UNIVERSITY OF CALIFORNIA SANTA CRUZ

A-SYNTAX AT THE EDGE: PRIORITY AND SUSPENSION IN MANDAR

A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY

in

LINGUISTICS

by

Dan Brodkin

September 2025

The thesis of Dan Brodkin is approved:

	Distinguished Professor Emerita
	Sandra Chung, Chair
Pr	ofessor Emeritus James McCloskey
– Pi	rofessor Ryan Bennett
— Pr	ofessor Matt Wagers

Peter Biehl

Vice Provost and Dean of Graduate Studies

Copyright © by Dan Brodkin 2025

Contents

	Abst	tract		iv	
	Ack	nowled	gments	V	
1	Intr	oductio	on	2	
2	Lan	guage l	Background	7	
	2.1	The M	andar VP	10	
	2.2	Buildi	ng the Mandar Verb	13	
	2.3	The Vo	oice System	16	
	2.4	4 The System of Agreement			
3	Sub	ject Po	sitions, High Absolutives, and Austronesian Voice	24	
	3.1	Introd	uction	24	
	3.2	The Lo	ow Subject Position	27	
		3.2.1	High Absolutive Syntax	28	
		3.2.2	The Voice Head	34	
		3.2.3	Locality and Activity	37	
	3.3	3 The High Subject Position		39	
		3.3.1	Strong Quantification	40	
		3.3.2	The Aspectual Enclitics	42	
		3.3.3	The Syntax of Subjecthood	46	
	3.4	Two L	ayers of Expletives	47	
		3.4.1	Weak Quantification	47	
		3.4.2	The Case for Expletives	51	
		3.4.3	Deriving the Pattern of Insertion	55	
	3.5	Concl	usion	58	

4	Inv	ersion, Priority, and A-Locality	60
	4.1	Introduction	60
	4.2	Background	63
		4.2.1 Priority Parcels	64
	4.3	Best-Match Attraction	68
		4.3.1 The Operation Link	68
		4.3.2 Best-Match Effects	71
	4.4	Locality at the Edge	73
		4.4.1 The Ā Connection	73
		4.4.2 The Theory of Visibility	75
		4.4.3 Priority and Proper Movement	79
		4.4.4 Loose Locality at the Edge	83
	4.5	Secondary Licensors and Anti-Agreement	88
		4.5.1 Conflicting Priorities	89
		4.5.2 The Ordering Account	92
	4.6	Conclusion	94
5	Pse	udopassives, Pied-Piping, and A-Movement of PPs	97
	5.1	Introduction	97
	5.2	Background	100
		5.2.1 Prepositional Inversion	105
		5.2.2 Visibility and the Pseudopassive	111
	5.3	Movement to the Edge	114
		5.3.1 Passing Over Plain PPs	115
		5.3.2 Inversion and the Low Subject Position	117
		5.3.3 Attracting Special PPs	120
	5.4	Category Restrictions at the Edge	123
		5.4.1 A Restriction on Raising	124
		5.4.2 Pied-Piping at the Edge	127
			131
	5.5	Conclusion	133
6	Sub	ject Extraction, Anti-Agreement, and the Unfolding of the CP	136
	6.1		136
	6.2		138
		-	

7	Con	clusion	1	175
	6.5	Concl	usion	172
		6.4.3	Reprojection and Suspension	168
		6.4.2	Derivational Structure-Building	165
		6.4.1	Head-Bundling	164
	6.4	The U	nfolding Framework	163
		6.3.4	Subject Extraction Triggers the Loss of τ^0	158
		6.3.3	Interlude: Transparency Effects and τ^0	154
		6.3.2	The Syntactic Suppression of C	152
		6.3.1	The Structure of the Mandar CP	150
	6.3	Subjec	et Extraction and Clause Reduction	149
		6.2.4	Interim Summary	148
		6.2.3	Tracing the Path of Subject Extraction	145
		6.2.2	The Anti-Agreement Effect	142
		6.2.1	Redux: Mandar Clausal Syntax	139

