Suppletion in Global Perspective

Abstract

This paper describes a system of suppletive alternations that are conditioned by top-down prosodic context. In Mandar (Austronesian), eight heads supplete at the right edge of the phonological phrase to satisfy an output constraint on foot structure. When phraseexternal phonological context makes it possible to resolve this output constraint in a more optimal way, these patterns of suppletion are all suspended. These effects suggest that the mechanism which regulates suppletion, vocabulary insertion, must be situated within a phonological calculus that can access global context and respond to output constraints.

Keywords: Suppletion, Optimization, Prosody, Cyclicity, Sulawesi

Related Works: None

1 Introduction

A central discovery of modern work in morphology is that morphosyntactic words are assembled within the morphosyntactic component of a modular, feed-forward grammar (Sadock, 1980; Baker, 1985; Hale \& Keyser, 1993; Halle \& Marantz, 1993; Marantz, 1997). One of the central questions that emerges from this discovery is linked to the matter of exponence. It is widely assumed that many types of morphosyntactic constituents are paired with exponents from the lexicon at a relatively late derivational stage: in Distributed Morphology (DM; Halle \& Marantz 1993), through the operation of Vocabulary Insertion (vi). But what is the nature of the operation that pairs constituents with exponents, and what are the architectural conditions under which it operates?

The goal of this paper is to push forward our understanding of vi by investigating a network of suppletive alternations in Mandar, an Austronesian language of Indonesia. There are eight $\mathrm{x}^{0} \mathrm{~s}$ in this language that take monosyllabic forms when followed by phonologically overt material in a small postsyntactic domain but supplete to disyllabic forms when they are not. This pattern is shown in the following examples with the root $\sqrt{\text { WHAT }}$: before the adverb dua "still," this root takes the monosyllabic form a (1a), but when it appears alone before a predicate, it typically takes the disyllabic form apa (1b).
(1) Top-Down Suppletion
a. $\{$ a ua $\}$ \{pilloa \}
a dua pilloa
what still ring
'What's still ringing?'
b. \{apa \} \{pilloa\}
a pilloa
what ring
'What's ringing?'

The investigation of this system will take us deep into the phrasal phonology, as we search for a characterization of its domains and an explanation for its prosodic shape. We will ultimately come to see these alternations as part of an output conspiracy that commandeers VI to satisfy top-down constraints that are keyed to the right edge of the phonological phrase. The result is that the eight suppletive $\mathrm{x}^{0} \mathrm{~s}$ in this system show the property that Embick 2010 terms allomorphic vacillation: when they take positions that would otherwise force suppletion, they are forced to retain their unmarked forms when the larger prosodic context sets up an alternative repair for the driving output constraint. This alternative repair, in turn, implicates a type of phonological displacement that operates according to the classical minimalist logic of Attract (Chomsky, 2001).

These results suggest that the operation of vi must in some cases be able to access phonological information that extends beyond the c-command domains of the x^{0} s that it targets. This conclusion leads to the hypothesis that vi can target certain heads in the global phonological calculus where high-level prosodic structure is built. In tandem with this result, the facts of allomorphic vacillation suggest that vi can be guided by output-oriented constraints (Mester, 1994; Kager, 1996; Booij, 1998). Together, these results lead to two deeper points at the interface of morphology and phonology. First, they mandate that vi be shifted across the boundary between these modules and rehoused within the phonology. Second and relatedly, they show that this operation does not need to be nested within a word- or phrase-level cycle for many types of x^{0} s.

The remainder of this paper is structured as follows. Section 2 provides background information on Mandar and lays out the output conspiracy that will drive these effects. Section 3 introduces the alternations of interest and argues that they involve suppletion, then lays out an analysis that situates vi in the phonology. Section 4 extends the argument that VI is guided by output constraints and makes a case for allomorphic vacillation, describing a type of phonological movement on the way. Section 5 concludes.

2 Mandar and the Top-Down Constraint

Mandar is an Austronesian language of the South Sulawesi subfamily, spoken by 400,000 people in West Sulawesi, Indonesia (Grimes \& Grimes, 1987). It is a head-initial language and it shows a consistent basic word order of v-s-O-D (verb $>$ external argument $>$ internal argument $>$ applied argument) that is derived by x^{0}-movement of the verb (Brodkin, 2023). The language has no case-marking and allows for pro-drop. Morphologically transitive verbs show ergative agreement and every finite clause contains an absolutive enclitic that indexes the o of a morphologically transitive verb or the sole argument of a morphologically intransitive verb. The verb shows voice alternations which position different arguments to receive absolutive Case, and the absolutive argument always raises covertly to the highest A-position in the clause (Brodkin 2022). The result is a Western Austronesian "voice system" (Guilfoyle et al., 1992; Aldridge, 2004). The basic shape of a Mandar clause is shown in example (2). ${ }^{1}$
(2) The Shape of a Mandar Clause

Na-alli-ang i [s iKaco’] [o do bunga] [iCicci'] o. 3ERG-buy-APPL 3ABS NAME that flower NAME there
'Kacho' bought those flowers there for Chichi'.'
Mandar has been the subject of much work in Indonesian by the Language Office of South Sulawesi (Sikki et al., 1987; Muthalib \& Sangi, 1991; Friberg \& Jerniati, 2000). The word-level phonology of the language has been described in Indonesian by Jerniati 2005 and Pelenkahu et al. 1983, and the rules of nasal assimilation are discussed in Pater 1999. The unsourced judgments in this paper have been gathered over five years of work with

[^0]Jupri Talib, conducted in Indonesian with occasional use of Mandar. To collect these judgments, the consultant was presented with examples in written pairs, asked to reflect on their pronunciation at a regular speech rate with broad-focus prosody, and then asked to produce each variant repeatedly until it was possible to judge each as bisa dengan nada biasa "possible at a regular speech rate," hanya dengan penekanan khusus "only possible with narrow focus," or salah "incorrect." In the summer of 2023, the generalizations collected in this way were then presented on two occasions to audiences of native-speaker linguists in the Mandar area. In that time it became clear that these generalizations are uncontroversial in Mandar and can be replicated in several related languages in the South Sulawesi subfamily. ${ }^{2}$ It is thus my understanding that the data below are representative of the general situation in the prestige variety of Mandar.

2.1 The Phonology of Stranding

Our investigation begins with the phonology of preposition stranding. Mandar is a language in which interrogative WH -words and certain types of foci move to a position in the left periphery (Brodkin, 2020). This process is shown in example (3), where it targets the adverbial wh-word piray "when." In all examples below, surface forms will appear in the top line and underlying forms will appear in the second line. The top line will also reflect phonological processes that are sensitive to higher-level patterns of prosodic phrasing, which lenite intervocalic $/ b d \widehat{d S} g /$ to [wIj $\begin{aligned} & \text {] }\end{aligned}$, delete intervocalic / $\mathrm{T} /$, reduce intervocalic coda $/ \mathrm{y} /$ to nasalization, and force total assimilation of coda $/ \mathrm{y} /$ before all non-nasal consonants but $/ b d \widehat{d J} \mathrm{~g} /$. For discussion, see Brodkin 2023.

[^1](3) W_{H}-Movement in Mandar
pirap pe mjakke? _ ?
piray pai mi-akke?
when ipfv.3ABS ANTIP-lift
'When did she leave?'

It is generally possible in Mandar for wh-movement to target the complements of directional prepositions, prompting certain changes in verbal morphology. When p^{0} s are stranded in this way, they show various types of phonological expansion. The examples below introduce a first case: the P^{0} suy "out" is monosyllabic before overt complements (4a) but typically undergoes v?-epenthesis when stranded by wh-movement (4b).
(4) P-Stranding \rightarrow Epenthesis
a. bemme i [pp sun [pp di pepattoan]].
bemme i suy di pepattoan
fall 3ABS out of window
'It fell out of the window.'
b. a nawemmei [${ }_{p p}$ suPuy __].
a na-bemme-i suy
what 3ERG-fall-APPL out
'What did it fall out of?'

A second case emerges around prepositions that have the underlying shape $\mathrm{Cvv}(\mathrm{c})$, where the first vowel is [a] and the second is one of [i e o u]. These prepositions coalesce to monosyllabic $\mathrm{Cv}(\mathrm{c})$ forms before overt complements. This effect is shown below: the P^{0} lao "to" reduces to $l o(5 \mathrm{a})$ and the P^{0} sau "to (oceanward)" reduces to so (5b).
(5) Coalescence

'I went over to his house."
Pelenkahu et al. 1983, 191

'It flows straight to the sea.'
Friberg \& Jerniati 2000, 304

When these prepositions are stranded by wh-movement, coalescence is typically blocked. The result is that stranded $\mathrm{P}^{0} \mathrm{~S}$ are forced into disyllabism in a phonologically distinct way. The P^{0} lao takes the form lao (6a) and the P^{0} sau takes the form sau (6b).
(6) P-Stranding \rightarrow No Coalescence

$\begin{array}{lllll}\text { b. na naola } & {\left[\begin{array}{lll}\text { np } & \text { sau } \\ \text { na na-ola }\end{array}\right.} & \begin{array}{l}\text { sau }\end{array} \\ \text { where 3ERG-go } & & \text { to }\end{array}$
'Where did he go to?'

These alternations form part of a broader cross-linguistic pattern: functional heads are often forced to expand phonologically when they are stranded by wh-movement (Selkirk, 1984, 1995a). These alternations are thus similar to those that obtain in English with the $\mathrm{P}^{0} \mathrm{~s}$ for and $t 0$, which take the forms $f r$ and t^{\prime} ' before overt complements in clauses produced at a normal speech rate when the influence of focus is controlled (7a). But when their complements are extracted, these $\mathrm{P}^{0} \mathrm{~s}$ are forced to take larger forms (7b).

(7) \quad-Stranding in English

a. I gave the books $\mathbf{t}^{\mathbf{\prime}}{ }^{*}$ to Harvey.
b. Who'd you give the books *'t/to?

This generalization on wh-movement, in turn, forms part of a larger generalization on the phonology of stranding (King, 1970; Selkirk, 1984, 1995a; Kaisse, 1985). In Mandar,
it is possible for many $\mathrm{P}^{0} \mathrm{~s}$ to appear in contexts where they take no overt complements. In this case I assume that they are stranded by a process of complement ellipsis, marked below with an underscore. When $\mathrm{P}^{0} \mathrm{~S}$ are stranded in this way, they are routinely forced to take disyllabic forms. Example (8b) shows this effect with the p^{0} sul, which expands to supuy. This effect is mirrored by a similar pattern in English, where many $\mathrm{p}^{0}{ }^{\mathbf{s}}$ expand in phonologically irregular ways in this context (e.g., out is forced to host a diphthong).
(8) Ellipsis \rightarrow Same Effects
$\begin{array}{lllll}\text { a. } \begin{array}{l}\text { bemme i }\end{array} \quad\left[\begin{array}{ll}\text { pp } & \text { sun }\end{array}\right. & {\left[\begin{array}{c}\text { pp } \\ \text { di tasmu }\end{array}\right]} \\ \text { bemme i } & \text { suy } & \text { di tas-mu }\end{array}$
'It fell out of your bag.' ([ær])
b. bemme i [${ }_{\mathrm{pp}}$ suPuy _].
bemme i suy
fall 3 ABS out
'It fell out.' ([æช?])
Our investigation thus begins with the observation that Mandar $\mathrm{P}^{0}{ }^{\mathrm{s}}$ obey a surface constraint on size: when they are stranded, they must take disyllabic forms (9). I will refer to the constraint that drives this effect as the Positional Minimality Constraint.
(9) The Positional Minimality Constraint
a. Overt Complements

b. Null Complements

2.2 The Right-Edge Effect

This generalization forms part of a conspiracy that is roughly keyed to the right edge of the DP. Mandar is a language in which adjectives follow the noun, yielding the

DP-internal order DEM $>$ NOUN $>$ ADJ (demonstrative $>$ noun $>$ adjective). In DPS where the noun is final, nouns are typically forced to take disyllabic forms when they have the underlying shape $\operatorname{cvv}(\mathrm{c})$, where the first vowel is [a] and the second is one of [ie or u]. But when these nouns are followed by adjectives, they coalesce to monosyllablic forms of the shape $\operatorname{cv}(\mathrm{c})$. This process is illustrated in the following pair of examples: the noun bau "fish" take its disyllabic form when it appears alone at the right edge of the Dp (10a), but it reduces to bo before the ADJ ${ }^{0}$ pyapi "curried" (10b).
(10) Coalescence in the DP
a. naparessu i wau.
na-paressu? i bau
3ERG-cook 3Abs fish
'They just cooked the fish.'
b. naparessu? i wo pjapi.
na-paressu? i bau piapi
3ERG-cook 3ABS fish curried
'They just cooked the curried fish.'
These alternations are matched in a second class of $\operatorname{cvv}(\mathrm{c})$ nouns whose first vowel is one of $[i u$]. When final in the DP, these nouns take disyllabic forms. But when they are non-final, they reduce to monosyllables through a process that raises [iu] to [$j w$]. The following examples illustrate this pattern with sia "salt," which takes the disyllabic form sia when final in the DP (11a) but the monosyllabic form sya before an ADJ^{0} (11b).
(11) Gliding in the DP
a. nanne i sia.
na-anna-i i sia
3ERG-add-APpl 3ABS salt
'They added salt.'
b. nanne i sja mea.
na-anna-i i sia mea
3ERG-add-appl 3abs salt red
'They added red salt.'

These restrictions suggest that the grammar of Mandar contains an output constraint that bans monosyllabic nouns at the right edge of the DP. This constraint can be united with the restriction on prepositions by relativizing this constraint to the right edge of the extended projection of N (Grimshaw, 1991). On this view, both effects follows from the constraint in (12): a ban on monosyllabic $\mathrm{x}^{0} \mathrm{~s}$ at the right edge of the extended NP .

