \text{\text{NAME} & who 3A\text{-\text{seek}}=3B \text{\text{NAME} |
| im: 'I'm looking for Nabila.' & im: 'Who's looking for Nabila?' |
| JT: 6.21, 133 & JT: 4.2, 296 |

In this context, Mandar employs a distinct construction: the *quirky intransitive*. This construction allows the ext to undergo Ā-extraction in the presence of a definite int. It shows three key properties. First, it bears a complex prefix which contains the intransitive voice\(^0 \) \(m- \). Second, it shows absolutive agreement with the int. Third, it contains a distinct v\(^0 \). The same set of properties recurs in a parallel context across the South Sulawesi subfamily.
The Quirky Intransitive Solution

a. Apa mam-bokkoq=aq?
 what qi-bite=1b
 ‘What bit me?’
 JT: 1.19.78

b. Iqo=kapang mat timbe=i kacciq-u.
 2SG=maybe qi-throw=3B mango-1G
 ‘Maybe you threw my mango.’
 Sikki et al. 1987:1132

The following subsections illustrate these properties in turn. First, I show that the quirky intransitive prefix maN- contains the intransitive voice0 m- (Section 5.2). Second, I highlight the agreement pattern (Section 5.3). Third, I justify the existence of a quirky intransitive v0 on language-internal and comparative grounds (Section 5.4).

5.2 Intransitive Morphology

In Mandar, the quirky intransitive construction recruits the prefix maN-. Like other m-initial prefixes, however, this prefix is complex. It contains the intransitive voice0 m- and a prefix paN-. The two can be separated in imperatives: the prefix paN- appears bare in this context when the int is definite and the ext undergoes extraction.

The Quirky Intransitive: Intransitive Morphology

a. Innai man-dundu=i?
 who qi-drink=3B
 ‘Who drank it?’
 JT: 4.2, 270

b. Iqo=mo pan-dundu=i!
 2SG=PFV qi-drink=3B
 ‘You drink it!’
 JT: 4.2, 281

The quirky intransitive paN- is homophonous with the antipassive v0 paN-. The two prefixes, however, can be distinguished through both language-internal patterns and comparative facts (Section 5.4). To reinforce this difference, I denote the quirky intransitive v0 as paN-2 throughout. It contrasts with the antipassive v0 paN-1.

5.3 Agreement with the INT

The second property which sets the quirky intransitive apart involves agreement. The constructions which contain the voice0 m- invariably show absolutive agreement with the ext (Section 2.3). This pattern holds with antipassives (2b), unergatives (9), and other morphologically intransitive constructions (70).

The Quirky Intransitive: Agreement with the INT

a. Sau=m=i mo-sasiq [ext pro].
 out=PFV=3B ITR-sea
 ‘He went out to work the sea.’
 Pelenkahu et al. 1983:165

b. Mis-sung=a=m=i [ext pro].
 ITR-out=maybe=PFV=3B
 ‘Maybe he went out.’
 Sikki et al. 1987:948

The quirky intransitive construction provides the sole exception to this trend. It differs on two counts. First, it does not permit absolutive agreement with the ext. Second, it shows absolutive agreement with the int (71).

The Quirky Intransitive: Agreement with the INT

a. Iqo=kapang mat timbe=i kacciq-u.
 2SG=maybe qi-throw=3B mango-1G
 ‘Maybe you threw my mango.’
 Sikki et al. 1987:1132

b. Yau maq-itai=o=(*aq) [int pro]
 1SG qi-seek=2B=1B 2SG
 ‘I’m looking for you.’
 JT: 4.2, 304

This agreement pattern is impossible in antipassive constructions which contain other p-initial prefixes. It establishes a clear split between the quirky intransitive construction and other clauses with m-.
5.4 The Special v^0

Beyond the presence of the intransitive voice v^0 m- and the agreement pattern above, a third property serves to distinguish the quirky intransitive construction. This is the presence of a distinct v^0: the quirky intransitive paN^{-2}. The present section, shows that this prefix is underlyingly distinct from the homophonous antipassive $v^0 paN^{-1}$.

Three facts suggest this view. First, the prefix paN^{-2}, can appear when the INT is definite. Second, this prefix hosts agreement with the INT. Third, it is morphologically distinct from the antipassive paN^{-1} in many languages nearby.

5.4.1 Low Agreement

The first property which distinguishes the antipassive paN^{-1} and quirky intransitive paN^{-2} involves agreement. The quirky intransitive construction shows an aberrant agreement pattern. It allows the INT to trigger absolutive agreement. In this respect, it contrasts with all other types of antipassive clause, which require the EXT to trigger absolutive agreement instead.

5.4.1.1 No Agreement on v^0

Before addressing the this pattern, a note is in order on a separate effect. In Mandar, extracted arguments do not trigger absolutive agreement (Brodkin 2021b). This is an anti-agreement effect (Baier 2018).

The following examples illustrate this pattern. In both antipassive and transitive clauses, an extracted argument fails to trigger agreement (72). The same facts hold across other voice frames and constructions.

(72) Absolutive Extraction → No Agreement in T

<table>
<thead>
<tr>
<th>a. Iqo, u-salili t_i</th>
<th>b. iKacoq, mas-saka t_i manuq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2sg 1A-miss</td>
<td>NAME ANT-catch chicken</td>
</tr>
<tr>
<td>‘I miss you.’</td>
<td>‘Kacoq is catching chickens.’</td>
</tr>
</tbody>
</table>

This effect underlies the absence of agreement with the EXT in the quirky intransitive construction. The examples above involve extraction of the EXT (68)-(71). In this context, the EXT behaves like all other extracted arguments: it fails to trigger agreement. The fact that it can undergo extraction, however, suggests that it interacts with v^0 and moves to the canonical high absolutive position. I return to this point in Section 7.2.1.