Abstract

The theoretical goal of this dissertation is to sharpen and refine our understanding of the A- \bar{A} divide (Postal, 1971; Chomsky, 1977): a distinction which governs the ways that steps of movement and their associated landing sites interact with the wider systems of the syntax and its interfaces. The traditional view takes this divide to reflect a strictly binary cut: positions and steps of attraction are exhaustively classified as either "A" or " \bar{A} ," and these two labels are picked up by a range of systems across the grammar. But a growing literature recognizes that the division is not so clear-cut: the alignment between A- and \bar{A} -properties is often imperfect and incomplete, such that apparent steps of A- and \bar{A} -movements often show properties drawn from the opposite set. The task of this dissertation is thus to address the questions in (1):

- (1) Guiding Questions of the Dissertation
 - a. Empirically: what are the ways that the classical A- and Ā-properties can and cannot combine?
 - b. Theoretically: what mechanisms give rise to apparent A/Ā misalignments, yielding steps of movements and positions that show properties of both?

This dissertation approaches this pair of questions through a series of case studies on Mandar, an Austronesian language of Central Indonesia, drawing on primary fieldwork conducted from 2018 to the present. After an introduction to the language and the methodology of elicitation (Chapter Two), it lays out the basics of clause structure (Chapter Three) and then advances to three theoretical puzzles. The first and second surround the emergence of A-like properties in the A-domain, and their force is to suggest that there are circumstances which allow A-movement to escape the requirement to "target the closest DP:" the language has a subject position at the edge of the extended VP, and this position drives selective patterns of A-attraction that preferentially target pronouns and quantified expressions over more local DPS (Chapter Four) and can also attract PPs when the complement of P⁰ must receive Case from higher heads like T⁰ (Chapter Five). The third puzzle then emerges in the Ā-domain: in Mandar, several types of subject extraction seem to exceptionally implicate A-movement, rather than the A-movements that draw other WH-elements into the left periphery (Chapter Six), and these effects suggest that the mechanisms that drive A-extraction can be parasitically satisfied—in a manner that does not yield mixed A/Ā attraction—in response to particular patterns of head-bundling along the clausal spine.

Acknowledgments

Real thanks are due to the many people who met me with generosity, humanity, and clarity of sight over the course of my graduate career—all of whom made contributions that helped at the time and continue to help in ways that I am still learning to see. What follows, then, is just a beginning to the process of saying thanks.

Pertama-tama, saya ingin mengucapkan terima kasih sebesar-besarnya kepada semua teman, anggota keluarga, dan pembimbing saya di Indonesia, atas semua bantuannya dan pendukungannya sejak pertama kali saya datang pada tahun 2017. Terima kasih khusus kepada Pak Gatut Susanto, direktur BIPA di Universitas Negeri Malang, dan Rizqi Arifuddin, Anasthasia Rayinda, Astrid Lim, dan Ceacealia Dewitha, yang mengurus beasiswa Fulbright, untuk memberikan saya kesempatan yang mengubah kehidupanku. Dengan penuh rasa syukur, saya ucapkan terima kasih juga kepada semua sahabat yang saya kenali pada waktu saya di Malang: Bagus Prima Jaya dan Sambada Wicaksana, tutor saya di program CLS, Mustika Nur Amalia, Nissa Aprilia, dan Septa Widya Etika, guru saya di UM, dan Eky Gugah Pamungkas. Dari lubuk hati saya ucapkan terima kasih juga kepada Pak Irawan Prajitno dan Ibu Ratna Shanty, keluarga saya di Malang, atas bimbingannya, kesabarannya, dan cintanya sejak pertemuan pertama kita pada tahun 2018. Di sisi lain, di Sulawesi, saya akan selalu berterima kasih kepada peneliti dan staff di Balai Bahasa Sulawesi Selatan, terutama Jusmianti Garing, Ery Iswari dan Hairuddin di Universitas Hasanuddin, dan semua dosen-dosen di fakultas Bahasa Inggris di Universitas Sulawesi Barat, terutama Sitti Sapiah. Pada akhirnya, saya ingin ucapkan terima kasih kepada Jupri Talib, yang membantu dengan penelitian ini dari awal, dan semua anggota keluarganya, khususnya Bu Mina, Pua' Talib, dan Pua' Kassi. Jupri— kamu adalah sosok sahabat paling baik yang pernah kukenal. Tidak ada kata yang cukup untuk mengungkapkan rasa syukurku kepadamu.