(12) The Positional Minimality Constraint: an Interim Reformulation

This revision allows us to make quick sense of the phonology that we have seen so far. I will assume that coalescence and gliding are driven by the markedness constraint Onset (Itô 1986; Rosenthall 1994; cf. Borroff 2007). In an Optimality-Theoretic framework (ot; Prince \& Smolensky 1993/2004), these processes can be blocked at the right edge of the extended np by ranking Onset beneath the Positional Minimality Constraint, which is restated in (13b). This ranking derives the interim result of this section: $\mathrm{CVV}(\mathrm{C})$ nouns cannot reduce to monosyllables at the right edge of the DP (13c).
(13) DP-Internal Restrictions: the Starting Analysis
a. Onset: assign one violation for every syllable that lacks an onset.
b. Positional Minimality (Pos-Min): assign one violation for every x^{0} at the right edge of the DP that is monosyllabic.

naparessuP $i\left[{ }_{D P}\right.$ bau] 'they cooked the fish'	Onset	Pos-Min
c.	ares a. naparessuPi \{ bau \}	
b. naparessuPi \{ bo \}	$*$	

We can now turn to the prosodic phonology of the Positional Minimality Constraint. Syntactic constituent structure and category labels should be invisible to the kind of
surface-oriented calculus that governs these patterns of hiatus resolution and epenthesis (Nespor \& Vogel, 1986). It would thus be strange if the Positional Minimality Constraint were genuinely formulated in terms of syntactic constituents like the $\mathrm{x}^{0} \mathrm{~s}$ and the DP.

It is thus unsurprising to observe that the Positional Minimality Constraint operates in a postsyntactic domain that is not exactly identical to the extended NP. Mandar has many elements that surface in second position, splitting syntactic islands and forming clitic clusters that are ordered by syllable count (Brodkin, 2021b). Their behavior is shown below with the quantifier nasay "every," which I take to originate in a Dp-internal position that is marked with an underscore. In a verb-initial clause, this quantifier shifts left to follow the verb (14a); in an AUX ${ }^{0}$-initial clause, it shifts to follow the $\operatorname{AUX}^{0}(14 b)$.

The Second-Position System

a. naparessu? nasam bo mi do wau _o na-paressu? nasan bo mi do bau o 3ERG-cook every again PFv.3ABS that fish there
'She cooked every one of those fish again.'
b. pura nasam mi nawaluan __.
pura nasay mi na-baluay
already every pFv.3ABS 3ERG-sell
'He has already sold every one of them.'

Pelenkahu et al. 1983, 158

Sikki et al. 1987, 1097

Many of these second-position elements are parsed into the domain that is relevant for the Positional Minimality Constraint. This can be seen in contexts of wh-movement, which places DPs in positions where they can be followed by second-position elements. When followed by certain second-position elements in this position, these DPs are shielded from the Positional Minimality Constraint. The following examples illustrate this pattern with the quantifier nasay, which shifts out of external arguments to follow two types of internal arguments with the shape $\operatorname{cvv}(\mathrm{c})$. Before this element, the noun sia "salt" reduces to sya (15a) and the noun bau "fish" reduces to bo (15b).

Second-Position Elements shield DPs from the Edge
a. sja nasam muluppei \qquad sia nasay mu-luppei
salt every 2erg-forget
'Every one of you forgot salt.'
b. bo nasam melo? mwalli \qquad a? bau nasan melo? mu-alli a
fish every want 2ERG-buy eh
'Every one of you wants to buy fish, eh?'

The second-position elements that shield the DP in this way are then subjected to the Positional Minimality Constraint themselves. There are no native nouns in Mandar that synchronically retain the underlying shape (c)v(c), but there are three second-position elements in this system that do. These are to "also," bo "again," and a (a modal). When these $\mathrm{x}^{0} \mathrm{~s}$ appear before other second-position elements, they take monosyllabic forms (16a). But when they appear after fronted DPs alone, these monosyllabic forms are banned. The adverbs to and bo are thus typically forced to undergo v?-epenthesis (16b).
(16) Second-Position Elements show Minimality Effects
a. jo to wandi mitt $\widehat{0}$ oe?
jauto bandi min-t \widehat{f} oe?
I also actually antip-follow
'I'm certainly coming too.'
b. jo to? mitt $\widehat{f o e}$.
jau to min-t \widehat{f} oe?
I also antip-follow
'I'm coming too.'

The prohibitive modal a shows a different response. This x^{0} can follow fronted DPS when it is shielded from the right edge by other second-position elements, like damo "just" in (17a). But when it is not shielded in this way, it cannot undergo v?-epenthesis
like to and bo. The result is that its appearance is typically banned outright in clauses that lack additional second-position elements. This ban is shown in example (17b).

(17) Phonological Blocking

a. ikat \widehat{f} o a amo mattimbe.
ikat 5 o? a damo may-timbe
name let it not be just antip-throw
'Don't let it be Kacho' who just threw something.' Sikki et al. 1987, 439
b. *ikat $\widehat{\text { fo a (Pa) mattimbe. }}$
ikat $\int 0$ a may-timbe
NAME let it not be ANTIP-throw
Intended: 'Don't let it be Kacho' who threw something.'

The behavior of second-position elements shows that the Positional Minimality Constraint cannot be keyed to the right edge of the extended NP or any other syntactic domain. Second-position elements cannot move into syntactic positions inside of DPs: not by raising into fronted DPs in the syntax (which would violate the Extension Condition; Chomsky 1993) and not by moving into them in the phonology (which cannot influence syntactic structure). But as they form domains with DPs for the purposes of the Positional Minimality Constraint, we must conclude that the domain of the Positional Minimality Constraint is defined within the postsyntax. This domain is one that must be consistently built around DPS and stranded Ps, in a process of translation that we must understand. It must also be one that takes in certain second-position elements that originate outside the DP, in an interaction that is complex in its own right. And it must be one that shows no trace of cyclicity, in which the Positional Minimality Constraint is evaluated exactly once at a derivational stage where wh-movement and second-position linearization have already taken effect. Our analysis of every operation in the conspiracy of Positional Minimality must then reflect the surface-oriented nature of this constraint.

2.3 The Top-Down Constraint

There is a straightforward way to understand the Positional Minimality Constraint in the surface-oriented terms of the phonology. Mandar is a language that shows regular word-level stress, which is marked with low F^{0} and increased length and amplitude. Setting certain prefixes aside, every word hosts one audible instance of stress on the penult (Pelenkahu et al., 1983): thus óro "sit," oróay Sit-NOMINALIzer "seat," oroánna sit-nominalizer-3gen "her seat." I propose that this stress pattern arises from the right-alignment of a single disyllabic trochee in the prosodic word (ω), as shown in (18).

I assume further that the syllables before the penult are generally not parsed into feet. ${ }^{3,4}$
In the examples that follow, I will mark word-level stress overtly in the top line.

The Disyllabic Trochee

The phonology of Mandar generally tolerates the emergence of monosyllabic feet.
This can be seen from the behavior of $\operatorname{cvv}(\mathrm{c})$ nouns, which take monosyllabic forms in

[^2]phrase-medial positions and bear stress on a par with all other prosodic words. In this context, I assume that these nouns host degenerate feet. The emergence of these feet can be understood to follow from a ranking of OnSET over the pressure that mandates the appearance of the disyllabic trochee in all other positions: namely, the constraint FootForm in (19a). The interaction of these constraints is shown in the tableau in (19b).

Deriving Monosyllabic Feet

a. FootForm: assign one violation for every foot that is not a disyllabic trochee.
b.

sia mea "red salt"	Onset	FootForm
		*
b. $[\omega$ (sía) $][\omega$ (méa) $]$	*!	

From this perspective, we can reinterpret the Positional Minimality Constraint as a positionally more stringent version of FootForm. On this view, this constraint forces the final overt x^{0} in the extended DP to disyllabic because it demands that the final prosodic word contain a disyllabic trochee (20). This reformulation allows us to connect the Positional Minimality Constraint to a range of parallel minimality effects that emerge from constraints on the shapes of feet (Itô \& Mester, 1992; McCarthy \& Prince, 1993).
(20) The Positional Minimality Constraint: Second Reformulation

We can now turn to the matter of domains. In Mandar clauses that do not contain second-position elements, phrasal constituents in the syntax are marked at the surface with a high tone at their right edge. I will refer to this tone as the Phrase-Final High Tone and mark it in all following examples with a superscripted h. Example (21) shows its distribution: it surfaces after every verb, stranded P, phrasal adjunct, and DP.

nalátt $\int_{\text {far }}{ }^{\text {H }}$	i	súPun ${ }^{\text {H }}$	di yéna ${ }^{\text {H }}$	do sanéke kétt \int u ${ }^{\text {H }}$	0
na-lattfar	1	suy	di gena?	do sanaeke kett \int u?	
3erg-throw	3ABS	out	in early	that kid small	her

'That little kid there threw it out earlier.'

The Phrase-Final High Tone falls on DPs in both postverbal argument positions and in the left periphery (22a). But its position changes when left-peripheral DPs are followed by the second-position elements that shield them from the Positional Minimality Constraint. Example (22b) shows this effect with nasang "every": when it follows a fronted DP like sia "salt," the н falls after the DP-second-position sequence syá násang.
(22) Second-Position Elements show Minimality Effects
$\begin{array}{ll}\text { a. bállo } \mathbf{P}^{\mathrm{H}} & \text { muluppéi }{ }^{\mathrm{H}} . \\ \text { ballo? } & \text { mu-luppei } \\ \text { palm wine } & \text { 2ERG-forget } \\ \text { 'You forgot the palm wine.' }\end{array}$
b. sjá násam ${ }^{\mathrm{H}}$ muluppéi $^{\mathrm{H}}$
sia nasay mu-luppei
salt every 2ERG-forget
'Every one of you forgot salt.'

There is thus a bidirectional connection between the Positional Minimality Constraint and the Phrase-Final High Tone: the positions that show the Positional Minimality Constraint host a Phrase-Final High Tone, and the positions that host a Phrase-Final High Tone show the Positional Minimality Constraint. This is an instance of Domain Clustering, in the sense of Nespor \& Vogel 1986: two phonological events pile up in the same position. I take this pattern to suggest that the Positional Minimality Constraint and the Phrase-Final High Tone are both keyed to the right edge of a single abstract phonological domain. I will identify this domain as the phonological phrase (ϕ)
(Selkirk, 1984, 1986; Nespor \& Vogel, 1986). This move allows us to reformulate the Positional Minimality Constraint in terms that belong fully to the phonology: in Mandar, the phonological phrase must host a disyllabic trochee at its right edge (23).

(23) The Positional Minimality Constraint: Final Reformulation

$$
\boldsymbol{X}(\sigma)
$$

This connection allows us understand why a Minimality Effect should emerge in this position. Phonological strings are organized into a hierarchical prosodic constituent structure that is built from the universal and layered building blocks of the syllable (σ), foot (FT), prosodic word (ω), phonological phrase (ϕ), and intonational phrase ($($) (Itô \& Mester 2007; cf. Hayes 1989; Vogel 1990, 2009). The constituents on this hierarchy provide the domains for phonological evaluation (Selkirk, 1978, 1984, 1986; Nespor \& Vogel, 1986; Itô \& Mester, 2007, 2012, 2013), and they routinely impose special prosodic requirements on the lower constituents that fall at their left and right edges (Downing, 1998; Booij, 1999; De Lacy, 2001; Parker, 2001; Smith, 2002, 2004a,b). For instance, it is common for the ι to mandate that its leftmost or rightmost ϕ contain multiple daughers-in other words, to branch (Prieto, 2005; Elordieta, 2006). The Positional Minimality Constraint has this same shape: it requires that the final foot in the ϕ contain two immediate daughters, yielding a positional requirement for disyllabism.

The same connection allows us to understand why Minimality Effects should emerge at the right edges of DPs and stranded P^{0}. The ω and the ϕ are constructed in response to a pressure to preserve syntactic constituency in the phonology (Selkirk, 1984, 1986, 2009; Selkirk \& Tateishi, 1988; Selkirk, 2011; Selkirk \& Tateishi, 1991; Selkirk \& Shen, 1990; Selkirk, 1995b,a; Nespor \& Vogel, 1986). Following Itô \& Mester 2019, I will assume that this pressure is one of existential correspondence. At the level of the phrase, it
demands that every xp be placed in correspondence with a ϕ (24a). I assume that the edges of these ϕ s are then forced to align with those of their corresponding xps by the constraints on Alignment (McCarthy \& Prince, 1993; Bennett et al., 2018) in (24b)-(24c).

(24) The Phrase-Level Mapping Constraints

a. Max-xp: Let s be an input syntactic representation and P its corresponding output representation. Assign one violation for every xp in S which does not correspond to a ϕ in P .
b. Align-L(ϕ-xp): Let s be an input syntactic representation and P its corresponding output representation. Assign one violation for every ϕ in P whose left edge is not aligned with the left edge of a corresponding xp in s.
c. Align-R(ϕ-xp): Let s be an input syntactic representation and p its corresponding output representation. Assign one violation for every ϕ in P whose right edge is not aligned with the right edge of a corresponding xp in s.