5.4.1.2 Agreement on v^0

The agreement schema in Section 5.3, however, reveals something meaningful. In the quirky intransitive construction, the INT triggers absolutive agreement. This pattern is only possible, however, in the presence of paN^{-2}. When this prefix is absent and the EXT is extracted, the INT cannot trigger absolutive agreement.

This pattern can be seen in constructions which lack the composite prefix maN^{-}. Comitative verbs, for instance, take a prefix si- and allow the INT to be definite (73a). When the EXT of a comitative verb is extracted, however, the INT cannot trigger agreement (73b). The same facts hold in other constructions which lack voice morphology.11

(73) Comitative Construction: No Absolutive Agreement with the INT

<table>
<thead>
<tr>
<th>a. Si-ita=bando=qo luluareq-mu.</th>
<th>b. Yau si-issang=('i) iting Nina=o!</th>
</tr>
</thead>
<tbody>
<tr>
<td>com-see=really=2b sibling-2g</td>
<td>1sg com-know=3b that NAME=there</td>
</tr>
<tr>
<td>‘You’ll even see your sibling.’</td>
<td>‘I know that Nina!’</td>
</tr>
<tr>
<td>Sikki et al. 1987:32</td>
<td>JT: 11.20, 85</td>
</tr>
</tbody>
</table>

11Experiencer predicates show the same behavior. Like comitative verbs, these predicates lack the voice0 m- and permit the absolutive argument to extract in the presence of a definite INT. As above, moreover, they do not allow absolutive agreement to index the INT.
The same pattern holds in clauses which contain the voice\(^0\) m- but lack the prefix paN-. Recall that Mandar has several types of antipassive prefix: alongside paN\(^{-1}\), the language employs parallel prefixes pe- and paC\(^{-}\) (74a). The verbs which bear these prefixes, however, do not allow the \(\text{INT}\) to be definite when the \(\text{EXT}\) undergoes Ā-extraction. In the same vein, they do not allow the \(\text{INT}\) to trigger absolutive agreement (74b).

(74) *Me- Prefix: No Absolutive Agreement with the \(\text{INT}\)

a. \textit{Me-}ita=aq peleng permancis.
 \(\text{ANT-see}=1\text{b film}\) \(\text{france}\)
 \(\text{I'm watching a french film.}\)
 JT: 12.6, 114

b. *Innai \textit{me}=ita=\textit{o}
 \(\text{what}\) \(\text{ANT-see}=2\text{b}\)
 im: ‘Who is watching you?’
 JT: 1.19, 45

These patterns suggest that the agreement pattern in this construction is linked to paN\(^{-2}\). In other words, the source of absolutive agreement in this construction is \(v\(^0\)\), not \(t\(^0\)\) (Tree 75b). The sole morpheme which hosts this agreement is the quirky intransitive \(v\(^0\)\). The antipassive and transitive \(v\(^0\)\)'s cannot do so. This fact sets paN\(^{-2}\) apart.

(75) *Quirky Intransitive: Agreement \(\rightarrow v\(^0\)\)

a. Apa \textit{mam}-bokkoq=aq?
 \(\text{what qt-bite}=1\text{b}\)
 \(\text{‘What bit me?’}\)
 JT: 1.19.78

b. *Quirky Intransitive: Low Agreement:

This conclusion is independently supported by the behavior of agreement in the quirky intransitive construction. The absolutive agreement which originates in \(t\(^0\)\) surfaces in second position (Section 4.3.1.1). In the transitive voice, for instance, the absolutive agreement marker which tracks the \(\text{INT}\) must dock on a preverbal auxiliary if one is present (76a). It is ungrammatical for it to surface any farther to the right (76b).

(76) Absolutive Agreement in \(T\): Second Position

a. Indang=\textit{pa}=i mala \textit{u-pau}.
 \(\text{NEG}=iPFV=3\text{b can}\) \(1\text{A-say}\)
 \(‘I can’t say it yet.’\)
 Friberg and Jerniati 2000:240
 JT: 4.2, 245

b. *Indang \textit{mala u-pau}=i
 \(\text{NEG}\) \(\text{can}\) \(1\text{A-say}=3\text{b}\)
 \(‘i\text{I can’t say it.’}\)
 JT: 4.2, 245

In the quirky intransitive construction, the absolutive agreement which tracks the \(\text{INT}\) does not surface in second position. Even in the presence of preverbal auxiliaries, this type of agreement must be verb-adjacent (77).

(77) Quirky Intransitive; Absolutive Agreement is Verb-Adjacent

a. Innai indang mala \textit{man-dundu}=i?
 \(\text{who NEG}\) \(\text{can qt-drink}=3\text{b}\)
 ‘Who can’t drink it?’
 JT: 4.2, 262

b. *Innai \textit{indang}=i \textit{mala man-dundu}?
 \(\text{who NEG}\) \(\text{can qt-drink}\)
 ‘Who can’t drink it?’
 JT: 4.2, 265

This pattern supports the conclusion above: in the quirky intransitive construction, absolutive agreement sits in \(v\(^0\)\) (75b). This fact provides evidence for the existence of an independent quirky intransitive \(v\(^0\)\).

5.4.2 The Shape of the \(v\(^0\)\)

Comparative evidence provides further support for the notion that the quirky intransitive construction contains a distinct \(v\(^0\)\). In Mandar, this construction employs a \(v\(^0\)\) with the same surface shape as the antipassive. Across the South Sulawesi subfamily, however, this is typically not the case. In the same syntactic context, most related languages employ a prefix which is visibly distinct from the antipassive.