Second, I would like to thank the members of my dissertation committee—Sandy Chung, Jim McCloskey, Ryan Bennett, and Matt Wagers—for their grounding perspective and inspiring feedback through the course of this work. To Sandy, for helping me find a reasonable structure and pace to my graduate career—for patiently teaching me to see direction and depth as we talked through my elicitation summaries in Indonesia, for showing me how to slow down and focus on the fundamentals through my first QP, and for constantly modeling a process of thought that raises the real targets of our work into sharp relief. To Jim, for helping me understand what fieldwork and theory can really be—for showing me how to approach the empirical terrain and the

mysteries of the theory with the type of awe they deserve. To Matt, for guiding me through my first steps into the world of in-field experimentation and helping me see puzzles and possibilities in the world of experimental syntax. And to Ryan, for his close advising through my second QP—and for helping me understand how to bound projects and establish high-level structure. When I came to Santa Cruz, I had no idea how lucky I would be- I could not have asked for a better set of mentors in this time.

Third, I would like to extend a special thanks to several other members of the UCSC Linguistics faculty. To Junko Ito and Armin Mester, thank you for being like a second pair of advisors to me—for your attention and investment as I began to work on prosody and for your support and feedback as that work has evolved. To Jaye Padgett, for valuable guidance through my second QP and for the wider modeling and mentorship along the way. To Rachel Walker, for great advice on all my projects in phonology and for key feedback on writing, publishing, and launching a career, too. To Roumi Pancheva, for important perspective on the process of evolving toward the end of one's grad career, and to Jorge Hankamer, for a brilliant demonstration of what teaching syntax can be. And finally, to Amanda Rysling, for her coaching from the get-go—for crucial advice in the earliest stages of grad school, for regular check-ins along the way, and for all her work to set the right kind of tone in this era of my life.

Fourth, I'd like to thank the many peers, mentors, and mentees who have made up a second layer of my graduate student life. At UCSC, I'd like to thank Nick Kalivoda, Jason Ostrove, Jed Pizarro-Guevara, Andrew Hedding, Andrew Angeles, Netta Ben-Meir, Nick Van Handel, Ben Eischens, and Emily Knick for their advice and friendship. I'd also like to thank the many undergraduates who participated in the syntax club, especially Meredith Mazer, Ashley Ippolito, and Pamela Casipe, Sadie Lewis, and Josh Lieberstein. Beyond the department, I'd also like to thank those who made up my professional world during the pandemic: Kenyon Branan, Matt Hewett, Justin Royer, Tamisha Tan, Tyler Lemon, Akshay Aitha, Zach Lebowski, and Ross Rauber.