These constraints provide us with the machinery to explain the distribution of $\phi \mathrm{s}$. When higher-ranking phonological constraints do not interfere, MAx-xp will force all DPs and pps to be mapped to ϕ s. Align-R(ϕ-xp) will also force the right edges of these ϕ s to align with the right edges of their corresponding xps. This mapping will place the right edges of these xps in the positions where the Positional Minimality Constraint takes effect, as sketched in the following pair of trees. Focusing on the highest xp and the highest ϕ, the Pp lo ri iAli "to Ali" in (25a) will be converted to the isomorphic ϕ in (25b).
(25) Mapping pps to ϕs
a. Syntax

lo ri iAli
b. Prosody

lo ri i(áli)

The same mapping then extends to the context of stranding. When higher-ranking phonological constraints do not interfere, I propose that MAX-xp mandates that pps be placed in correspondence with ϕ s even when their heads are stranded. This proposal fits neatly with the emerging consensus that the mapping constraints force the construction of ϕ s around all types of XPs-including those projected by heads that sit above the base of an extended projection (the "functional categories" of Truckenbrodt 1999), as shown by the literature on prosodic recursion (Ladd, 1986; Wagner, 2005, 2010; Elfner, 2015).
(26) Mapping pps to ϕs
a. Syntax

b. Prosody

(láo)

We are now in a position to derive several finer properties of this system. We can force second-position elements into the domains of the Positional Minimality Constraint by invoking a pressure that outranks the requirement that ϕ se well-aligned with their corresponding xps. It will suffice to assume that this is one of selection (Inkelas, 1989): these second-position elements have the idiosyncratic property that they must be parsed with their hosts into ϕ s that are minimal, not dominating any recursively embedded ϕ (Itô \& Mester, 2013) (27a). Its effect is shown in tableau (27c), where it is enforced by the constraint Subcategorization (cf. Bonet et al. 2007; Bennett et al. 2018). Ranked above Align-R(ϕ-xp), this constaint forces these second-position elements into minimal ϕ s with fronted DPS (setting aside many fine questions on second-position linearization).

(27) Parsing Second-Position Elements

a. $\left\{_{\phi[\min]} \ldots\right.$ nasay $\}$
b. Subcategorization: assign one violation for every vocabulary entry whose phonological subcategorization frame is not satisfied in the output.
c.

sia nasay muluppei "you all forgot the salt"	Sub	A-R (ϕ-xp)
		*
b. $\left\{_{\phi}\left\{_{\phi[\text { min }]}[\omega\right.\right.$ (śja) $\left.]\right\}[\omega$ (násam) $\left.]\right\}\left\{_{\phi}\left[{ }_{\omega}\right.\right.$ mulupp(éi) $\left.]\right\}$	*!	

Pressing further, we can derive the restrictions on hiatus resolution and the requirement for v ?-epenthesis from a ranking of the Positional Minimality Constraint over Onset over Dep. The revised form of the Positional Minimality Constraint is restated in ot terms in (28a); the following tableau shows how it forces v?-epenthesis in the stranded P^{0} suy "out" (28c). ${ }^{5}$

(28) Deriving v?-epenthesis

a. Align-R $(\phi,(\sigma \sigma))$: assign one violation for every ϕ that is not right-aligned with a disyllabic trochee. (= Positional Minimality; Pos-Min)
b. Dep: assign one violation for every segment in the output that lacks a correspondent in the input.
c.

bemme i sup "It fell out"	Max-xp	Pos-Min	Dep
唵 a. $\left\{_{\phi}[\omega\right.$ (bémme) $\left.]\right\}$ i $\left\{_{\phi}[\omega\right.$ (súPuy) $\left.]\right\}$			$* *$
b. $\left\{_{\phi}[\omega\right.$ (bémme) $\left.]\right\}$ i $\left\{_{\phi}\right.$ suy $\}$		$*!$	
c. $\left\{_{\phi}[\omega\right.$ (bémme) $\left.]\right\}$ i suy	$*!$		

[^3]Finally, we can now explain the lack of cyclic effects in the system of Positional Minimality. It is widely recognized that there is no evidence for cyclicity above the level of the ω (Kiparsky, 1982; Bermúdez-Otero, 2012; Cheng \& Downing, 2016). As a result, the literature has long assumed that all prosodic constituents above the ω are built in a single global round of phonological evaluation, in tandem with the evaluation of all phrasal phonology (Selkirk, 1995a, 2009, 2011). This perspective leads us to expect that the distribution of ϕs should only become apparent once the full morphosyntactic derivation is complete. This understanding, in turn, allows us to situate the Positional Minimality Constraint and all of its repairs in this same late derivational stage.

3 Top-Down Suppletion

This understanding of prosodic phrasing and Positional Minimality allows us to turn to suppletion. Realizational theories of morphology typically assume that certain x^{0} s enter the syntactic derivation without phonological forms (Beard 1987, 1988; Halle \& Marantz 1993). In DM, these x^{0} s are generally assumed to receive phonological forms through the operation of Vocabulary Insertion (vi), which pairs x^{0} s with vocabulary entries in a process that makes their underlying phonological forms visible (Bobaljik 2000; Embick 2010). VI is standardly situated in a cyclic derivational framework, where it is typically assumed to apply within complex $\mathrm{x}^{0} \mathrm{~s}$ at intermediate stages that precede the final round of surface phonological evaluation (Bobaljik, 2000). As a result, it is generally held that vi cannot be guided by a surface-oriented phonological calculus that compares between possible outputs and selects among them in an optimizing way (Embick, 2010).

The following sections aim to test this final hypothesis by investigating a network of suppletive alternations that are connected to the conspiracy of Positional Minimality. To do so, we will press on the underlying logic that motivates the existence of vi. Halle \&

Marantz 1993 and many later works make a case for this operation that follows the classical logic of underspecification in phonology (Chomsky \& Halle, 1968; Archangeli, 1984, 1988; Itô \& Mester, 1986; Steriade, 1987; Itô et al., 1995). The argument runs as follows: (i) there are derivational stages where the forms of certain $\mathrm{x}^{0} \mathrm{~s}$ are predictable, and it would be redundant to specify their forms before those stages, (ii) the relevant stage is often the morphology, owing to Impoverishment, and so (iii) an explanatory theory must situate the choice of forms-and thus VI-no earlier than the morphology.

This logic establishes a rigid conceptual heuristic through which to evaluate the architectural position of vi. If there are cases where the output of vi becomes predictable at a derivational stage that follows the morphology, then it would become redundant to handle vi in the morphology. Two possibilities would then emerge. First, we could continue down the path that led to the postulation of Vi and rehouse this operation in this later derivational stage, allowing its outputs to be determined in a post-morphological system. Alternatively, we could abandon this path and drop the notion of late insertion entirely, accepting redundancy into the theory and assuming that the morphology and phonology simply filter an "early-insertion" syntax. There is no internally consistent third option that posits late insertion to capture generalizations on exponence that become predictable in the morphology but shirks responsibility for the generalizations on exponence that only become predictable in the phonology.

Against this backdrop, a clear architectural argument emerges from cases where the output of vi becomes predictable in the phonology. It is common for x^{0} s to supplete in response to the phonological shapes of syntactically lower x^{0} s. It is also common for these patterns of phonologically conditioned suppletion to fit into output conspiracies. In Mandar, for instance, the head $a p p l^{0}$ is typically exponed as $-a \eta$ but suppletes to - $\eta a \eta$ after verbs that end in $-a(29 \mathrm{~b})$. This pattern exists alongside a surface constraint which bans sequences of like vowels within the ω, which are generally forced to coalescence
(thus ma-raras "ADJ-spicy" but m-ammis "ADJ-sweet," m-asi引 "ADJ-salty").
(29) External Allomorphy: Mandar Applicatives
a. ta Pbáyay peakké?ay sióay allíay rannúay
ta?bay-ay peakke?-ay sio-ay alli-ay rannu-aŋ
cut-APPL lift-APPL order-APPl buy-APPL hope-APPL
b. aláyay annáyay bawáyay bat \widehat{y} yay tfaritáyay
ala-ay anna-ay baba-ay bat〔a-ay t farita-ay
take-APPL save-APPL bring-APPL read-APPL recount-APPL
This alternation thus represents a case of External Allomorphy, in the terminology of Mascaró 1996, 2007: one in which the output of vi becomes predictable in the phonology and can be predicted through independently visible output-optimizing constraints. Cases of external allomorphy have long been argued to show that suppletion must be handled in the phonology (Mester, 1994; Kager, 1996; Tranel, 1996; Perlmutter, 1998; Mascaró, 1996, 2007; Dolbey, 1997; Booij, 1998; Rubach \& Booij, 2001; Wolf, 2007, 2008; Bonet \& Harbour, 2012; Bennett, 2017). If suppletion proceeds through a single operation of vi (cf. Bye \& Svenonius 2012), this conclusion demands that vi operate in the phonology as well. The goal of this section is to leverage the conspiracy of Positional Minimality to strengthen the case that vi must be repositioned in this way.

3.1 Stranded Functional Heads

Mandar has a process of np-ellipsis that is able to strand demonstratives. This process forces stranded DEM 0 s to form ϕ s of their own, and this is shown with the distal DEM 0 itiy below. When this DEM 0 surfaces before an overt NP, the two are followed by a single Phrase-Final High Tone. When the Dem 0 surfaces alone, this H falls on the Dem 0 itself.
(30) Demonstrative Stranding

ala-ay a? itiy buku itiy
get-APPL 1ABS that book that
'Get me that book / that.'

Mandar has three other DEM 0 s that show segmentally irregular alternations across these two contexts. The first is the proximate DEM $^{0} n d i$ "this (held by speaker)." When this demonstrative appears before an overt NP, it takes the monosyllabic form ndi (31a). But when it is stranded by ellipsis, it takes the disyllabic form indi (31b).

(31) Irregular Expansion: Ndi-Indi

a. mélo ${ }^{\mathrm{H}}$ uwéfan ${ }^{\mathrm{H}}$ [${ }_{\mathrm{DP}}$ ndi wúku ${ }^{\mathrm{H}}$ é $^{\mathrm{H}} \quad$]. melo? o u-beyan ndi buku e want 2ABS 1ERG-give this book here
'I want to give you this book.'
$\begin{array}{lllll}\text { b. } \text { mélo }^{\mathrm{H}} & \text { uwénay }^{\mathrm{H}} & {\left[\begin{array}{lll}\mathrm{dp} & \text { índi }^{\mathrm{H}} & \text { én }^{\mathrm{H}} \quad\end{array}\right] .} \\ \text { melop o u-beyay } & \text { ndi } & \mathrm{e} \\ \text { want } & \text { 2ABS } & \text { 1ERG-give } & \text { this } & \text { here }\end{array}$
'I want to give this to you.'

The second and third DEm" ${ }^{0}$ are $d e$ "this" and do "that." Before nPs, these Dem ${ }^{0}$ s retain their monosyllabic forms (32a); when stranded, they expand to diPe and diPo (32b).

Irregular Expansion: Do-Di?o

'I refuse to take that small amount there.'
Sikki et al. 1987, 664

'How much did you spend for that thing there?' Friberg \& Jerniati 2000, 304

The segmental alternations shown by $n d i, d e$, and do have almost no parallels in the language. To begin, there is no attested operation of left-edge apocope that would derive the monosyllabic form [ndi] from underlying /indi/. There is a large class of nouns that begin with the sequence /ind/ in Mandar, and there is no context in which these nouns
surface without the initial /i/. This restriction is shown with the high-frequency noun indo? "mother" in example (33a), which must be disyllabic even when non-final in the ϕ. Mandar also has a large class of locative adverbs that are built from the locative pronoun in "there" and a d-initial locative preposition. The form indi is at least historically built from similar syntactic components (in "there" $+d i$ "in"), but its phonological behavior is distinct: these locative adverbs never reduce to forms that begin with [nd] (33b).
(33) No Ind-Apocope

'The yearning mother (a local waterfall) is really beautiful'
b. máne tánda ${ }^{\mathrm{H}} \mathrm{i} \quad\left[\mathrm{ADvP}^{*}(\mathbf{i})\right.$ ndío $^{\mathrm{H}} \quad /{ }^{*}(\mathbf{i})$ ndíni $^{\mathrm{H}} \quad$].
mane tanda i in-dio in-dini
just arrive 3ABS there-at (far) there-at (near)
'She just arrived thereto (far away) / thereto (close by).'
There is also no attested operation of $d i$-reduction that might derive the forms $d e$ and $d o$ from underlying /diPe/ and /diPo/. The sequence $d i-\mathrm{v}$ is common in Mandar, and the following example shows that when the phrasal phonology allows this type of hiatus to be resolved, it is handled by gliding (with one exception noted immediately below).

No Di-V Deletion

djóm / *dóm	bándi ${ }^{\text {H }}$	di lémbon ${ }^{\text {H }}$	djóniy ${ }^{\text {H }}$	*dóniy ${ }^{\text {H}}$?
dion	bandi	di lembon	dionin	
down	actually	in river	yesterday	
Was she really	down	ver yes		

These alternations have an exact match in the system of vp-ellipsis. Mandar has a realis negator that takes the monosyllabic form nday before overt complements.

Example (35a) shows its form in a clause where the subject raises to the left periphery (as contrastive subjects typically do in the context of vp-ellipsis). But it is possible for the negator to be stranded by vp-ellipsis, and there it typically expands to andiay (35b).

Irregular Expansion: Nday-Andiay
a. do andzóro ${ }^{\mathrm{H}}$ [Porp nday yúra wéya ${ }^{\mathrm{H}}{ }^{\mathrm{H}}$].
do andzoro nday yura bega o
that coconut not unripe too there
'That coconut there is not too unripe.'
 de andzoro yura bega e tapi do andzoro nday o this coconut unripe too here but that coconut not there 'This coconut here is too unripe, but that coconut there is not.'

This alternation is once again almost without parallel in the language. There is no process of and-apocope that applies to any other root in Mandar, even outside the right edge of the ϕ (thus ande "rice" cannot reduce in the DP *(a)nde ressu? "cooked rice"). In the same vein, there are no grounds on which to postulate a process of $d i$-v-Deletion beyond the alternations shown by $d e, d o$, and nday. The negator nday must then be taken to respond to the Positional Minimality Constraint in a segmentally idiosyncratic way.

3.2 Wh-Words

Three more alternations of this type can be found in the wh-system. The root $\sqrt{\text { wHAT }}$ in Mandar takes the monosyllabic form a when non-final in the ϕ. This form can be seen in clauses where it is followed by a second-position element, like the adverb dua "still" (36a). But when final in the ϕ, it is routinely forced to take the disyllabic form apa (36b).
(36) Irregular Expansion: A-Apa
a. á \quad úa ${ }^{\mathrm{H}}$ píllóa ${ }^{\mathrm{H}}$?
a dua pin-loa
what still antip-sound
'What's still ringing?'
b. ápa ${ }^{\mathrm{H}}$ píllóa ${ }^{\mathrm{H}}$?
a pin-loa
what ANTIP-sound
'What's ringing?'