The following examples illustrate in Coastal Konjo, a language of the Makassar group of the South Sulawesi subfamily. This language forms the antipassive voice with a prefix \(\text{an.N-}\). Like \(\text{maN-}\), this prefix is bimorphemic.
The first syllable spells out the intransitive voice\(^0\) an-, a prefixal equivalent of Mandar -um- (Sirk 1989). The second consonant, \(N\)-, spells out the antipassive \(v^0\). This \(v^0\) triggers nasal substitution on the following stem (Friberg 1996; Pater 1999). When prefixed to the verb kanre 'eat,' for instance, it yields the form ang-\(nganre\) (78).

(78) **Coastal Konjo: Antipassive \(\rightarrow\) Nasal Substitution**

a. Apa na-kanre ri eleqna?
 what 3A-eat in morning
 'What does he eat in the morning?'
 Friberg 1996:143

b. Ang-nganre=i iAmir loka
 ANT-eat=3B name banana
 'Amir is eating bananas.'
 Friberg 1996:143

In this language, however, the quirky intransitive construction employs a distinct \(v^0\). Unlike Mandar, Konjo does not employ a morpheme which is homophonous with the antipassive \(v^0\) in this context. Instead, it employs a distinct \(v^0\). The following examples illustrate. Example (79a) shows an antipassive clause where the \(\text{ext}\) has been extracted. Here, the \(\text{int}\) is indefinite and the verb shows nasal substitution (kanre \(\rightarrow\) ang-\(nganre\)). Example (79b) shows a quirky intransitive. As in Mandar, the verb bears the intransitive voice\(^0\) an- and shows absolutive agreement with the \(\text{int}\). Unlike the antipassive clause in (79a), however, it does not show nasal substitution: 'eat' retains its onset.

(79) **Coastal Konjo: Quirky Intransitive \(\rightarrow\) No Substitution**

a. iAmir ang-\(nganre\) loka
 NAME ANT-eat banana
 'Amir is eating bananas.'
 Friberg 1996:146

b. iAli ang-kanre=i lamejaha-ta.
 NAME QI-eat=3B sweet-potato-2G
 'Ali ate your sweet potato.'
 Friberg 1996:146

The examples above suggest that Coastal Konjo does not employ the same \(v^0\) across the antipassive and quirky intransitive constructions. This pattern reflects the typical state of affairs across the subfamily. The South Sulawesi languages share a quirky intransitive construction with the properties and distribution above: in clauses where the \(\text{ext}\) is extracted and the \(\text{int}\) is definite, the verb bears the intransitive voice\(^0\) and shows agreement with the \(\text{int}\). Across the subfamily, the form of the quirky intransitive \(v^0\) varies. The homophony of this \(v^0\) and the antipassive \(v^0\), however, is restricted to the northwestern fringe of the subfamily- namely, to Mandar and its closest relatives.

This comparative pattern provides further support for the basic hypothesis advanced in this subsection: namely, that the quirky intransitive construction employs a distinct \(v^0\). This \(v^0\) triggers absolutive agreement with the \(\text{int}\) and is selected by the intransitive voice\(^0\) m- (Section 5.2). The lines below summarize the conclusions of this section.

(80) **Summary: The Quirky Intransitive Construction**

a. **Context:** Define \(\text{int}\) cannot interact with \(t^0\) (non-finite clauses; clauses with extraction of the \(\text{ext}\))

b. **Properties:** The verb...
 1. Bears the intransitive voice\(^0\) m-,
 2. Shows a distinct \(v^0\) pa\(N\)-2, and
 3. Hosts absolutive agreement with the \(\text{int}\).

6 **The Quirky Intransitive and Control**

The preceding section has shown that Mandar employs a special construction when the \(\text{ext}\) undergoes Ā-extraction in the presence of a definite \(\text{int}\). This construction has parallels across Taiwan and the Philippines: in the same context, the languages of these regions typically employ a reflex of the intransitive \(v^0\) and show special case-marking on the \(\text{int}\) (Rackowski 2002; Erlewine 2016). The High Absolutive languages of the Mayan family, moreover, typically employ a construction with the properties in (80) in a similar context (Coon et al. 2014; Aissen 2017).

Within the Mayanist literature, this fact has inspired analyses that connect the patterns in (80) to the process of Ā-extraction (Coon et al. 2020; Newman 2020). In Mandar, however, this approach cannot be maintained. This is for the following reason: in this language and its relatives across the region, the quirky intransitive construction does
not appear only in the context of Ā-extraction. Rather, it surfaces in a second context where the int cannot interact with τ₀: namely, the complement clauses of control predicates.

The following section demonstrates this fact with a brief discussion of non-finite clauses. First, I reiterate arguments that the complement clauses of control predicates are non-finite (Section 6.1). Second, I show that these non-finite clauses permit the quirky intransitive construction (Section 6.2). Third, I present comparative evidence that parallel constructions recruit quirky intransitive morphology across the South Sulawesi subfamily (Section 6.3).

6.1 Recap: Complement Control

In Mandar, control predicates select for non-finite clauses which project up to voice (Section 4.3.1.2). These clauses contain the morphology in voice₀ but show no absolutive agreement (81). As such, I take them to lack τ₀.

(81) Recap: Complement Control

a. Meloq=a=d=i [voice zero umm-ande]. b. Manarang=tongan=o [voice zero man-etteq].
want=maybe=just=3b rtr-eat
‘Maybe he just wants to eat.’ “You really know how to weave.’