Fifth, I'd like to thank a series of mentors outside the department who have played key roles along my wider path. An enormous thanks to Cati Fortin, my advisor at Carleton, for the independent studies on Austronesian Syntax and all the close mentorship and guidance through those years—without you, I never would have found this path. Thanks as well to Mark Hansell, whose Historical Linguistics class inspired me to become a linguist, and to Cherlon Ussery, for leading me to the depth and beauty of syntax. I'd also like to thank Rob and Clara Hardy, my first teachers of Greek, and Bill

North, my advisor in the history major, for support and scaffolding in those days— all of which was crucial in ways that I'm still learning to see. Beyond Carleton, a special thanks is due to Rajesh Bhatt, who took the time to meet with me as an undergrad and gave me advice that reshaped my graduate career—and who has been a great mentor ever since. To Dan Kaufman, thanks for intercepting me after Carleton, sending me to Sulawesi, and helping me find my footing in that world. To Mitcho Erlewine: thank you for having me in Singapore twice during my year in Indonesia and for all the advice and guidance ever since—it's really made a difference. To Ileana Paul, thanks for serving on the committee for my qualifying exam, for always being so supportive at AFLA, and for sharing such valuable perspective on syntax and work in the field. And finally, last but not least, I'd like to thank Erik Zyman. Brother— there are no words.

Sixth, there are many more people who I'd like to thank for the roles they've played in my professional life: Pranav Anand, Ivy Sichel, Judith Aissen and Mia Gong at UCSC, Boris Harizanov and Vera Gribanova in its extended projection, Eric Potsdam, Masha Polinsky, Matt Pearson, Lisa Travis, and Jessica Coon in the AFLA-verse, and Kyle Johnson, Kristine Yu, Gary Thoms, Jim Wood, Bob Frank, and Raffaella Zanuttini.

Seventh are the special people who have filled out my personal life over my graduate career. First and foremost in California is my third cousin twice removed, Nell Brodkin, and all the members of our family: Dishita Jhawar and Cheryl Chuang, Sam Brodkin and Ana Carolina Luttembarck, and Suzan Kuppens and Reza Azizian. Second are all my old friends here in the bay—Dan Kluger, Jack Wines, Kerim Celik, Rolf Locher, and Drea Olofson-Chen—as well as the many new friends and mentors that I met over my time here—especially Paula Marcus, Shifra Penzies-Weiss, Gary and Peggy Miles, Delaney Gomez-Jackson and Enzo Schlatter, Darla Chenin, and above all, Emily Antonino. I'd also like to thank the old friends who have made it work over zoom: Adam Moreno-Mendelson, Adam Klein, Adante Ratzlaff, Andrew Wheeler, John Scott, Max Mattessich, Josh Kam, Alexa Gwynn, and Sophie Liebergall. Back home, I'd like to thank those who were especially present during the pandemic: Max and Sara Helfand, Avi Mahajan, Mitra Mani, Daria Locher, Faizah Anjum, Janan Halim, Thania Louis, and especially Nawreen Juthi. A special thanks goes to my extended family: Jeffery Silberman, Linda Lerman (z"l), Avi Silberman, Dina Silberman, and Sammy Falco, as well as Perry and Tammy Frydman and Esther and David Lester.

Eighth and finally: thanks to my parents, my stepmom, our old dog, the two cats, and my exceptional little sister. With gratitude, this dissertation is dedicated to them.

Chapter 1

Introduction

The central goal of this dissertation is to advance our understanding of the A/Ā divide: a network of correlations that guide the interactions between many separate systems in the syntax and at its interfaces. This distinction is one of depth and history in the wider trajectory of Generative Grammar, and in the context of contemporary Minimalism it continues to guide many lines of inquiry and inspire layers of productive debate. In its first formulations in the work of Postal 1971 and Chomsky 1977, it was taken to divide individual types of movement into two classes: a set of A-movements, including the transformations beneath Passive and Raising to Subject, and a set of A-movements, including WH-movement, topicalization, relativization, and the like. Through the 1980s, it was then reworked into a theory of positions: as all types of displacement were unified under the rubric of Move- α (Chomsky, 1981), individual positions came to be designed as A-positions, corresponding to the potential thematic positions at the core of the clause, and A-positions, hosting elements of many different types at the clausal periphery. In the context of contemporary Minimalism, each of these component parts persists: with MOVE recast as a special instance of MERGE, both individual steps of movement and their associated landing sites are typically taken to be parameterized with respect to the features that define them (Chomsky, 1993, 2008).