This alternation is segmentally without parallel in the language. The phoneme /p/ can appear in intervocalic positions and never reduces in that context in any other x^{0}. Its status in that position has also been diachronically stable, and every $/ \mathrm{v} p \mathrm{v} /$ sequence in a root inherited from Proto-Malayo-Polynesian survives in Mandar unchanged (37a). The sequence /apa/ is similarly unable to reduce in the nearly homophonous c^{0} apa? "because." Even when this c^{0} surfaces in the middle of a ϕ, it cannot reduce to a P (37b).
(37) No Reduction of/apa/
a. MANDAR: tapa api sapu

PMP: tapa api sapu
Gloss: smoke fire wipe
b. maí?diP ${ }^{H}$ i, apa áha? ${ }^{H}$ i.
mai?di i apa? aha? i
many AGR because sunday AGR
'It was plentiful because it was Sunday.'
Friberg \& Jerniati 2000, 228

The alternation between a and $a p a$ has direct parallels in the root $\sqrt{\text { WHICH }}$ and the word for who (which is at least historically $\sqrt{\text { WHICH }}+$ the animate definite determiner). The root $\sqrt{\text { WHICH }}$ surfaces in the unmarked monosyllabic form $n a$ when it is non-final in the ϕ (e.g., when it is followed by the second-position element nasay "every;" (38a)). But when stranded at the right edge of the ϕ, it typically takes the form inna (38b). The word for who shows a similar alternation between ne (seemingly /na-i/) and inne (/inna-i/). This alternation is once again unique and unparalleled in the language.
(38) Irregular Expansion: Na-Inna
a. ná násam ${ }^{\mathrm{H}}$ mweyéé ${ }^{\mathrm{H}}$?
na nasay mu-engei
which every 2 ERG -be in
'Which place are you guys all in?'
b. ínna ${ }^{\mathrm{H}}$ bémme $^{\mathrm{H}}$?
na bemme
which fall
'Which one fell?'

The seven irregular alternations across these systems are summarized in table (39). Each of these alternations conforms in prosodic context and effect with the Positional Minimality Constraint: each one operates at the right edge of the ϕ and serves to eliminate monosyllabic feet in that position. In this respect, they are analogous to the suppletive alternations that enable stranded functional x^{0} s to form licit ω s in English: famously in the auxiliary system, where vp-ellipsis forces the emergence of longer forms (You'd never go, but *I'd ___I would ___; King 1970; Kaisse 1985; Selkirk 1995a; Anderson 2008; Itô \& Mester 2019) and equally within the DP, where the preposition ∂ ($<\mathrm{of}>$) takes its unmarked allomorph before overt NPs but suppletes when stranded by wh-movement (give me a cup $\partial /{ }^{*} \Lambda \mathrm{~V}$ coffee $/ /$ what did you give me a cup * $\partial / \Lambda \mathrm{V}$ \qquad ?).
(39) Suppletive Monosyllables

ϕ-medial	ndi	de	do	nday	a	na	nai
ϕ-final	indi	diße	dißo	andian	apa	inna	innai
gloss	this (closest)	this	that	NEG	what	which	who

3.3 The Label of Suppletion

I propose that the short-long pairs in table (39) are suppletive in the synchronic grammar of Mandar. In other words, I propose that the short form of the root $\sqrt{\text { WHAT }}$, a, is not derived from the long form /apa/ through any synchronic process of reduction. Instead, I argue that each pair contains two distinct vocabulary entries-an unmarked allomorph and a marked alternative-which are selected in different contexts as the phonology allows. On this view, all of these alternations involve suppletion. As they are
conditioned by prosodic context, I will refer to them as cases of top-down suppletion.
The case for suppletion rests on the following logic. I assume that there is no room in a predictive theory of morphology for the Readjustment Rules of Halle \& Marantz 1993. This starting hypothesis follows from four widespread considerations. First, Readjustment Rules are entirely unconstrained and thus undercut the empirical content of theories that employ them (Bermúdez-Otero, 2012). Second, they blur the lines between morphology and phonology in a manner that makes it impossible to investigate the fine architecture of the postsyntax. Third, they are not needed to capture generalizations over subsets of lexical items because it is independently necessary to organize lexical items into subclasses in the phonology to account for lexical stratification and analogous effects in that module (Itô \& Mester, 1995). And fourth, there is no way to draw a principled synchronic distinction between alternations that involve Readjustment and alternations that involve suppletion (Haugen \& Siddiqi 2013, 2016; Haugen 2016; see also Mel'čuk 1994; Corbett 2007). The result is that there are two ways to understand the alternations in table (39): as synchronic phonology or as suppletion.

We can now build a case against a synchronic phonological analysis. The $x^{0} s$ that show top-down suppletion in Mandar are not able to take forms that are phonologically intermediary between their short and long forms. This means that the DEm ${ }^{0}$ s $d e$ and $d o$ and the wh-word a cannot appear in partially expanded forms like dje, djo, and $a \phi a$. This result suggests that the short and long forms of these elements are distinguished categorically, rather than existing along a synchronic derivational cline that makes intermediary forms available when the phonology of focus prevents full reduction. ${ }^{6}$

[^4]Pressing further, we can now observe that these x^{0} s can be frozen in short or long forms by higher affixes in a manner that blocks later alternations. Mandar has a prefix $y a$ - which appears above the DEm 0 s in contexts of overt deixis (cf. Indonesian yang ini "this one (pointing)"). I assume that this prefix sits in an x^{0} in the extended projection of N^{0}. It forces the $\mathrm{DEM}^{0} \mathrm{~S} d e$ and do to take their short forms, even under stranding (40b).
(40) Affixal Freezing: do

'Get me that mouse there' (pointing to it).

'Get me that thing there' (pointing to it).

The root $\sqrt{\text { WHAT }}$ shows a similar freezing effect in the presence of the prefix say-(say-apa "how many") and the verbalizing x^{0} s that host the prefixes may-(may-apa"do what"), ti-(ti-apa "be what"), and mi- (mi-apa "how"). When this root combines with any of these affixes, it is frozen in the long allomorph $a p a$ and can no longer take its short form, even when followed by a second-position element within the ϕ (41).

Affixal Freezing: a

maápa	nása $^{\mathrm{H}} \tilde{\mathrm{o}}$	míe $^{\mathrm{H}}$
may-apa	nasay o	mie?

verbalizer-what every 2Abs 2pl
'What are all of you doing?'

This type of freezing would be unexpected if these alternations involved genuine phonological derivation, which should not be blocked by higher affixation. But on the view that the forms $d e, d o$, and $a p a$ are separate vocabulary entries, these patterns fall into place as natural cases of outward-sensitive suppletion triggered by higher $\mathrm{x}^{0} \mathrm{~s}$. This result, in turn, suggests that these alternations must be understood as suppletive.

3.4 Vocabulary Insertion in the Phonology

These observations allow us to pin down the position of vi. The suppletive alternations in table (39) are conditioned by the positions of $\mathrm{x}^{0} \mathrm{~s}$ within the ϕ. The distribution of ϕ s is worked out in a late and surface-oriented phonological calculus that follows the morphosyntax. The choice of allomorphs in this system thus becomes predictable at a late phonological stage. From this point, the logic of underspecification leads us to two results. First, vi must be rehoused within the phonology to operate in awareness of prosodic constituency. Second, vi must be allowed to target certain x^{0} s in a calculus that sees global prosodic information beyond the xps in which it applies. These conclusions dovetail with the observation that these alternations are output-optimizing to suggest a third result: vi can be directly guided by output constraints. I restate these claims below.

(42) The Architectural Position of Vocabulary Insertion

a. Vocabulary insertion must be rehoused in the phonology to access prosody.
b. Vocabulary insertion must target some x^{0} s in a global phonological calculus.
c. Vocabulary insertion can be guided by output-oriented constraints.

The goal of this subsection is to formalize this proposal and derive the patterns of suppletion and blocking that we have seen so far. We can begin with the theory of allomorph selection. As in DM, I will assume that all possible vocabulary entries that could be inserted into a given x^{0} are compared at the stage where vi applies (Halle \& Marantz, 1993). I assume further that the vocabulary entries that can be paired with a given x^{0} are ordered into a ranked hierarchy of markedness: the vocabulary entry that carries the least contextual specification is the one that is maximally unmarked, and the vocabulary entry with the most contextual specification is the maximally marked. The preference to insert the most unmarked vocabulary entry is enforced in the phonology
by the constraint Priority (Mascaró, 1996, 2007), which formalizes the Elsewhere Condition of Kiparsky 1973 (43a). For the root $\sqrt{\text { WHAT }}$, this constraint enforces the ordering $a>a p a$. When the Positional Minimality Constraint does not interfere, it forces the insertion of the unmarked a. This is shown in the following tableau, where I foreground the application of vi by presenting the inputs in pre-phonological forms.

(43) The Constraint Priority

a. Priority: Given an input containing an x^{0} that can be realized with the lexically ordered allomorphs $\left\{\mathrm{M}_{1}, \mathrm{M}_{2} \ldots \mathrm{M}_{n}\right\}$ and a candidate that contains M_{i}, assign as many violation marks as the depth of ordering between M_{i} and M_{1}.
b.

$\sqrt{W H A T} \sqrt{\text { STILL }}$ ANTIP- $\sqrt{\text { SOUND "what's still ringing" }}$	Pos-Min	Priority	
a. $\left\{_{\phi}[\omega\right.$ (á) $][\omega$ (rúa) $\left.]\right\}$	$\left\{_{\phi}[\omega\right.$ (píl) $][\omega$ (lóa) $\left.]\right\}$		
b. $\left\{_{\phi}[\omega\right.$ (ápa) $][\omega$ (rúa) $\left.]\right\}$	$\left\{_{\phi}[\omega\right.$ (píl) $][\omega$ (lóa) $\left.]\right\}$		$*!$

VI interacts with output constraints in a manner that is determined by the logic of constraint ranking in ot. Priority can dominate output constraints, yielding patterns of suppletion that are not output optimizing or not conditioned by phonological factors at all (Bonet et al., 2007). But output constraints can also dominate Priority, yielding a situation where phonological pressures commandeer vi to force the insertion of phonologically optimal but lexically marked vocabulary entries. This situation is one which implicates a constraint ranking that McCarthy \& Prince 1993 refer to as " $>$ > m."

I propose that the suppletive alternations in table (39) are forced by a ranking of the Positional Minimality Constraint over Priority. This ranking forces vi to insert marked allomorphs in the seven $x^{0} s$ in this system at the right edge of the ϕ to prevent the emergence of monosyllabic feet in that position. This interaction is sketched in the following tableau, which shows the evaluation of a clause that contains the root $\sqrt{\text { WHAT }}$
and no second-position elements before the verb pilloa "ring." In this tableau, the constraint Priority favors the insertion of the unmarked vocabulary entry a, but the Positional Minimality Constraint demands the insertion of the marked apa. The ranking of the Positional Minimality Constraint over Priority forces apa to win out.
(44) Positional Minimality > Priority

$\sqrt{W H A T}$ ANTIP- $\sqrt{\text { SOUND }}$ "what's still ringing"	Pos-Min	Priority
因 a. $\left\{_{\phi}[\omega\right.$ (ápa) $\left.]\right\} \quad\left\{_{\phi}[\omega\right.$ (píl) $][\omega$ (lóa) $\left.]\right\}$		*
b. $\left\{_{\phi}[\omega\right.$ (á) $\left.]\right\} \quad\left\{{ }_{\phi}[\omega\right.$ (píl) $][\omega$ (lóa) $\left.]\right\}$	*!	

This account thus integrates the suppletive alternations in (39) with the conspiracy of Positional Minimality by rehousing vi in the phonology and allowing it to be guided by output-oriented constraints. In doing so, it captures important generalizations in a precise and restrictive fashion. First, this theory allows us to integrate seven patterns of suppletion under a common phonological rubric: these x^{0} s take monosyllabic forms in ϕ-medial positions and take disyllabic forms at the right edge of the ϕ. Second, it allows us to connect these seven patterns to visible output constraints in the surface phonology. This step allows us to explain why these alternations operate in the specific prosodic position where they are found. It also makes it possible to explain why these alternations have the shape that they do: monosyllabic x^{0} s take disyllabic forms at the right edge of the ϕ because monosyllables are banned in that position. Third and finally, it allows us to understand which types of x^{0} s could and could not supplete in this position (see also Kayne 2019). I have argued that the sole trigger for suppletion at the right edge of the ϕ is a ban on degenerate feet. This commitment leads directly to the prediction that there could not be x^{0} s that showed suppletion in this position but were larger than monosyllables in their unmarked forms. Naturally, this prediction is correct.

Pressing further, this account allows us to explain a case of phonological blocking
(Raffelsiefen, 1996, 1999, 2004). As we have seen, Mandar has a prohibitive modal a which can appear in contexts where it is shielded from the right edge of the ϕ (17a). But at the right edge of the ϕ, it cannot be repaired by v?-epenthesis and thus often cannot appear at all. I assume that epenthesis is blocked by the ranking of a lexically-indexed Dep constraint (Pater 2009) over the Positional Minimality Constraint. This sets up a situation where the operation of vi will always yield an output that violates the Positional Minimality Constraint. As such, I propose that vi is phonologically blocked.

This interaction is sketched in the following tableau. I assume that vi is forced to apply by the constraint in (45b), which demands that x^{0} s be paired with vocabulary entries (cf. Realize Morph; Kurisu 2001). This constraint is ranked beneath the Positional Minimality Constraint, yielding a configuration where vi cannot apply. The result is an analysis that captures the link between blocking and output constraints and fits naturally with the understanding that vi must operate within the phonology.