6.2 Complement Control and the Quirky Intransitive

Under default circumstances, Mandar requires the definite int to interact with τ₀ (Section 4). The non-finite clauses above, however, lack finite τ₀. As such, they resemble the clauses with Ā-extraction of the ext in the following way: they provide no means for a definite int to interact with τ₀.

This parallel correlates exactly with the distribution of the quirky intransitive ν₀. When these non-finite clauses contain a definite int, they show the quirky intransitive ν₀ paN-2. This pattern can be observed from the agreement schema below: in the presence of the portmanteau prefix maN-, the embedded verbs in (82) show absolutive agreement with the int.

(82) Embedded Non-Finite Clauses: Quirky Intransitive Morphology

a. Meloq=du=aq [voice zero mang-gayi=o limangatus sangallo].
want=still=1b qf-pay=2b five.hundred a.day
‘I still want to pay you 500 rupiah a day.’
Sikki et al. 1987:146
b. Mario=i manini kindoq-u [voice zero maq-ita=nasang=i appo-na].
happy=3b later mother-1G qf-see=every=3b grandchild-3G
‘Later, my mother will be happy to see all of her grandchildren.’
Sikki et al. 1987:806

The quirky intransitive construction which appears in non-finite clauses shows the same set of properties as its analogue in the context of Ā-extraction. For instance, it hosts agreement with the int on ν₀. This can be seen from the distribution of the agreement pattern above (cf. Section 5.4.1.2): the absolutive agreement with the int appears exclusively in the presence of the quirky intransitive prefix maN-. It cannot appear with other prefixes: for instance, the comitative si- (83a) or antipassive prefixes like peN- (83b).

(83) Small Clauses: Absolutive Agreement linked to maN-

a. *Meloq=band=i [voice zero si-sara=o] ?
want=really=3b com-split=2b
im: ‘Does she want to divorce you?’
JT: 11.20, 79
b. *Meloq=band=o [voice zero men-jari=aq] ?
want=really=2b ant-be=1b
‘Do you really want to be me?’
JT: 11.20, 271
6.3 Quirky Intransitive Morphology

Comparative facts provide further evidence for the claim that embedded non-finite constructions recruit the quirky intransitive \(v^0 \) in the presence of a definite INt. Across the South Sulawesi subfamily, the languages which employ a distinct quirky intransitive \(v^0 \) employ it in this context. Coastal Konjo, for instance, requires the quirky intransitive prefix an- when non-finite clauses take a definite INt (84). Recall that this prefix is distinct from the antipassive \(v^0 \) an.N-: it does not trigger nasal substitution on the following stem.

84 Coastal Konjo: Overt Quirky Intransitive Morphology

\[
\begin{align*}
\text{a. } & \text{Arraq=j=i } [\text{voice } \text{an-tulung=aq }]. \\
& \text{want=just=3b } \text{qi-help=1b} \\
& \text{‘He just wants to help me.’} \\
\text{Friberg 1996:151} \\
\text{b. } & \text{Maring=j=aq } [\text{voice } \text{am-pake=i }]. \\
& \text{able=just=1b } \text{qi-wear=3b} \\
& \text{‘I am just able to wear it.’} \\
\text{Friberg 1996:151}
\end{align*}
\]

These patterns suggest that the quirky intransitive \(v^0 \) has no link to Ā-extraction. Rather, this \(v^0 \) appears in the contexts where the INt is definite but cannot interact with \(t^0 \). These conditions hold in both non-finite clauses and clauses where the EXT is extracted. The following section develops an account of the quirky intransitive construction which incorporates this insight. The resultant model provides further evidence for the Two-Step Model of High Absolutive Syntax (Section 4).

7 Low Absolutive Licensing

This section presents an analysis of the quirky intransitive construction above. I defend the following view: in the quirky intransitive construction, INt undergoes object shift to SPEC,vP but does not undergo licensing-related movement to SPEC,TP. In other words, this context allows the two steps which underlie High Absolutive Syntax to come apart. I reiterate this point in (85) below.

85 The Quirky Intransitive Split

\[
\begin{align*}
\text{a. } & \text{In the quirky intransitive construction, the INt undergoes object shift to SPEC,vP,} \\
\text{b. } & \text{But it does not undergo further licensing-related movement to SPEC,TP.}
\end{align*}
\]

This analysis runs as follows. The quirky intransitive construction contains a \(v^0 \) which forces the INt to shift to SPEC,vP. Nevertheless, the construction requires the EXT to move to SPEC,TP (as a prerequisite for control or Ā-extraction). As such, it requires the INt to remain in the vP. It allows this to occur by licensing the INt in this domain. The following tree illustrates this picture.

86 The Quirky Intransitive Construction: Object Shift; No Licensing Movement
Three patterns provide evidence for this analysis. First, restrictions on pseudo-incorporation provide evidence for object shift (Section 4.2.1): the quirky intransitive \textit{INT} cannot undergo this process and therefore has left the \textit{VP}. Second, extraction patterns suggest that the \textit{EXT} undergoes movement to \textit{SPEC,TP} (Section 3.3). Third, binding facts suggest that the \textit{INT} never moves to a position above the \textit{EXT} (Section 3). The following table summarizes these facts.