The utility of this perspective lies in the way that it allows us to reorganize the central components of the A/\bar{A} divide. On the traditional view, the empirical content of this division comes down to a network of correlations that can be organized into three broad groups. The first of these surrounds the interaction between movement and the system of constraints on binding and coreference: \bar{A} -movements induce crossover effects and license parasitic gaps where \bar{A} -movements do not, while

A-movements introduce new possibilities for variable binding and pronominal coreference in a manner unmatched by $\bar{\text{A}}$ -extraction. The second surrounds the feeding relationships that emerge between movement and the independent systems of the syntax: A-movements typically feed higher A-movement, Case-assignment, and ϕ -agreement, while $\bar{\text{A}}$ -movements typically do not. The third, at last, surrounds the shape of movement itself: A-movement is traditionally taken to strictly target the closest DP, whereas $\bar{\text{A}}$ -movement obeys no such constraint. These properties are summarized in table (1).

(1) The Empirical Contents of the A- \bar{A} Divide

CATEGORY	Diagnostic	A-Movement	Ā-MOVEMENT
Interface	Triggers Strong Crossover	×	✓
Effects	Triggers Weak Crossover	×	✓
	Licenses Parasitic Gaps	×	✓
	Influences Condition C	✓	×
	Influences Variable Binding	✓	×
	Influences Reciprocal Binding	✓	×
FEEDING	Feeds A-Movement	✓	Х
RELATIONSHIPS	Feeds ϕ -Agreement	✓	×
	Feeds Case-assignment	✓	×
Profile of	STRICTLY TARGETS NOMINALS	1	Х
ATTRACTION	STRICTLY TARGETS THE CLOSEST NOMINAL	✓	×

The ensuing network of correlations—within and across these three domains—is one that recurs in a relatively consistent fashion across the world's languages, and as a result, the A-Ā divide has been continually leveraged since its inception to provide an analytical starting-point and a theoretical foundation for the investigation of many systems in the syntax. Given the depth of its component parts and the breadth of the correlations between them, however, it is natural that this starting division has come to face challenges as research has progressed. Within each of these domains, to begin, it seems that the component parts of the divide do not all interact with the A-Ā distinction in quite the same way: in the domain of binding, for instance, it is clear that A-movements have no effect on the binding of reflexive anaphors (Anderson 1976; Brodkin & Royer 2024) but introduce new possibilities for the binding of reciprocals (Fox & Nissenbaum, 2004; Ershova, 2019) and pronominal variables (and for a similar observation about dissociations in the domain of crossover, see Keine & Bhatt 2025). At a higher level, in turn, many components of the divide have been challenged and

occasionally rejected outright: it has been claimed, for instance, that it is possible for Ā-movement to feed A-movement and Case-assignment, on a par with A-movement (Van Urk 2015; Kobayashi 2020; Abramovitz 2021). The result is an empirical terrain that raises important questions on the nature and integrity of the A-Ā divide: what are the syntactic distinctions that underlie the asymmetries in table (1), what are the systems that draw them together to force A- and Ā-properties to cluster together, to what extent can they vary across the world's languages, and why?

Against this backdrop, this dissertation aims to address the theoretical status of two constraints that form part of this wider divide: in the terminology of Minimalism, the requirement that individual steps of attraction must target nominals and must target the closest nominals they can. These restrictions have traditionally been taken to provide a characteristic and defining property of A-attraction: the probes that drive A-movement must always attract the closest DP, while those that drive Ā-movement need not. But a series of important challenges have gradually emerged against this view, and the most important of these emerge from two empirical domains:

FIRST, there are a number of cases where individual steps of movement show approperties from the first two domains—for instance, reshaping binding relationships and feeding A-movement, ϕ -agreement, and Case-assignment—but nevertheless fail to target the closest DP. This type of dissociation has been drawn out most prominently by two strands of work: the early Minimalist literature on Inversions, centered around locative and quotative inversion (Collins, 1996) and a network of processes historically grouped under the label of A-scrambling (Miyagawa, 2001; Bailyn, 2004), and in a later literature on Multitasking, centered around cases where A-positions seem to preferentially attract elements with $\bar{\text{A}}$ -features (Van Urk, 2015; Newman, 2024).