(45) Phonologically-Induced Non-Insertion

a. $\mathrm{DEP}_{\text {Prohib }}{ }^{0}$

Assign one violation for every segment in the output in the ω that corresponds to the $\mathrm{x}^{0} a$ that does not correspond to a segment in the input.
b. *Elide

Assign one violation for every x^{0} that is not subjected to vi in the phonology.
c.

$\sqrt{\text { NAME }} \sqrt{\text { PROHIB }}$ ANTIP- $\sqrt{\text { THROW }}$	$\mathrm{DEP}_{\mathrm{p}^{0}}$	P-Min	*Elide
a. $\left\{_{\phi}\left[{ }_{\omega} \mathrm{i}\right.\right.$ (kát $\left.\left.\int_{\mathrm{O}} \mathrm{o}\right)\right]\left[{ }_{\omega}(\right.$ áPa $\left.\left.)\right]\right\} \quad\left\{_{\phi}[\omega\right.$ (mát) $]\left[{ }_{\omega}\right.$ (tímbe) $\left.]\right\}$	*!		
b. $\left\{_{\phi}\left[{ }_{\omega} \mathrm{ik}\right.\right.$ kát $\left.\left.\left.\int_{0}\right)\right]\left[{ }_{\omega}(\hat{a})\right]\right\} \quad\left\{{ }_{\phi}\left[{ }_{\omega}\right.\right.$ (mát) $][\omega$ (tímbe) $\left.]\right\}$		*!	
			*

4 Allomorphic Vacillation

The theory of vi developed here makes a decisive prediction that emerges from its two essential components. The first of these involves the interaction between suppletion and other repairs to output constraints. If vi can be guided by the Positional Minimality Constraint, then it is conceivable that the x^{0} s in table (39) will not always be forced to supplete at the right edge of the ϕ if the phonology allows them to satisfy the Positional Minimality Constraint in this position in a distinct and more optimal way.

The second component involves the scale of phonological context that is visible to the calculus of suppletion. If vi can see global prosodic context, then it should be possible for the patterns of top-down suppletion to be sensitive to more information than the position of an x^{0} within the ϕ. More specifically, it should be possible for these patterns of suppletion to be conditioned by phonological context outside of the ϕ.

These two components open up the following possibility. The phonology of Mandar may provide another repair to the Positional Minimality Constraint that implicates phonological content outside of the ϕ. This repair may also be treated as more optimal than suppletion in the system of Positional Minimality. If these conditions hold, then this analysis predicts-in a way that others could not-that suppletion may be suspended when ϕ-external context makes possible an alternative repair to the constraint.

Embick 2010 shows that interactions of this type are difficult to find within the ω, where pressures of lexicalization often force output-optimizing patterns of suppletion to gradually generalize across paradigms (Albright, 2002) or accrue pseudo-cyclic shapes (Dressler 1985; Steriade 1999, 2008, cf. Bermúdez-Otero 1999). But these forces do not operate to the same degree in the phrasal phonology, where most x^{0} s do not co-occur with the frequency to force storage in listed forms (but cf. Hayes 1990). As such, the phrasal phonology may cast more light on the types of effects that phonology permits.

4.1 Syllable Lifting

Mandar has a set of absolutive agreement clitics that usually surface in second-position outside of the minimal ϕ. Their parse is shown in example (46a) with the 3abs clitic i, which follows the ϕ-internal nasay and follows the Phrase-Final High Tone. Two surprising effects emerge when these clitics follow ϕ-internal second-position elements that are monosyllabic, like to "also." First, the monosyllabic ϕ-internal second-position elements must stop showing their usual repairs to the Positional Minimality Constraint. Second, the absolutive clitics must begin to precede the Phrase-Final High Tone (46b).
(46) Absolutive Clitics: A Change in Parse
a. lóppa? násay ${ }^{\mathrm{H}}$ i.
loppa? nasay i
hot every 3ABS
'Every one of them is hot.'
b. lóppat tó i^{H}.
loppa? to i
hot also 3ABs
'It's also hot.'

The same effect obtains when monosyllabic ϕ-internal second-position elements appear before unfooted syllables of any other type. In clauses where DPs undergo wh-movement, these monosyllabic ϕ-internal second-position elements immediately precede the predicate (the absolutive clitics disappear in an Anti-Agreement Effect; Ouhalla 1993; Baier 2018; Brodkin 2021a). When the following predicate begins in a stressed syllable, the monosyllabic ϕ-internal second-position elements respond to the Positional Minimality Constraint in their usual way and undergo v?-epenthesis (47a). But when the following predicate begins in an unstressed syllable, this response must be suspended. At the same time, the initial syllable of the following predicate must begin to precede the Phrase-Final High Tone of the previous ϕ (47b).
a. ikát \int ot tó $\mathbf{P o}^{\mathrm{H}}$ дúru ${ }^{\mathrm{H}}$. ikat $\widehat{j o ? ~ t o ~ g u r u ~}$
nAME also teacher
'Kacho' is also a teacher.'
b. ikát \int ot tó $\gamma^{H}{ }^{\mathrm{H}}$ rúnna ${ }^{\mathrm{H}}$.
ikat $\int o$? to guru-na
nAME also teacher-3gen
'Kacho' is also her teacher.'

These effects extend through the system of Positional Minimality. When the P^{0} sun "out" is stranded before a disyllabic argument by wh-movement, it forms a ϕ and shows v?-epenthesis (48a). But when stranded before a trisyllabic argument, it cannot show epenthesis. The first syllable of that argument must also fall into the preceding ϕ (48b).
(48) The Broader System of Suspension

'What did you pull the cat out of?"
b. á mu ${ }^{\mathrm{H}}$ besói $^{\mathrm{H}} \quad$ súk $\quad \mathrm{ka}^{\mathrm{H}}{ }^{\mathrm{l} i t t} \int \mathrm{j}^{\mathrm{H}}{ }^{\mathrm{H}}$?
a mu-beso-i suy kalitt \widehat{f}
what 2erg-pull-APPL out rabbit
'What did you pull the rabbit out of?"

The same pattern emerges around x^{0} s of the shape $\operatorname{cvv}(\mathrm{c})$, yielding a complex interaction with coalescence and gliding. The following examples illustrate in the system of complement ellipsis. When the P^{0} nauy "down" appears before a disyllabic subject, it shows hiatus (49a). But when it appears before a trisyllabic subject, it is forced to coalescence. This operation yields the form noy, which would seem to violate the Positional Minimality Constraint-but its result is rescued by drawing the initial syllable
of the following subject into its ϕ (49b). The result is an interaction that seems to involve simultaneous evaluation of two distinct processes (Adler \& Zymet, 2021).
(49) Coalescence and a Second Repair
a. támbus ${ }^{\mathrm{H}}$ i náuy ${ }^{\mathrm{H}}$ állo ${ }^{\mathrm{H}}$.
tambus i nauy allo
set 3abs down sun
'The sun went down.'
b. támbus ${ }^{\mathrm{H}} \mathrm{i}$ nóy $\mathrm{al}^{\mathrm{H}}{ }^{\text {lóna }}{ }^{\mathrm{H}}$.
tambus i nauy allo-na
set 3Abs down sun-3GEN
'The sun went down.'
$\operatorname{Cvv}(\mathrm{c})$ nouns trigger the same effect. The noun sia "salt" shows hiatus when it appears as an internal argument before a disyllabic applied argument (50a), but must show gliding and pull in a syllable before a trisyllabic applied argument (50b).
(50) A Systematic Preference
$\begin{array}{llll}\text { a. } \text { wánne }^{\mathrm{H}} & \text { i } & \text { sía }^{\mathrm{H}} & \text { pét } \int \mathrm{f}_{\mathrm{a}} \mathrm{a}^{\mathrm{H}} . \\ \text { u-anna-i } & \text { i } & \text { sia } & \text { pet } \int \text { a? } \\ \text { 1ERG-add-Appl } & \text { 3ABS salt } & \text { porridge }\end{array}$
'I added salt to the porridge.'
b. wánne ${ }^{\mathrm{H}} \quad \mathrm{i}$ sjá $\mathrm{wa}^{\mathrm{H}}{ }^{\text {ŕo }}$?bo $?^{\mathrm{H}}$.
u-anna-i i sia baro?bo?
1ERG-add-APPL 3ABS salt corn porridge
'I added salt to the corn porridge.'

These patterns reveal that there is an additional repair in the system of Positional Minimality that is preferred to many of those that we have seen so far. This is one which creates disyllabic feet at the right edge of the ϕ by drawing in otherwise-unfooted syllables from the left edge of the ϕ that follows. I will refer to this process as "Syllable Lifting." Its essential shape is sketched in the diagram in (51).

The possibility for Syllable Lifting follows naturally from the understanding that the isomorphism between syntactic and phonological constituents is enforced by violable constraints. When a syllable is drawn across ω and ϕ boundaries, it creates misalignment at the right edges of the first ω and ϕ and at the left edges of the second ω and ϕ. These misalignments incur violations of the constraints that mandate isomorphism between syntactic and prosodic constituency, which I assume to be the members of the family Prosody-to-Syntax Align. The ϕ-level versions of these constraints are presented in (24); the ω-level versions are stated in (52). The following tableau shows that Syllable Lifting is forced by the ranking of dep and onset over Prosody-to-Syntax Align.
(52) The Isomorphism Constraints
a. Align-L $\left(\omega-\mathrm{x}^{0}\right)$: Let s be an input syntactic representation and p its corresponding output representation. Assign one violation for every ω in P whose left edge is not aligned with the left edge of a corresponding x^{0} in s.
b. Align-R $\left(\omega-x^{0}\right)$: Let s be an input syntactic representation and P its corresponding output representation. Assign one violation for every ω in P whose right edge is not aligned with the right edge of a corresponding x^{0} in s .

Syllable Lifting: Onset > Align

$\sqrt{\text { SET }} 3$ ABS $\sqrt{\text { DOWN }} \sqrt{\text { SUN }}$-3GEN "The sun set."	ONS	A-L (ω)	A-R (ω)	A-L (ϕ)	A-R (ϕ)		
图 a. $\left\{_{\phi}[\omega\right.$ (támbus) $\left.]\right\}$	i	$\left\{_{\phi}[\omega\right.$ (nóyal) $\left.]\right\}$	$\left\{_{\phi}[\omega\right.$ (lóna) $\left.]\right\}$		$*$	$*$	$*$
b. $\left\{_{\phi}[\omega\right.$ (támbus) $\left.]\right\}$	i	$\left\{_{\phi}[\omega\right.$ (náuy) $\left.\left.)\right]\right\}$	$\left\{_{\phi}\left[{ }_{\omega}\right.\right.$ al(lóna) $\left.]\right\}$	$*!$			$*$

4.2 The Suspension Effect

The system of Syllable Lifting opens up a path to test the predictions of the theory developed here. On the view that vi can apply in a global phonological calculus, it may be able to see the phonological shape of the following ϕ when it targets the $\mathrm{x}^{0} \mathrm{~s}$ in the system of top-down suppletion. On the view that vi can be guided by output constraints, the possibility then emerges that suppletion may be suspended in the contexts where these x^{0} s can satisfy the Positional Minimality Constraint via Syllable Lifting.

The following examples leverage the system of prefixation to set up the crucial test. In the first example, the root $\sqrt{\text { WHAT }}$ appears before a verb that bears the stressed agent focus prefix man-; in the second, the same root appear before a verb that bears the unstressed future prefix $n a$-. In this second example, suppletion is indeed called off: $\sqrt{\text { WHAT }}$ must take its unmarked allomorph a and the following syllable must be lifted into its ϕ. I will refer to this suspension of suppletion as the Suspension Effect.

The Suspension Effect

a. ápa ${ }^{\mathrm{H}}$ máppaké?de ${ }^{\mathrm{H}} \mathrm{i}$?
a map-pake?de? i
what AF-awaken 3ACC
'What woke him up?'
b. á $\quad n a{ }^{\mathrm{H}}$ máppaké $\mathrm{Cde}^{\mathrm{H}} \mathrm{i}$?
a na-map-pake?de? i
what fut-AF-awaken 3ACC
'What will wake him up?'

The Suspension Effect extends through the system of top-down suppletion and emerges in many syntactic contexts that are distinct from the above. The following examples show it before monomorphemic predicates of different phonological shapes. The root $\sqrt{\text { WHICH }}$ suppletes to the marked inna before the disyllabic predicate keccu' "small," but surfaces in its unmarked allomorph na before the trisyllabic kudarra' "green."
(55) The Suspension Effect: Context Two
a. ínna ${ }^{\mathrm{H}}$ kétt $\widehat{f} \mathrm{u} \mathrm{P}^{\mathrm{H}}$?
na kett $\int u$?
which small
'Which one is smaller?'
b. ná $\mathrm{ku}^{\mathrm{H}} \mathrm{tárra}^{\mathrm{H}}$?
na kudarra?
which green
'Which one is greener?'
The DEm 0 s in this system show the Suspension Effect in several more syntactic contexts, and the following examples illustrate two. First, the DEM ${ }^{0}$ s surface in their unmarked allomorphs when stranded before postverbal arguments that begin in unfooted syllables (56a). Second, they take their unmarked allomorphs when stranded before trisyllabic verbs, as the result of a syntactic operation that places certain types of absolutive arguments between the v and a preceding AUX ${ }^{0}$ (Brodkin, 2022) (56b).
(56) The Suspension Effect: More Contexts
 na-lattfar-i i do guru-na o 3ERG-throw-APPL 3ABS that NP teacher-3GEN there
'She threw that at her teacher.'
b. pura ${ }^{\mathrm{H}} \mathrm{mi}$ só \quad um $^{\mathrm{H}}$ mánde $^{\mathrm{H}} \quad$ ón $^{\mathrm{H}}$.
pura mi do <um>ande o finished pFV.3ABS that ANTIP-eat there
'That one there is finished eating.'