(87) \textit{The Quirky Intransitive: Position of the INT}

<table>
<thead>
<tr>
<th>Diagnostic</th>
<th>The INT?</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudo-Incorporation</td>
<td>NO</td>
<td>\textit{SPEC,VP}</td>
</tr>
<tr>
<td>A-Extraction</td>
<td>NO</td>
<td>\textit{\neg SPEC,TP}</td>
</tr>
<tr>
<td>Binding into the \textit{EXT}</td>
<td>NO</td>
<td>\textit{\neg SPEC,TP}</td>
</tr>
</tbody>
</table>

The patterns above suggest that the quirky intransitive \textit{INT} occupies an intermediate position: it remains in \textit{SPEC,VP}. The remainder of this section illustrates this point. First, I show that the quirky intransitive \(v^\theta\) forces its \textit{INT} to leave the \textit{VP} (Section 7.1). Second, I demonstrate that the quirky intransitive construction does not allow the \textit{INT} to move above the \textit{EXT} (Section 7.2). Third, I illustrate that the quirky intransitive construction allows the \textit{INT} to be licensed in the \textit{VP}: thus calling off the need for the second step of movement (Section 7.3). Fourth, I present a derivational sketch of a quirky intransitive clause (Section 7.4). Finally, I resummarize the key conclusions laid out above (Section 7.5).

7.1 \textbf{Step One: Definiteness-Related Movement}

The quirky intransitive \(v^\theta\) forces its \textit{INT} to move out of the \textit{VP} (85a). The first piece of evidence for this pattern involves its distribution. The quirky intransitive \(v^\theta\) appears exclusively in the presence of a definite \textit{INT}. When the \textit{INT} is indefinite in the contexts above, Mandar requires the antipassive voice. The same facts hold in Konjo (88b).

(88) \textit{Quirky Intransitive: Requires a Definite INT}

a. iAmir \textit{maq}-ande loka.
 \textit{NAME ANT}-eat \textit{banana}
 ‘Amir is eating bananas.’
 \textit{Mandar}; JT: 4.2, 287

b. iAmir \textit{ang-ng}anre loka.
 \textit{NAME ANT}-\textit{eat} \textit{banana}
 ‘Amir is eating bananas.’
 \textit{Coastal Konjo}; Friberg 1996:146

This pattern suggests a link between the presence of the quirky intransitive \(v^\theta\) and the definiteness of the \textit{INT}. As with the definiteness effect in Section 4.1, I suggest that this pattern involves a constraint on position: in Mandar, the \textit{INT} must leave the \textit{VP} when definite (4.2). The quirky intransitive \(v^\theta\), like the transitive \(v^\theta\), allows this to occur.

This analysis predicts that the quirky intransitive construction should force its \textit{INT} to move out from the \textit{VP}. Moreover, this process should be invariant: it should be impossible for the \textit{INT} to remain low. In other words, the quirky intransitive \(v^\theta\) should invariably attract the \textit{INT} into its specifier. In this respect, it contrasts with the antipassive \(v^\theta\), which never allows for the same step of movement. I schematize this split below in (90).

(89) \textit{Antipassive: No Object Shift} {27}

\[V_{\textit{ANT}} \]
\[\textit{VP} \]
\[\textit{v}_{\textit{ANT}} \]
\[\textit{VP} \]
\[\textit{V} \]
\[\textit{INT} \]

There is an additional piece of evidence for the step of movement in (90). This comes from the \textit{VP}-level process of pseudo-incorporation. Recall that the antipassive \(v^\theta\) \textit{puN}-\(\textit{\gamma}\) allows its \textit{INT} to undergo this process (Section 4.2.1; 91a). This pattern suggests that it allows its \textit{INT} to remain in the \textit{VP}. The same pattern holds over other \(p\)-initial \(v^\theta\)’s.
(91) **Antipassive: int can undergo Pseudo-Incorporation**

a. Man-dundu **kopi=aq** indini.
 \textit{ANT-drink coffee=1b here} ‘I’m drinking coffee here.’
 NH: 6.18, 508

b. Karana yau, na **men-jari guru=o**
 because 1SG will **ANT-be teacher=2b** ‘Because of me, you’ll be a teacher.’
 Sikki et al. 1987:88

The quirky intransitive construction does not allow its int to undergo pseudo-incorporation (92). This pattern holds in both contexts above: it is impossible when the ext undergoes Ā-extraction (92a) and when the quirky intransitive construction is embedded beneath a control verb (92b).

(92) **Quirky Intransitive: No Pseudo-Incorporation of the int**

a. *Innai maq-ita iqo=bomo?*
 who 2G=again=2b
 ‘Who saw you again?’
 JT: 11.20, 334

b. *Meloq=aq [\textit{voice} maq-ita iqo=bomo(=o)] .*
 \textit{im: ‘I want to see you again.’}
 JT: 11.20, 408

This pattern reflects a specific property of the quirky intransitive \(v^0 \) \(paN_2 \). It cannot be derived from an independent constraint which rules out pseudo-incorporation in the two contexts above. The extraction context permits regular pseudo-incorporation: for instance, the copular verb \(menjari \) supports pseudo-incorporation (93a). The same facts hold in the control context (93b).

(93) **Extraction/Control: Pseudo-Incorporation Possible**

a. Innai **men-jari guru=bomo?**
 who **ANT-be teacher=again**
 ‘Who became a teacher again?’
 JT: 11.20, 278

b. Meloq=o [\textit{voice} **men-jari guru=bomo**] a?
 want=2b **ANT-be teacher=again PRT**
 ‘Do you want to be the teacher again?’
 JT: 11.20, 266

This pattern provides a second piece of evidence for the analysis above. The quirky intransitive \(v^0 \) forces its int to move out from the vp (Tree 90). The impossibility of pseudo-incorporation is the result of this movement.\(^{12}\)

7.2 **Step Two: No Licensing Movement**

The patterns above provide evidence for the view in (85a): namely, that the quirky intransitive \(v^0 \) forces its int to shift to \text{spec, vp}. This conclusion establishes a parallel between the quirky intransitive \(v^0 \) and the transitive \(v^0 \).