SECOND, it now seems clear that the systems responsible for various types of Ā-extraction, including wh-movement and relativization, are able to implicate probes that strictly target the closest DP (Aldridge, 2004; Branan & Erlewine, 2024). This claim is one that emerges in the context of Minimalism from the longstanding recognition that there is something special to the syntax of subject extraction: in many languages, for instance, subject wh-movement seems to behave very differently from non-subject wh-movement in the ways that it interacts with the content of the complementizer domain (Perlmutter 1968), the system of agreement (Brandi & Cordin 1989; Ouhalla 1993), the mechanism beneath head-movement from T⁰-to-C⁰ (Den Besten 1983; Travis 1984; Rizzi & Roberts 1989). In many languages, in turn, these asymmetries are matched

by a restriction on the extraction of certain non-subject arguments, such as the DPs that receive Ergative Case: most famously in Austronesian (setting the terminology of ergativity aside: Keenan 1972; Guilfoyle *et al.* 1992) and in other language families that show High Absolutive syntax (Bok-Bennema, 1991; Bittner & Hale, 1996a,b; Wiltschko, 2006; Coon *et al.*, 2014; Brown, 2016; Royer, 2023; Ershova, 2019).

To sort through these dissociations, this dissertation develops a particular theory of the relationships between A- and $\bar{\text{A}}$ -properties and the ways in which the A-syntax and $\bar{\text{A}}$ -syntax can interact. The core of this theory turns on two claims.

FIRST: the traditional properties of the A-/Ā-divide must be divided into two independent and partially separable sets. The first of these, surrounding the interactions with crossover, binding, parasitic gaps, and the higher A-syntax, must be keyed to the status of particular POSITIONS: elements in A-positions must be visible to the interface systems that enforce constraints on binding and coreference and the syntaxinternal mechanisms of A-attraction, ϕ -agreement, and Case-assignment, while those in A-positions must not be visible in the same way. The second set of properties, governing the shape of movement itself, must be grounded in the system of ATTRACTION: the requirement to target the closest DP is one that emerges around the movementdriving features most typically recruited to drive A-attraction, and under particular circumstances, the A-syntax is able to recruit movement-driving features of a second type that allow it to skip past the closest DP. The result is a framework that licenses the emergence of movements that operate fully in the A-syntax, reshaping patterns of binding and feeding later A-operations, but nevertheless show the locality profile of A-attraction. The crux of this theory emerges from a particular link to height: the requirement that A-movement target the closest DP, I argue, is systematically relaxed around the steps of A-attraction triggered by the heads at the edge of the phase.

SECOND: there are cases where the triggers for A-attraction can be parasitically satisfied through steps of A-movement: in contexts of subject extraction, the features that drive WH-movement can be checked by regular steps of A- attraction that draw WH-subjects into A-positions in the middle field. This type of interaction is one that is licensed by particular patterns of head-bundling, in the tradition of Rizzi 1997 and Giorgi & Pianesi 1997, and it is closely bound up with the derivational systems that construct the clausal spine. Its force is to deliver a broad range of contrasts between the systems of subject and non-subject extraction: from Comp-Trace effects and patterns of Anti-Agreement to a type of clause reduction triggered when subjects extract.