The system of Syllable Lifting also makes it possible to identify an eighth x^{0} that undergoes top-down suppletion. This is the evidential adverb $d e$, which canonically surfaces in second position, follows the absolutive clitics, and forms a ϕ of its own. When this x^{0} surfaces in a position that does not allow Syllable Lifting, it suppletes to the disyllabic form de?i (57a). But when it appears before a trisyllabic constituent in a context where Syllable Lifting is allowed, it surfaces instead in its unmarked form (57b).

An Eighth Case of Top-Down Suppletion
a. támbus ${ }^{\mathrm{H}} \mathrm{i}$ Ié $\mathbf{i n}^{\mathrm{H}}$.
tambus i de
set 3AbS I GUESS
'It set, I guess.'
b. támbus ${ }^{\mathrm{H}} \mathrm{i}$ ié al^{H} lóna $^{\mathrm{H}}$.
tambus i de allo-na
set 3ABS I GUESS sun-3GEN
'The sun set, I guess.'

4.3 The Domain of Evaluation

The existence of top-down suppletion reveals that vi must see the phonological shape of the entire xp and its surrounding phonological phrase when it targets certain x^{0} s. The Suspension Effect now shows that vi must see more phonological context than this ϕ. To select allomorphs in this system, it is necessary to inspect not just the position of an x^{0} in the ϕ but also the metrical organization of the left edge of the following ϕ.

This conclusion suggests that vi must be able to target certain x^{0} s in a calculus that sees the phonological structure of following xps. We can now observe that this type of phonological awareness is not constrained by c-command. Within the voicep, Mandar requires postverbal arguments to surface in the order vsod. In this domain, the final D c-commands the preceding o. Evidence for this claim can be found in the system of
variable binding between clausemate arguments, which I take to be constrained by c-command (Reinhart 1983; in Mandar see Brodkin 2022). The arguments that originate above the D , like the s , can always bind into a following D (58a). But the o cannot (58b).
(58) Internal Arguments originate beneath Applied Arguments
 'Every author ${ }_{i, j}$ sent her ${ }_{i}$ editor a book.'
b. U-kiring-ang nasang ${ }_{i} \mathrm{i}$ [o buku ${ }_{i}$ __ [${ }^{2}$ panulis-na ${ }_{i, j}$]. 1ERG-send-APPL every 3ABS book author-3GEN 'I sent its ${ }^{*}, j$ author every book $_{i}$.'

This asymmetry suggests that the o sits beneath the D in ditransitive clauses. This conclusion sets up the following syntax for the Mandar voicep: the D is introduced in a rightward specifier of $a p p l^{0}$ (Pylkkänen, 2008) and the o sits beneath it (Brodkin, 2023).

The Syntax of the Mandar voicep

This footwork allows us test the relevance of c-command to phonological visibility in the calculus of suppletion. It is possible to strand the demonstratives $n d i, d e$, and $d o$ in the position of the ditransitive o . If these $\mathrm{x}^{0} \mathrm{~s}$ were to undergo VI in a calculus that only contained the phonological forms of the material in the c -command domain of the o , then the choice of allomorph should not be sensitive to the shape of the following D. But this prediction is false. When a Dem 0 is stranded in the position of an o before a trisyllabic D, it fails to supplete and forces Syllable Lifting instead (60).
(60) Phonological Context $\neq C$-Command Domain

'She threw that at her teacher.'

This effect suggests that vi must see the phonological shape of the full applp when it targets a DEM 0 stranded in the position of the o. This result then reveals that vi must be able to occur in a calculus that sees the phonological forms of material far beyond the c-command domain of the x^{0} which it targets-and far beyond the c-command domain of the maximal projection in which it lies. In other words, setting the impact of prosodic phrasing aside, there cannot be a strict equivalence between the c-command domain of an x^{0} and the phonological context that can influence vi as it targets that x^{0}.

4.4 Output Optimization

The Suspension Effect also shows that vi must be situated in a dynamic phonological evaluation that embeds suppletion within a ranked system of output-oriented repairs. The Suspension Effect strengthens the essential case that top-down suppletion forms part of a conspiracy: the Positional Word Minimality Effect bans degenerate feet at the right edge of the ϕ (61a), the preferred repair is to attract a syllable from the following ϕ (61b), and when this is impossible, the eight $\mathrm{x}^{0} \mathrm{~s}$ in this system supplete (61c).
a. Constraint

b. Optimal Repair
c. Last Resort

The following tableau shows the derivation of the Suspension Effect. This effect emerges from the ranking of all Prosody-to-Syntax Align constraints beneath Priority. The result is a system that prefers to respond to the need for a disyllabic trochee at the right edge of the ϕ by repositioning a syllable that would independently be present, rather than inserting an allomorph that would otherwise not be used. In this respect, it forms a morphophonological mirror to the putative syntactic preference to fill needy positions through (External) Merge over Move (Internal Merge; Chomsky 1995).
(62) Syllable Lifting: Onset $>$ Align

$\sqrt{\text { WHICH }} \sqrt{\text { GREEN }}$ "which is greener?"	PRI	A-L (ω)	A-R (ω)	A-L (ϕ)	A-R (ϕ)
冏 a. $\left\{_{\phi}[\omega(\right.$ náku $\left.)]\right\}$	$\left\{_{\phi}[\omega\right.$ (IárraP) $\left.]\right\}$		$*$	$*$	$*$
b. $\left\{_{\phi}[\omega\right.$ (ínna) $\left.]\right\}$	$\left\{_{\phi}[\omega\right.$ ku(IárraP) $\left.]\right\}$	$*!$			$*$

In this way, the output-optimizing analysis makes it possible to capture this second generalization on the system of top-down suppletion in a precise and elegant way. In its appeal to output constraints, it allows us to explain why the x^{0} s in this system can avoid suppletion at the right edge of the ϕ : these patterns of suppletion are altruistic and not driven by the selectional properties of the allomorphs involved. In its appeal to the Positional Minimality Constraint, it allows us to explain why these x^{0} s avoid suppletion in this context and not in others: suppletion is suspended when the following ϕ begins in an unfooted syllable because that is the context that licenses Syllable Lifting. And by locating vi within the phonology, it allows us to understand why suppletion might be sensitive to top-down prosodic phrasing, xp-external phonological content, and the output constraints that guide this system. In this respect, the output-optimizing analysis rises far beyond the analytical level that could be attained by any theory that handled all phonologically conditioned suppletion by proliferating selectional frames: it is internally coherent, it is concise and restrictive, and it brings us closer to genuine explanation.

5 Conclusion

The conclusions of this study lead toward several shifts in perspective around the broader architecture of the postsyntax. The first surrounds the relationship between vi and the morphosyntax. On the modular and feed-forward theory of the grammar assumed in DM, phonological considerations should not be able to drive operations in the morphosyntax. If VI operates in the phonology, then, it should not be able to feed morphological processes like Fission (Harbour, 2008). On the assumption that there is a modular distinction between phonology and morphology, it follows that such operations must be forced to occur for autonomous morphological reasons (Hewett, 2022). The same logic extends to all types of syntactic movement (pace Starke 2009).

The second result lies with the theory of silence. The phonology is now widely recognized to be responsible for suppressing copies in the chains that are created by syntactic movement (Chomsky, 1993), as phonological constraints can determine the positions of the copies that are suppressed (Franks, 1998; Bošković, 2001). In the same vein, Bennett et al. 2019 argue that the phonology must be responsible for silencing the constituents that are marked for ellipsis, as phonological constraints can determine the extent of suppression in ellipsis sites. The framework developed here sets up a new path to understand these effects. I have argued that phonological output constraints can block the operation of vi: for instance, the Positional Minimality Constraint and Dep can ban vi into the x^{0} that hosts the modal a. If chain reduction and ellipsis operate within the phonology, it follows that they must be driven by output-oriented constraints of a similar type. As a result, the possibility emerges that chain reduction and ellipsis may ultimately reduce to analogous cases of phonologically driven suspension of vi.

The third result lies with the theory of the cycle. The framework developed here imposes no intrinsic limit on the amount of phonological context that is accessible at the
derivational moment where vi targets a given x^{0}. This is an empirically necessary advance, as vi can be conditioned by top-down prosodic context in a manner that extends farther than what we have already seen. Beyond the cross-linguistically routine alternations that emerge when functional $\mathrm{x}^{0} \mathrm{~s}$ are stranded and forced to form $\phi \mathrm{s}$, it is common for individual x^{0} s to show patterns of suppletion that are conditioned by their position in the intonational phrase (Kenstowicz, 2005; Henderson, 2012; Royer, 2022). To provide one example, there is a v^{0} in Mandar that takes the allomorph - i when it appears at the right edge of the ι (63a). But when this v^{0} is not final in the ι, it receives no overt exponent: perhaps suppleting to a null allomorph or perhaps failing to undergo vi (63b).

(63) Top-Down Suppletion: the Intonational Phrase

' ${ }_{c}$ What are you playing \}?'

' $\{c$ What were you playing yesterday $\} ?$ '

In the same vein, the framework developed here imposes no requirement that vi apply in a serial fashion. This too is a necessary step, as there are many cases where vi appears to apply to multiple x^{0} s in parallel within narrow syntactic domains. The most obvious cases of this type are ones that involve outward-sensitive phonologically conditioned suppletion, in which VI appears to be influenced by phonological features of a higher head x^{0} when it targets a lower head y^{0} (Svenonius, 2013; Deal \& Wolf, 2017; Rolle \& Bickmore, 2022). A particularly dramatic example of this effect comes from French, where Swiggers 1985 presents the following paradigm: the root $\sqrt{\text { EGG }}$ is realized in its plural form as \varnothing after DP-internal x^{0} s that end in $/ z /$ and in all other contexts as $\propto f$
(Swiggers 1985 also claims that speakers avoid pronouncing this root after neuf "nine," where its appearance is plausibly blocked in the phonology by a double-œuf constraint).
(64) Outward-Sensitive Phonologically Conditioned Suppletion French; Swiggers 1985
a. les /ø/, des /ø/, trois /ø/, six/ø/, dix/ø/
the eggs some eggs three eggs six eggs ten eggs
b. quatre /œef/, cinq /œef/, sept /œef/, huit /œff/
four eggs five eggs seven eggs eight eggs
These conclusions thus raise a network of questions on the interpretation of earlier work on suppletion in DM. The tendencies that were once taken to reveal cyclicity in VI may be amenable to reanalysis in terms of the standard machinery of post-cyclic phonology: reference to prosodic structure (Selkirk, 1984; Inkelas, 1989) and constraints on output-output faithfulness (Benua, 1997) and paradigm uniformity (Burzio, 1994; Kenstowicz, 1997; Steriade, 1999; Albright, 2002). Syntactic locality conditions on suppletion, such as those noted by Embick 2010 and Merchant 2015, may be integrated into the growing literature on how the phonology may be sensitive to the fine syntactic properties of its inputs (Cheng \& Downing, 2016). All cases of suppletion that are not output-optimizing, in turn, can be linked to other phonological systems that cannot be derived through the logic of optimization (e.g,. tone circles; Moreton 1999; Barrie 2006).

Against this backdrop, the status of the cycle rises to center stage. As phonological theory began to address the types of top-down interactions discussed here, it began to move past the cycle and shift toward global and parallel frameworks (Prince, 1975; Dresher, 1983). As the theory of suppletion begins to grapple with the same domain, it may arrive at the same result. As an alternative, some role for the cycle may persist: for instance, to capture phonologically conditioned alternations that are surface-opaque (Embick, 2010; Kalin, 2020). On a theory that espoused some type of cycle, such as one couched in Stratal ot (Bermúdez-Otero, 1999; Kiparsky, 2000), it would then become necessary to work out a framework that allowed for the top-down interactions above.

References

Adler, Jeffrey, \& Zymet, Jesse. 2021. Irreducible parallelism in phonology: evidence for lookahead from Mohawk, Maragoli, Sino-Japanese, and Lithuanian. Natural Language \& Linguistic Theory, 39, 367-403.

Albright, Adam. 2002. The identification of bases in morphological paradigms. Ph.D. thesis, University of California, Los Angeles.

Aldridge, Edith Catherine. 2004. Ergativity and word order in Austronesian languages. Ph.D. thesis, Cornell University.

Anderson, Stephen R. 2008. English reduced auxiliaries really are simple clitics. Lingue e linguaggio, 7(2), 169-186.

Archangeli, Diana. 1988. Aspects of underspecification theory. Phonology, 5(2), 183-207.
Archangeli, Diana Bennett. 1984. Underspecification in Yawelmani phonology and morphology. Ph.D. thesis, Massachusetts Institute of Technology.

Aronoff, Mark, Arsyad, Azhar, Basri, Hasan, \& Broselow, Ellen. 1987. Tier configuration in Makassarese reduplication. CLS, 23(2), 1-15.

Baier, Nicholas B. 2018. Anti-agreement. Ph.D. thesis, University of California, Berkeley.
Baker, Mark. 1985. The mirror principle and morphosyntactic explanation. Linguistic inquiry, 16(3), 373415.

Barrie, Michael. 2006. Tone circles and contrast preservation. Linguistic Inquiry, 131-141.
Basri, Hasan, Broselow, Ellen, \& Finer, Daniel. 1999. Clitics and crisp edges in Makassarese. Toronto Working Papers in Linguistics, 16(2).

Basri, Hasan, Broselow, Ellen, \& Finer, Daniel. 2012. The end of the word in Makassar languages. Prosody matters: Essays in honor of Lisa Selkirk, 111-147.

Beard, Robert. 1987. Morpheme order in a lexeme/morpheme-based morphology. Lingua, 72(1), 1-44.
Beard, Robert. 1988. On the separation of derivation and affixation: Toward a lexeme-morpheme base morphology. Quarderni di semantica, 9, 3-59.

Béjar, Susana. 1999. Agreement alternations and functional licensing in Selayarese. Toronto Working Papers in Linguistics, 16(2).