The quirky intransitive and transitive constructions diverge, however, with respect the final position of the int. In the transitive voice, the int moves to \text{spec, tp}. In the quirky intransitive construction, this does not occur. The following trees illustrate this split. The crucial observation is that the quirky intransitive int remains in \text{spec, vp}.

\(^{12}\)Before moving on, it is important to note that there is no separate constraint which rules out the pseudo-incorporation of referential material. In Mandar, anaphoric elements can incorporate as long as they are not ints. For instance, demonstratives can be incorporated when they receive locative readings. In the same vein, the copular verb \textit{jari, be} forces its ‘int’ to undergo pseudo-incorporation even when pronominal.

These constructions raise questions about the nature of the constraint which forces definite ints to leave the vp. They provide evidence that the constraint applies exclusively to arguments and may suggest a different syntax for copular clauses. At present, however, these facts serve to establish that there is no constraint which bans the pseudo-incorporation of definite material per se.
Three patterns provide evidence for the split above. First, the quirky intransitive and transitive constructions differ in which argument they allow to extract. Second, they differ in the binding relations which they permit between the INT and EXT. Third, they differ in the possibility for the INT to associate with quantificational elements in the middle field. Together, these patterns suggest that the quirky intransitive INT remains in SPEC, VP.

7.2.1 The Extraction Asymmetry

The first piece of evidence for the analysis above lies in the system of Ā-extraction. Mandar shows a locality constraint in the Ā-domain: only the highest argument in the clause can extract (Section 3.3). The transitive voice, for instance, places the INT in SPEC, TP (Section 3). As a result, it does not allow the EXT to undergo extraction (27).

The quirky intransitive construction, however, does allow the EXT to undergo extraction (96a). Moreover, this construction does not allow the INT to undergo extraction. This can be seen in control contexts, where the EXT does not undergo this process. Here, it is impossible for the INT to surface in the left periphery (96b).

This pattern suggests that the quirky intransitive construction forces the EXT to remain the highest argument in the clause. This pattern provides clear support for the analysis in (85b): namely, that the quirky intransitive construction does not allow the INT to move to SPEC, TP.

7.2.2 The Binding Facts

The second piece of evidence for the analysis above lies in binding. In the transitive voice, binding facts suggest that the INT moves to a position above the EXT (Sections 3.1-3.2). In the quirky intransitive construction, however, the facts run in the opposite direction. In this context, it seems that the EXT c-commands the INT throughout the derivation. In other words, there is no stage at which the INT moves to a position above the EXT.

The profile of condition c violations illustrates this point. Recall that in the transitive voice, the INT can induce a condition c violation over the EXT (Section 3.1). In this context, the INT cannot be a pronoun coindexed with an R-expression in the EXT (97a). The same is not true, however, in the quirky intransitive construction (97b).
This pattern does not arise from a separate constraints on reconstruction. An extracted ext can induce a Condition c violation over the int (98a). In the same vein, an extracted int can induce a violation over the ext (98b).

(98) There is Reconstruction for Condition C

a. *\[ext I_a \] mas-sajang=ì \[int kindoq-na \text{iNina}_i \] she \(q\)-love=3b \ mom-3G NAME IM: 'She loves Nina’s mom.'

b. *\[int I_a \] na-allai \[ext kindoq-na \text{iKacoq}_i \] he \(3A\)-scold \ mom-3G NAME IM: 'Kacoq’s mom scolded him.'

JT: 3.19, 220 JT: 3.19, 213

As such, the quirky intransitive ext should reconstruct for the purposes of condition c. This pattern suggests that the int should be able to trigger a condition c violation over the ext if the int ever moved above this argument. The patterns in (97) show that no such violation occurs. This pattern provides further evidence for the analysis in (85b): the quirky intransitive construction does not allow its int to move to a position above the ext.

7.3 Low Absolutive Licensing

The facts above support the hypothesis that the quirky intransitive int remains in the vp (85a). This pattern leads to the following conclusion: in the quirky intransitive construction, the two steps of movement that underlie High Absolutive Syntax come apart. In this context, the int undergoes the first but not the second (Tree 86).

This split sheds light on the motivation for the second step. In the transitive voice, this process is obligatory: an int which leaves the vp must undergo further movement to spec,tp (Section 3). On this analysis, the two steps of movement sit in a feeding relationship: when the first occurs, the second must as well.

In section 4.3, I suggested that this feeding relationship holds for reasons of licensing. On this view, the transitive voice requires the int to move to spec,tp because it cannot be licensed in the voice (Hypothesis 64). As such, this analysis makes a prediction: if the quirky intransitive construction allows the int to remain in the vp, it must allow this argument to be licensed in this domain. The following trees illustrate this split.

(99) Quirky Intransitive: Licensing in vp

(100) Transitive: No Licensing in vp

There is evidence that this analysis is correct. The quirky intransitive \(V^0\) hosts a probe which shows overt agreement with the int (Section 5.4.1). The transitive \(V^0\), in contrast, does not show overt agreement with the int. In the transitive voice, rather, the agreement which targets the int sits in \(T^0\) (Section 4.3.1).

This difference suggests a split in licensing. As the quirky intransitive \(V^0\) agrees with the int, I take it to license this argument in the int (Tree 99). In the same vein, I suggest that the transitive \(V^0\) does not (Tree 100).