The path toward this theoretical framework runs through a series of case studies on the clausal syntax of Mandar, an Austronesian language of Central Indonesia. This is a language that shows High Absolutive syntax, requiring the absolutive DP to raise to the highest A-position in the clause, and the effects of interest emerge in two domains: (i) around a step of A-movement that carries the absolutive DP to the edge of the clause-internal phase and (ii) around the mechanisms that carry wh-subjects to their surface positions. The narrative arc of the investigation thus unfolds along the following lines:

In Chapter Two (Background), I introduce the language, the method of elicitation, and review the rough structure of the clause, synthesizing previous work on the syntax of its Austronesian voice system and the wider structure of the extended Mandar VP.

In Chapter Three (Subject Positions, High Absolutives, and Austronesian Voice), I turn to the path of the absolutive DP and demonstrate, building in part from previous work, that it raises through a series of A-positions on its way to receive Case from T⁰. This chapter introduces the low subject position at the edge of the *voice*P and the first of several higher subject positions within the extended TP, leveraging the idiosyncratic properties of a particular set of quantifiers that derail the usual language-internal preference to spell out nominal arguments in the lowest syntactic positions they occupy.

In Chapter Four (Inversion, Priority, and A-Locality), I turn to a series of PRIORITY EFFECTS that emerge around the low subject position at the edge of the *voiceP*. Breaking from the usual rules of A-locality and the logic of ACTIVITY, I show that this position triggers a pattern of selective attraction—albeit one grounded in the A-syntax—that skips regular DPs to preferentially attract pronouns and quantified expressions. To capture this effect, I develop a theory of A-movement that licenses the emergence of non-local attraction at the edge of the phase, then work out its connection to CASE.

In Chapter Five (Pseudopassives, Pied-Piping, and A-Movement of PPs), I show that the head of the clause-internal phase licenses a second deviation from the canonical profile of A-attraction: just as it can skip intervening DPs, it can also target PPs. The case for this view emerges from the syntax of a pseudopassive-like construction that requires A-movement of a PP through the low subject position, yielding a case that, under particular circumstances, the A-syntax licenses pied-piping of specific PPs.

In Chapter Six (Subject Extraction, Anti-Agreement, and the Unfolding of the CP), at last, I work out the syntax of subject extraction: showing that wh-subjects are carried to their surface positions by a step of A-movement and leveraging a series of patterns to show that this process suspends structure-building above its landing site.

Chapter 2

Language Background

Mandar is a member of the South Sulawesi subgroup (Esser, 1938; Mills, 1975; Grimes & Grimes, 1987; Adelaar, 1994), a branch of Malayo-Polynesian (Smith 2017; also Zobel et al. 2002; Blust 2013), and it was the historical lingua franca of the area which corresponds to the modern-day province of West Sulawesi. The language is spoken by roughly 400,000 people along the southern coast of that province, as well as in several diaspora communities in North Sulawesi, East Kalimantan, and Madura, and its internal division into dialects, as well as its external subgrouping within South Sulawesi, are discussed in Grimes & Grimes 1987. The language has been the subject of a range of descriptive studies in Indonesian, including a grammar (Pelenkahu et al., 1983), a survey of functional elements Sikki et al. 1987, a compilation of traditional poetry Muthalib & Sangi 1991, and a conversational handbook (Friberg & Jerniati, 2000), and several aspects of its grammar have been described by a growing theoretical literature in English: most notably, on the structure of its voice system (Brodkin, 2022b,c), the syntax of the extended VP (Brodkin, 2025b), and the syntax of subjecthood (Brodkin, 2025a,c). All of this work is focused on the standard variety of the language, which is spoken between the cities of Polewali in the east and Tinambung in the west and corresponds to the dialect spoken in the old court of Balanipa (Grimes & Grimes, 1987).