Bennett, Ryan. 2017. Output optimization in the Irish plural system1. fournal of Linguistics, 53(2), 229-277.
Bennett, Ryan, Harizanov, Boris, \& Henderson, Robert. 2018. Prosodic smothering in Macedonian and Kaqchikel. Linguistic Inquiry, 49(2), 195-246.

Bennett, Ryan, Elfner, Emily, \& McCloskey, James. 2019. Prosody, focus, and ellipsis in Irish. Language, 95(1), 66-106.

Benua, Laura. 1997. Transderivational identity. Ph.D. thesis, University of Massachusetts Amherst.

Bermúdez-Otero, Ricardo. 1999. Constraint interaction in language change: quantity in English and Germanic. The University of Manchester (United Kingdom).

Bermúdez-Otero, Ricardo. 2012. The architecture of grammar and the division of labour in exponence. Pages 8-83 of: The Morphology and Phonology of Exponence. Oxford: Oxford University Press.

Bobaljik, Jonathan David. 2000. The ins and outs of contextual allomorphy. University of Maryland working papers in linguistics, 10, 35-71.

Bonet, Eulàlia, \& Harbour, Daniel. 2012. Contextual allomorphy. The morphology and phonology of exponence, 195-235.

Bonet, Eulàlia, Lloret, Maria-Rosa, \& Mascaró, Joan. 2007. Allomorph selection and lexical preferences: Two case studies. Lingua, 117(6), 903-927.

Booij, Geert. 1998. Phonological output constraints in morphology. Phonology and morphology of the Germanic languages, 143163.

Booij, Geert. 1999. The phonology of Dutch. Oxford University Press.
Borroff, Marianne L. 2007. A landmark underspecification account of the patterning of glottal stop. Ph.D. thesis, State University of New York at Stony Brook.

Bošković, Željko. 2001. On the nature of the Syntax-Phonology interface: Cliticization and related phenomena. Brill.

Brodkin, Dan. 2020. Pseudoclefts and Parameters in the Pacific. Pages 43-62 of: Hedding, Andrew, \& Hoeks, Morwenna (eds), Syntax \& Semantics at Santa Cruz, Volume IV. Linguistics Research Center. University of California, Santa Cruz.

Brodkin, Dan. 2021a. Agreement and Anti-Agreement in South Sulawesi. In: Farinella, Alessa, \& Hill, Angelica (eds), Proceedings of NELS 51: The 51st Meeting of the North East Linguistics Society.

Brodkin, Dan. 2021b. Second Position Clitics and Prosodic Recursion. Page 12 of: et al., Ryan Bennett (ed), Supplemental Proceedings of the 2020 Annual Meeting on Phonology. Washington, DC: Linguistic Society of America.

Brodkin, Dan. 2022. Two steps to high absolutive syntax: Austronesian voice and agent focus in Mandar. Journal of East Asian Linguistics, 1-52.

Brodkin, Dan. 2023. The Prosody of the Extended VP. Resubmitted to Natural Language and Linguistic Theory.
Broselow, Ellen. 1999. Stress, epenthesis, and segment transformation in Selayarese loans. Pages 311-325 of: Annual Meeting of the Berkeley Linguistics Society, vol. 25.

Burzio, Luigi. 1994. Principles of English stress. Cambridge University Press.
Bye, Patrik, \& Svenonius, Peter. 2012. Exponence, Phonology, and Non-Concatenative Morphology. Pages 427-495 of: The Morphology and Phonology of Exponence. Oxford: Oxford University Press.

Campbell, Philip Jonathan. 1989. Some aspects of Pitu Ulunna Salu grammar: A typological approach. Ph.D. thesis, University of Texas at Arlington.

Cheng, Lisa Lai-Shen, \& Downing, Laura J. 2016. Phasal syntax= cyclic phonology? Syntax, 19(2), 156-191.

Chomsky, Noam. 1993. A minimalist program for linguistic theory. MIT Press.
Chomsky, Noam. 1995. The Minimalist Program. MIT press.
Chomsky, Noam. 2001. Derivation by phase. Pages 1-52 of: Kenstowicz, M. (ed), Ken Hale: a life in language. MIT Press.

Chomsky, Noam, \& Halle, Morris. 1968. The sound pattern of English.
Clements, George N. 1986. Syllabification and epenthesis in the Barra dialect of Gaelic. The phonological representation of suprasegmentals, 317-336.

Corbett, Greville G. 2007. Canonical typology, suppletion, and possible words. Language, 8-42.
De Lacy, Paul. 2001. Markedness in prominent positions. vol. 40. Department of Linguistics and Philosophy, Massachusetts Institute of Technology.

De Lacy, Paul. 2006. Markedness: Reduction and preservation in phonology. Vol. 112. Cambridge University Press.

Deal, Amy Rose, \& Wolf, Matthew. 2017. Outwards-sensitive phonologically-conditioned allomorphy in Nez Perce. The morphosyntax-phonology connection: Locality and directionality at the interface, 29-60.

Dolbey, Andrew. 1997. Output optimization and cyclic allomorph selection. Pages 97-112 of: The Proceedings of the Fifteenth West Coast Conference on Formal Linguistics. Stanford: CSLI.

Downing, Laura J. 1998. On the prosodic misalignment of onsetless syllables. Natural Language \& Linguistic Theory, 16(1), 1-52.

Dresher, Bezalel E. 1983. Postlexical phonology in Tiberian Hebrew. Pages 67-78 of: Proceedings of the West Coast Conference on Formal Linguistics, vol. 2.

Dressler, Wolfgang U. 1985. Morphonology, the dynamics of derivation. Vol. 12. Karoma Pub.
Elfner, Emily. 2015. Recursion in prosodic phrasing: Evidence from Connemara Irish. Natural Language \& Linguistic Theory, 33(4), 1169-1208.

Elordieta, Gorka. 2006. Binarity at the left edge of Intonational Phrases. In: GLOW Workshop on Prosodic Phrasing.

Embick, David. 2010. Localism versus globalism in morphology and phonology. Vol. 60. mit Press.
Finer, Daniel. 1999. Cyclic clitics in Selayarese. Toronto Working Papers in Linguistics, 16(2).
Finer, Daniel L. 1997. Contrasting \bar{A}-dependencies in Selayarese. Natural Language \& Linguistic Theory, 15(4), 677-728.

Finer, Daniel L. 1998. Sulawesi relatives, V-raising, and the CP-complement hypothesis. Canadian fournal of Linguistics/Revue canadienne de linguistique, 43(3-4), 283-306.

Franks, Steven. 1998. Clitics in slavic.
Friberg, Barbara. 1991. Ergativity, focus and verb morphology in several South Sulawesi languages. Vical, 2, 103-130.

Friberg, Barbara. 1996. Konjo’s peripatetic person markers. Pacific Linguistics. Series A. Occasional Papers, 84, 137-171.

Friberg, Barbara, \& Jerniati. 2000. Mandar Conversations. Unpublished; circulated by the Language Office of South Sulawesi (Balai Bahasa Sulawesi Selatan).

Friberg, Timothy, \& Friberg, Barbara. 1991. Notes on Konjo phonology. Studies in Sulawesi linguistics, part II, 71-115.

Gafos, Adamantios, \& Lombardi, Linda. 1999. Consonant transparency and vowel echo. Page 8 of: North East Linguistics Society, vol. 29.

Grimes, Charles E, \& Grimes, Barbara D. 1987. Languages of south Sulawesi. Dept. of Linguistics, Research School of Pacific Studies, The Australian National University.

Grimshaw, Jane. 1991. Extended Projection. unpublished manuscript.
Guilfoyle, Eithne, Hung, Henrietta, \& Travis, Lisa. 1992. Spec of IP and Spec of VP: Two subjects in Austronesian languages. Natural Language \& Linguistic Theory, 10, 375-414.

Hale, Ken, \& Keyser, Samuel Jay. 1993. On argument structure and the lexical expression of syntactic relations. An annotated syntax reader, 312-327.

Halle, Morris, \& Marantz, Alec. 1993. Distributed morphology and the pieces of inflection. 1993, 111-176.
Harbour, Daniel. 2008. Discontinuous agreement and the syntax-morphology interface. Phi theory: Phifeatures across modules and interfaces, 185-220.

Haugen, Jason D. 2016. Readjustment: rejected. Morphological metatheory, 229, 303-342.
Haugen, Jason D, \& Siddiqi, Daniel. 2013. Roots and the derivation. Linguistic inquiry, 44(3), 493-517.
Haugen, Jason D, \& Siddiqi, Daniel. 2016. Towards a restricted realization theory. Morphological metatheory, 343-386.

Hayes, Bruce. 1989. The prosodic hierarchy in meter. Pages 201-260 of: Rhythm and meter. Elsevier.
Hayes, Bruce. 1990. Precompiled phrasal phonology. The phonology-syntax connection, 313, 108.
Henderson, Robert. 2012. Morphological alternations at the intonational phrase edge. Natural Language \& Linguistic Theory, 30(3), 741-787.

Hewett, Matthew. 2022. Allomorphy in Semitic discontinuous agreement: Evidence for a modular approach to postsyntax. Natural Language \& Linguistic Theory, 1-55.

Inkelas, Sharon. 1989. Prosodic constituency in the lexicon. Ph.D. thesis, Stanford University.
Itô, Junko. 1986. Syllable theory in prosodic phonology. Ph.D. thesis, University of Massachusetts, Amherst.
Itô, Junko, \& Mester, Armin. 1992. Weak layering and word binarity. Pages 25-65 of: Honma, Takeru, Okazaki, Masao, Tabata, Toshiyuki, \& Tanaka, Shin-ichi (eds), A new century of phonology and phonological theory: A festschrift for Professor Shosuke Haraguchi on the occasion of his sixtieth birthday. Kaitakusha. Originally published 1992 as Linguistic Research Center LRC-92-09, University of California, Santa Cruz.

Itô, Junko, \& Mester, Armin. 1995. The core-periphery structure of the lexicon and constraints on reranking. University of Massachusetts Occasional Working Papers in Linguistics (UMOP), 18.

Itô, Junko, \& Mester, Armin. 2007. Prosodic adjunction in Japanese compounds. MIT working papers in linguistics, 55, 97-111.

Itô, Junko, \& Mester, Armin. 2012. Recursive prosodic phrasing in Japanese. Prosody matters: Essays in honor of Elisabeth Selkirk, 280-303.

Itô, Junko, \& Mester, Armin. 2013. Prosodic subcategories in Japanese. Lingua, 124, 20-40.
Itô, Junko, \& Mester, Armin. 2019. Match as Syntax-Prosody MAX/DEP: Prosodic Enclisis in English. English linguistics, 36(1).

Itô, Junko, \& Mester, Ralf-Armin. 1986. The phonology of voicing in Japanese: Theoretical consequences for morphological accessibility. Linguistic inquiry, 49-73.

Itô, Junko, Mester, Armin, \& Padgett, Jaye. 1995. Licensing and underspecification in Optimality Theory. Linguistic inquiry, 571-613.

Jerniati. 2005. Fonologi Bahasa Mandar: Suatu Pendekatan Generatif. Bunga Rampai Hasil Penelitian Bahasas dan Sastra, 134-203.

Jukes, Anthony. 2006. Makassarese (basa Mangkasara') A description of an Austronesian language of South Sulawesi. Ph.D. thesis, The University of Melbourne.

Kager, René Willibrord Joseph. 1996. On affix allomorphy and syllable counting. Studia grammatica, 41, 155-171.

Kaisse, Ellen M. 1985. Connected speech: The interaction of syntax and phonology. Academic Press.
Kalin, Laura. 2020. Morphology before phonology: A case study of Turoyo (Neo-Aramaic). Morphology, 30(3), 135-184.

Kaufman, Daniel. 2008. South Sulawesi pronominal clitics: Form, function and position. Studies in Philippine languages and cultures, 17, 13-65.

Kawahara, Shigeto. 2007. Copying and spreading in phonological theory: Evidence from echo epenthesis. UMOP, 32, 111-144.

Kayne, Richard S. 2019. What is Suppletion? On* goed and on went in Modern English. Transactions of the Philological Society, 117(3), 434-454.

Kenstowicz, Michael. 1997. Base-identity and uniform exponence: alternatives to cyclicity. Page 363-394 of: Durand, Jacques, \& Laks, Bernard (eds), Current trends in phonology: models and methods. Salford: University of Salford.

Kenstowicz, Michael. 2005. Paradigmatic Uniformity and Contrast. Pages 145-169 of: Downing, Laura, Hall, Tracy, \& Raffelsiefen, Renate (eds), Paradigms in Phonological Theory. Oxford University Press.

King, Harold V. 1970. On blocking the rules for contraction in English. Linguistic Inquiry, 1(1), 134-136.
Kiparsky, Paul. 1973. "Elsewhere" in phonology. Pages 930-106 of: Anderson, Stephen R., \& Kiparsky, Paul (eds), A Festschrift for Morris Halle. New York: Holt, Rinehart and Winston.

Kiparsky, Paul. 1982. Lexical phonology and morphology. Linguistics in the morning calm.
Kiparsky, Paul. 2000. Opacity and cyclicity. Pages 351-67 of: Ritter, Nancy A. (ed), A review of Optimality Theory. Special Issue. The Linguistic Review 17 (2-4).

Kitto, Catherine, \& De Lacy, Paul. 1999. Correspondence and epenthetic quality. Pages 181-200 of: Proceedings of the Sixth Meeting of the Austronesian Formal Linguistics Association (AFLA). University of Toronto Department of Linguistics.

Kurisu, Kazutaka. 2001. The phonology of morpheme realization. Ph.D. thesis, University of California, Santa Cruz.

Ladd, D Robert. 1986. Intonational phrasing: the case for recursive prosodic structure. Phonology, 3, 311340.

Laskowske, Douglas. 2016. Voice in Bugis: an RRG perspective. MA Thesis, University of North Dakota.
Laskowske, Tom. 2007. The Seko languages of South Sulawesi: A Reconstruction. Studies in Philippine languages and cultures, 15, 116--210.