This split provides the means to understand the distribution of the second step of movement. This step is directly tied to the requirement that a nominal be licensed by \(T^0\). The arguments which need licensing and cannot be licensed in the voice undergo this movement: for instance, the transitive int and the antipassive ext. The arguments which do not require this licensing- like the quirky intransitive int- do not.\(^{13}\)

\(^{13}\)The same logic applies across the other constructions where the int is definite but does not move to spec,tp. In the ditransitive construction, for instance, I take it to be licensed by the overt \(appn^0\) suffix which appears on the verb (45-46). In the comitative, I take it to be licensed either by the comitative \(V^0\) si- or by prepositional structure which is optionally overt (29). The same analysis holds over experiencer constructions.
7.4 The Quirky Intransitive: A Derivational Sketch

The preceding subsections have provided evidence for the claim in (85): namely, that the quirky intransitive construction forces the INT to undergo object shift to SPEC, VP but not licensing movement to SPEC, TP. The following subsection provides a derivational sketch of a quirky intransitive clause. I begin with the example in (101a) and the VP in (101c). I contrast it with the transitive example in (101b) throughout.

(101) The Derivational Sketch: the VP

a. Innai **man** -dun*du=i?
 who **qi**-drink=3b
 'Who drank it?'
 JT: 4.2, 270

b. U-rundu=i.
 1a-drink=3b
 'I drank it.'
 JT: 4.2, 273

c. VP
 V
 INT

The quirky intransitive and transitive clauses above both contain a definite INT. This argument must leave the VP. The quirky intransitive and transitive v₀'s both provide a means for this to occur: they attract the INT to SPEC, VP.

The two heads differ, however, in whether they trigger agreement with this argument. The quirky intransitive v₀ hosts a phi-probe which targets the INT. The resultant agree relation is spelled out as the absolutive agreement enclitic in (101a). The transitive v₀, in contrast, does not agree with the INT. The following trees illustrate.

(102) The Quirky Intransitive: Object Shift and Agreement

a. **Quirky Intransitive → Shift + Agreement**

```
  INT
    VP
      VP₀
    v₀
      INT
```

b. **Transitive → Shift; No Agreement**

```
  INT
    VP
      VP₀
    v₀
      INT
```

This difference in agreement yields a split in licensing. The quirky intransitive v₀ allows its INT to be licensed in its specifier. The transitive v₀, however, does not. This pattern has consequences for later movement to SPEC, TP.

The next head to merge is voice₀. Here selection plays a role. The transitive voice₀ selects the transitive v₀, while the intransitive voice₀ selects the quirky intransitive v₀. This pattern yields the trees below.
The Quirky Intransitive: m- selects paN₂

a. Quirky Intransitive vₒ → Intransitive voice₀

b. Transitive vₒ → Transitive voice₀

The difference in voiceₒ once again has consequences for licensing. The intransitive voiceₒ does not host overt agreement with its EXT. The transitive voiceₒ, in contrast, does. This pattern suggests the following view: the transitive voiceₒ licenses its EXT and the intransitive voiceₒ does not (as in the antipassive: Section 4.4).

This licensing pattern sets up the key difference between quirky intransitive and transitive clauses. In the quirky intransitive clause, the INT is licensed by vₒ and the EXT is not licensed by voiceₒ. As such, when t merges in, it will agree with the EXT and attract it to its specifier (Tree 104a). In the transitive clause, the opposite holds: the EXT is licensed by voiceₒ and the INT is not licensed by vₒ. As such, the INT interacts with t in this context instead (104b).

(104) The Quirky Intransitive: EXT → SPEC, TP

a. Quirky Intransitive: INT licensed; EXT → SPEC, TP

b. Transitive: EXT licensed; INT → SPEC, TP

7.5 Section Summary: The Quirky Intransitive and its Implications

The trees above illustrate the syntax of the quirky intransitive construction on the Two-Step Model of High Absolutive Syntax. The analysis above, moreover, has received extensive empirical grounding over the course of this paper. It is clear that the quirky intransitive INT has left the VP and that it sits in a position beneath the EXT (Sections 7.1-7.2). Moreover, the licensing schema in (103) tracks the distribution of agreement in the language directly (Section 2.2). The activity-based account, moreover, provides a means to understand the link between High Absolutive syntax and the locus of absolutive agreement in t₀ (55).

These facts suggest the following conclusions. First, the account in (103) finds support from a range of convergent diagnostics in the language (Sections 7.1-7.2). It therefore seems correct. Second, this conclusion necessitates a view
on which High Absolutive Syntax arises in two steps. The quirky intransitive construction, like the ditransitive context in Section 4.2.3, shows that an the INT can undergo object shift without moving to a position above the EXT. This pattern directly contradicts a range of recent work which assumes that object shift places the INT above the EXT and is thus forced into the undesirable conclusion that it is exceptionally called off in the context above (Rackowski 2002; Aldridge 2004; Rackowski and Richards 2005; Yuan 2018).

I reiterate the key conclusions of this section and the broader paper below.

(105) The Key Conclusions
 a. Mandar shows High Absolutive Syntax: the absolutive argument moves to spec,TP.
 b. Object shift alone does not place the absolutive argument above the ergative.
 c. High Absolutive Syntax must arise through two steps: object shift and licensing movement.
 d. The quirky intransitive construction shows object shift but not licensing movement of the INT.

Beyond its empirical success, moreover, this analysis sidesteps several theoretical problems implicit in previous accounts of Ā-extraction constraints and quirky intransitive constructions at large. First, it makes no reference to stipulative theoretical concepts like the phase (pace e.g. Aldridge 2008) or the notion of case-discrimination in the Ā-domain (pace Deal 2017): rather, it derives the constraint on Ā-extraction from locality alone (Shlonsky 1992).