The task of this section is to lay out a brief sketch of the language, drawing together several lines of description from my prior work on the language. When possible, the generalizations laid out below will be illustrated with examples from the major descriptive works on the language in Indonesian, whose contents I have organized into a glossed and searchable corpus available here. The analytical path that leads up to the claims in this thesis, however, is one that runs through seven years of close collab-

oration with a single speaker: Jupri Talib. Jupri is a native speaker of Mandar whose family comes from Lamasariang, a small town near the cultural capital of Balanipa, and he grew up in a monolingual Mandar-speaking household in the ethnically-mixed city of Wonomulyo, the economic capital of the region. I first met Jupri in 2018, while he was a college student at the State University of Malang, and we have worked together continuously since that time: in-person through the year of 2018-2019, over zoom through the pandemic and to the present, and in-person again through a series of extended stays with his family in 2022 and 2023. Every unsourced example in this thesis is drawn from elicitation with Jupri and every generalization presented below is one that was constructed through close work with him, though many of the patterns below have later been verified with further speakers (most notably Sitti Sapiah, a native-speaker linguist at the University of West Sulawesi, and Hairuddin, a nativespeaker linguist at Universitas Hasanuddin in Makassar). For the purposes of this thesis, the result is that the types of data that it has been possible to collect and the types of generalizations that it has been possible to construct are closely bound up with the nature of this working relationship, and as a result, I would like to comment on two aspects of the research process below.

FIRST, while the main language of this relationship is Indonesian, the data that appears in this thesis has been elicited, discussed, and rechecked almost fully in Mandar. This fact is important because Mandar, like all other regional languages of Indonesia, is now spoken within a complex sociolinguistic landscape (for a pan-Indonesian perspective, see Anderbeck 2015): in its historical territory, the language now coexists with standard Indonesian (the language of formal communication and bureaucracy), a local creole that is lexified by Indonesian and the regional language Bugis (used for interethnic communication and increasingly for communication within the Mandar community), and a range of additional languages, including Bugis and Javanese. Among the consequences of this situation are the following: (i) the overwheming majority of Mandar speakers are fluent in the local creole (and in Standard Indonesian), (ii) the spaces where Mandar is used are routinely multilingual and feature high degrees of language mixing and code-switching (along a continuum from the local creole to Standard Indonesian), and (iii) speakers of Mandar are typically comfortable appropriating structures from standard Indonesian and the local creole into ordinary Mandar speech. In my experience, then, it is important to control for influence from both of those languages in the process of elicitation: there is a type of data that can be

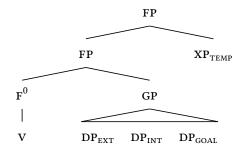
gathered by approaching speakers in Indonesian and asking them to judge sentences in a mixed-language environment, and it is distinct from the type of data that emerges when speakers are approached in Mandar and asked to reflect on whether sentences are acceptable "in native Mandar", rather than the various contact registers of the language (collectively termed *bahasa Indonesiaan* "Indonesianizing language"). As much as possible, this dissertation aims to present data of the second type.

SECOND, there is a single body of data in this thesis that has been systematically elicited and cross-checked in direct comparison to the facts of standard Indonesian, and this surrounds the systems of pronominal coreference and variable binding. Mandar is a language that shows relatively little alignment between hierarchical prominence and linear order, such that there is no consistent and consistently leftmost linear position for the arguments that occupy the highest A-position in the clause. Despite this fact, it shows a range of asymmetries in the systems of pronominal coreference and variable binding, corresponding to the classical Conditions B and C of the binding theory (Chomsky, 1981; Reinhart, 1983), that are completely insensitive to the facts of linear order and make pure reference to c-command instead (Brodkin, 2022b,c). This fact is central to many of the arguments constructed over the course of this thesis, and as a result, the crucial judgments on pronominal coreference and variable binding have been checked and rechecked in many different ways and on many different occasions over a roughly five-year period of close work on these patterns with Jupri. In this process, it has been consistently possible to sharpen the key judgments by drawing comparisons to Indonesian, which differs in the following respect: beyond the usual constraints that turn on c-command, Indonesian shows further restrictions on pronominal coreference and variable binding that seem to be keyed to linear order (of the type familiar from the work of