Lee, Jason Kwok Loong. 2008. Transitivity, Valence and Voice in Mandar. Studies in Philippine Languages and Cultures, 19, 55-66.

Marantz, Alec. 1997. No escape from syntax: Don't try morphological analysis in the privacy of your own lexicon. University of Pennsylvania working papers in linguistics, 4(2), 14.

Mascaró, Joan. 1996. External allomorphy as emergence of the unmarked. Page 473-483 of: Durand, Jacques, \& Laks, Bernard (eds), Current trends in phonology: Models and methods. Salford, Manchester: University of Salford, European Studies Research Institute. Reprinted in John J. McCarthy (ed.). 2004. Optimality Theory in Phonology: A reader, 513-522. Oxford: Blackwell.

Mascaró, Joan. 2007. External allomorphy and lexical representation. Linguistic Inquiry, 38(4), 715-735.
Matti, David F. 1994. Mamasa pronoun sets. Studies in Sulawesi Linguistics, 3, 65-89.
McCarthy, John J, \& Prince, Alan. 1993. Generalized alignment. Pages 79-153 of: Yearbook of morphology 1993. Springer.

McCarthy, John J, \& Prince, Alan. 1994. The emergence of the unmarked: Optimality in prosodic morphology. Page 333-379 of: Gonzàlez, Mercè (ed), Proceedings of the North East Linguistic Society 24. Amherst, MA: Graduate Linguistic Student Association.

McCarthy, John J, \& Prince, Alan. 1995. Faithfulness and reduplicative identity.
Mel'čuk, Igor A. 1994. Suppletion: toward a logical analysis of the concept. Studies in Language. International fournal sponsored by the Foundation "Foundations of Language", 18(2), 339-410.

Merchant, Jason. 2015. How much context is enough? Two cases of span-conditioned stem allomorphy. Linguistic Inquiry, 46(2), 273-303.

Mester, R Armin. 1994. The quantitative trochee in Latin. Natural Language \& linguistic theory, 12(1), 1-61.
Mithun, Marianne, \& Basri, Hasan. 1986. The phonology of Selayarese. Oceanic Linguistics, 25(1/2), 210-254.

Moreton, Elliott. 1999. Non-computable functions in Optimality Theory. Blackwell Publishing.
Muthalib, Abdul, \& Sangi, M Zain. 1991. Puisi Kalindaqdaq Mandar. Departemen Pendidikan dan Kebudayaan.

Nespor, Marina, \& Vogel, Irene. 1986. Prosodic phonology. De Gruyter Mouton.
Ouhalla, Jamal. 1993. Subject-extraction, negation and the antiagreement effect. Natural Language \& Linguistic Theory, 11(3), 477-518.

Parker, Steve. 2001. Non-optimal onsets in Chamicuro: an inventory maximised in coda position. Phonology, 18(3), 361-386.

Pater, Joe. 1999. Austronesian nasal substitution and other *NC effects. Pages 310-343 of: Kager, René, van der Hulst, Harry, \& Zonneveld, Wim (eds), The prosody-morphology interface. Cambridge University Press.

Pater, Joe. 2009. Morpheme-specific phonology: Constraint indexation and inconsistency resolution. In: Parker, S (ed), Phonological argumentation: Essays on evidence and motivation. Equinox Publishing Ltd.

Pelenkahu, RA, Muthalib, Abdul, \& Sangi, M Zain. 1983. Struktur Bahasa Mandar. Pusat Pembinaan dan Pengembangan Bahasa, Departemen Pendidikan dan Kebudayaan.

Perlmutter, David M. 1998. Interfaces: explanation of allomorphy and the architecture of grammars. Pages 307-338 of: Lapointe, Stephen, Brentari, Diane, \& Farrel, Patrick (eds), Morphology and its relation to phonology and syntax. Stanford, California: CSLIPublications.

Prieto, Pilar. 2005. Syntactic and eurhythmic constraints on phrasing decisions in Catalan. Studia Linguistica, 59(2-3), 194-222.

Prince, Alan, \& Smolensky, Paul. 1993/2004. Optimality Theory: Constraint interaction in generative grammar. John Wiley \& Sons.

Prince, Alan Sanford. 1975. The phonology and morphology of Tiberian Hebrew. Ph.D. thesis, Massachusetts Institute of Technology.

Pylkkänen, Liina. 2008. Introducing arguments. Vol. 49. MIT press.
Raffelsiefen, Renate. 1996. Gaps in word formation. Pages 194-209 of: Interfaces in phonology. Akademie Verlag.

Raffelsiefen, Renate. 1999. Phonological constraints on English word formation. Pages 225-287 of: Yearbook of morphology 1998. Springer.

Raffelsiefen, Renate. 2004. Absolute ill-formedness and other morphophonological effects. Phonology, 21(1), 91-142.

Reinhart, Tanya. 1983. Coreference and bound anaphora: A restatement of the anaphora questions. Linguistics and Philosophy, 6(1), 47-88.

Rolle, Nicholas, \& Bickmore, Lee. 2022. Outward-sensitive phonologically-conditioned suppletive allomorphy vs. first-last tone harmony in Cilungu. Morphology, 32(2), 197-247.

Rosenthall, Sam. 1994. Vowel/glide alternation in a theory of constraint interaction. Ph.D. thesis, University of Massachusetts, Amherst.

Royer, Justin. 2022. Prosody as syntactic evidence. Natural Language \& Linguistic Theory, 40(1), 239-284.
Rubach, Jerzy, \& Booij, Geert E. 2001. Allomorphy in optimality theory: Polish iotation. Language, 26-60.
Sadock, Jerrold M. 1980. Noun incorporation in Greenlandic: A case of syntactic word formation. Language, 300-319.

Selkirk, Elisabeth. 1978. On prosodic structure and its relation to syntactic structure. Pages 111-140 of: Fretheim, Thornstein (ed), Nordic Prosody II. TAPIR.

Selkirk, Elisabeth. 1984. Phonology and syntax: the relation between sound and structure. Ph.D. thesis, MIT.
Selkirk, Elisabeth. 1986. On derived domains in sentence phonology. Phonology, 3, 371-405.
Selkirk, Elisabeth. 1995a. The prosodic structure of function words. University of Massachusetts occasional papers in linguistics, 18, Urbanczyk.

Selkirk, Elisabeth. 1995b. Sentence prosody: Intonation, stress, and phrasing. The handbook of phonological theory, 1, 550-569.

Selkirk, Elisabeth. 2009. On clause and intonational phrase in Japanese: The syntactic grounding of prosodic constituent structure. Gengo Kenkyu, 136, 35-73.

Selkirk, Elisabeth. 2011. The syntax-phonology interface. The handbook of phonological theory, 2, 435-483.
Selkirk, Elisabeth, \& Shen, Tong. 1990. Prosodic domains in Shanghai Chinese. The phonology-syntax connection, 313, 37.

Selkirk, Elisabeth, \& Tateishi, Koichi. 1988. Syntax and phonological phrasing in Japanese. In: Studies in Honour of S.-Y. Kuroda, Reidel, Amsterdam.

Selkirk, Elisabeth, \& Tateishi, Koichi. 1991. Syntax and downstep in Japanese. Pages 519-543 of: Interdisciplinary approaches to language. Springer.

Sikki, Muhammad, Muthalib, Abdul, Mulya, Abdul Kadir, \& Haddade, Muhammad Naim. 1987. Kata Tugas Bahasa Mandar. Pusat Pembinaan dan Pengembangan Bahasa, Departemen Pendidikan dan Kebudayaan.

Smith, Jennifer L. 2002. Phonological augmentation in prominent positions. Ph.D. thesis, University of Massachusetts Amherst.

Smith, Jennifer L. 2004a. Making constraints positional: toward a compositional model of CON. Lingua, 114(12), 1433-1464.

Smith, Jennifer L. 2004b. Phonological augmentation in prominent positions. Routledge.
Stanton, Juliet. 2022. Allomorph selection precedes phonology: Evidence from Yindjibarndi. Natural Language \& Linguistic Theory, 1-36.

Stanton, Juliet, \& Zukoff, Sam. 2018. Prosodic identity in copy epenthesis. Natural Language \& Linguistic Theory, 36(2), 637-684.

Starke, Michal. 2009. Nanosyntax: A short primer to a new approach to language. Nordlyd, 36(1), 1-6.
Steriade, Donca. 1987. Redundant values. Papers from the Annual Regional Meeting, Chicago Linguistic Society, 23(2), 339-362.

Steriade, Donca. 1999. Lexical conservatism in French adjectival liaison. Amsterdam Studies in the Theory and History of Linguistic Science, Series IV, 243-270.

Steriade, Donca. 2008. A pseudo-cyclic effect in Romanian morphophonology. Inflectional identity, 18, 313-360.

Strømme, Kari K. 1994. Person marking in the Mamuju language. Studies in Sulawesi Linguistics, 3, 91-113.
Svenonius, Peter. 2013. Look both ways: Outward-looking allomorphy in Icelandic participles. MS, University of Tromsø, CASTL.

Swiggers, Pierre. 1985. How to order eggs in French. Folia Linguistica, 19, 63-66.
Tranel, Bernard. 1996. French liaison and elision revisited: A unified account within Optimality Theory. Aspects of Romance linguistics, 433-455.

Truckenbrodt, Hubert. 1999. On the relation between syntactic phrases and phonological phrases. Linguistic inquiry, 30(2), 219-255.

Valkama, Kari. 1995a. Person marking in Duri. Studies in Sulawesi linguistics, 4, 47-95.
Valkama, Susanne. 1995b. Notes on Duri transitivity. Studies in Sulawesi Linguistics part IV: NUSA, 37, 2-45.
Vogel, Irene. 1990. The clitic group in prosodic phonology. Grammar in progress. glow essays for Henk van Riemsdijk, 447-454.

Vogel, Irene. 2009. The status of the Clitic Group. Phonological domains: Universals and deviations, 16, 15.
Wagner, Michael. 2005. Prosody and recursion. Ph.D. thesis, Massachusetts Institute of Technology.
Wagner, Michael. 2010. Prosody and recursion in coordinate structures and beyond. Natural Language \& Linguistic Theory, 28(1), 183-237.

Wolf, Matthew. 2007. Lexical insertion occurs in the phonological component. In: Tranel, Bertrand (ed), Understanding Allomorphy: Perspectives from Optimality Theory. London: Equinox.

Wolf, Matthew Adam. 2008. Optimal interleaving: Serial phonology-morphology interaction in a constraintbased model. Ph.D. thesis, University of Massachusetts Amherst.

[^0]: ${ }^{1}$ GLOSSING: ABS: absolutive, ACC: accusative, AF: agent focus, APPL: applicative, ANTIP: antipassive, ERG: ergative, FUT: future, GEN: genitive, IPFV: imperfective, PFV : perfective. $<\mathrm{c}\rangle=/ / \mathrm{t} / /,<^{\prime}>=/ \mathrm{T} /$.

[^1]: ${ }^{2}$ The languages of the South Sulawesi Subfamily have been described in a larger body of Englishlanguage work (Friberg, 1991, 1996; Strømme, 1994; Matti, 1994; Valkama, 1995a,b; Jukes, 2006; Lee, 2008; Kaufman, 2008; Laskowske, 2016; Finer, 1997, 1998, 1999; Béjar, 1999). In this subfamily, similar positional minimality effects exist in at least Mamuju, Ulumanda', Tae', and Enrekang (see also Campbell 1989, 19,143 on Pitu Ulunna Salu); they are absent from Bugis and Makassarese. Much comparative work is required.

[^2]: ${ }^{3}$ A very similar system is described in the other languages of the South Sulawesi subfamily: regular word-level penultimate stress (Aronoff et al., 1987; Campbell, 1989; Mithun \& Basri, 1986; Friberg \& Friberg, 1991; Broselow, 1999; McCarthy \& Prince, 1994, 1995; Basri et al., 1999, 2012; Jukes, 2006; Laskowske, 2007) and no iterative secondary stress (Campbell, 1989; Friberg \& Friberg, 1991; Jukes, 2006). The claim that ω s host one right-aligned trochee follows the universal position of work on other languages of the subfamily (Mithun \& Basri, 1986; Friberg \& Friberg, 1991; Broselow, 1999; Basri et al., 1999, 2012; Jukes, 2006).
 ${ }^{4}$ A reviewer asks whether the Positional Minimality Constraint may be derived without reference to feet by a requirement to place the low tone linked to word stress on a different syllable from the final high tone linked to the right edge of the phonological phrase (example 23). This account could derive the facts below by forcing the final word-level stress in the phonological phrase to fall one syllable before the right edge. Nevertheless, the foot in (18) is independently attested in the prosodic morphology of Mandar. There is a pattern of reduplication that copies a two-syllable sequence from the left edge of the base and superimposes trochaic stress on that string (/balao/ 'rat' \rightarrow [bála-baláo]), as if to fill out the same disyllabic trochee. I take this pattern to show that this foot exists in Mandar and thus employ it in the analysis below.

[^3]: ${ }^{5}$ Puzzles remain around (i) the choice of $?$ as the segment recruited to break hiatus and (ii) the mechanism that links the quality of the vowels across this segment. Both of these topics have been studied around the parallel process of vp-epenthesis that operates in other languages of the South Sulawesi Subfamily, like Makassarese and Selayarese (Clements, 1986; McCarthy \& Prince, 1994, 1995; Gafos \& Lombardi, 1999; Broselow, 1999; Kitto \& De Lacy, 1999; De Lacy, 2006; Kawahara, 2007; Stanton \& Zukoff, 2018).

[^4]: ${ }^{6}$ In this respect, these alternations contrast to some extent with those of English, where a reviewer notes that many auxiliaries can take forms that fall between the two clear extremes (e.g., / hæv/-/həv/-/əv/-/v/). This point suggests that some of the alternations in English should be handled in the phonology, either with lexically-indexed constraints or more complex representations. Even so, I believe that it is still possible to maintain the classical position that other alternations in the larger English system do involve suppletion.