Second, it does not assume that the quirky intransitive \(v^0 \) selects for an EXT with Ā-features (pace Coon et al. 2020) or reflects the result of an operation of derivational impoverishment linked to Ā-extraction (pace Newman 2020). Rather, it treats the quirky intransitive \(v^0 \) on a par with the heads merged to license Differential Object Marking and to repair violations of the Person-Case Constraint (Kalín 2018; Béjar and Rezac 2003): it is a licensor merged only when typical avenues of licensing do not allow a derivation to converge (Levin and Massam 1985).

8 Conclusions

This paper has developed a novel model of High Absolutive Syntax through investigation of Mandar, a Philippine-type (Austronesian) language of the South Sulawesi subfamily. This paper has shown that in this language, the absolutive argument moves to a position above all other arguments in the clause (Section 3). Moreover, I have argued that this process arises in two steps (Section 4): (i) a process which moves definite arguments out of the VP (Section 4.2) and (ii) a process which moves the absolutive argument to spec,TP for reasons of licensing (Section 4.3).

This model of High Absolutive Syntax may generalize across the region. Both the languages of the Philippines, Taiwan, and Sulawesi and Inuit show a definiteness effect like that of Mandar (Section 4.1): they show a voice alternation that is determined roughly by the definiteness of the INT (Adams and Manaster-Ramer 1988; Bittner 1987). Moreover, these languages and the High Absolutive members of the Mayan family show a parallel constraint in the Ā-domain: they do not allow extraction of the transitive EXT (Keenan 1972; Bittner 1994; Coon et al. 2014).

The strongest evidence for the generality of the Two-Step Model lies in the distribution of the quirky intransitive construction. This paper has shown that Mandar employs a special construction when the INT is definite but cannot interact with \(\tau^0 \). This construction shows intransitive morphology in \(voice^0 \) and employs a special \(v^0 \) (80). This construction for the INT to undergo object shift out of the VP but allows it to be licensed within the VP, thus removing the need for licensing movement to spec,TP (Section 7).

The Mandar pattern recurs across the island of Sulawesi. The South Sulawesi languages invariably employ a construction with the exact properties in (80) (Campbell 1989; Matti 1994; Strømme 1994; Valkama 1995; Friberg 1996; Jukes 2006; Laskowskws 2016; Zobel 2002). Beyond this subgroup, the languages of the Kaili-Pamona and Bungku-Tolaki subgroups show the same behavior. Uma (Kaili-Pamona), for instance, indexes the transitive EXT with an ergative prefix and the transitive INT with an absolutive enclitic. Moreover, this language exceptionally indexes a definite INT with an absolutive enclitic in the presence of intransitive morphology when the EXT undergoes Ā-extraction. This construction directly parallels the quirky intransitive in Mandar.

\(^{14}\)The usual disclaimers apply: the same does not hold in the divergent Selayarese, where the voice system has been restructured under contact.
Further afield, the High Absolutive languages of the Mayan family show the same behavior. Like Mandar and Uma, these languages index the transitive ext with an ergative prefix and the transitive int with an absolutive enclitic. In the same vein, they too exceptionally index a definite int with an absolutive enclitic in the presence of intransitive morphology when the ext undergoes Ā-extraction. The following examples illustrate in Chuj, a language of the Q’anjob’alan subgroup. Note that the relevant morphology perfectly mirrors that of Mandar and Uma: the intransitive marker (the ‘status suffix’) occurs outside of the quirky intransitive morpheme (the ‘agent focus’).

(107) Chuj: The Quirky Intransitive

a. Ix=ach ko-chel-a’
 PFV=2B 1A-hug-TR
 ‘We hugged you.’
 Coon 2019:9

b. Mach ix=ach mak’-an-i?
 who PFV=2B hit-QI-TR
 ‘Who hit you?’
 Hou 2013:13

The two languages above employ the quirky intransitive construction in the exact contexts above: when the int is definite and cannot interact with t0. In Uma, Chuj, and Mandar, this situation arises in two contexts: in clauses with Ā-extraction of the ext (106-107) and in embedded non-finite contexts (108).

(108) Uma, Chuj: Quirky Intransitive with Non-Finite Embedded Clauses

a. Tumai=a=ma [src m-po-pali=ko].
 come=1B=PFV ITR-QI-seek=2B
 ‘I have come to look for you.’
 Uma; Martens 1988:270

b. Lan [src hach=ko-chel-an-i].
 happen 2B=1A-hug-QI-TR
 ‘We are hugging you.’
 Chuj; Coon and Carolan 2017:22

These patterns lend themselves to a unified analysis of the type laid out in Section 7 above. The Two-Step Model of High Absolutive Syntax holds that the quirky intransitive constructions above share the same basic syntax: the int undergoes a step of object shift to spec,vp but does not undergo a second step of movement to spec,tp. On this view, this pattern holds for three reasons: (i) these languages typically require the int undergo object shift out of the vp when definite, (ii) the step of object shift feeds a second step of licensing movement to spec,tp, and (iii) the occurrence of this licensing movement blocks Ā-extraction of the ext. The first step can happen in the absence of the second only under one specific circumstance: when the int has an independent means to be licensed beneath the tp. The quirky intransitive v0 allows this to occur.

This unified analysis predicts that quirky intransitive patterns should be widespread across the High Absolutive languages of the world. Within the Austronesian family, this is plainly the case. Many Western Malayo-Polynesian languages show intransitive morphology but permit special case-marking on the int when it is definite but cannot interact with t0 (Rackowski 2002; Erlewine 2016). The same patterns likely recur across High Absolutive languages further afield. The analysis of Mandar, then, may provide a fruitful means of understanding these patterns at large.

References

F. de San José Blancas. Arte y Reglas de la Lengua Tagala. 1610.

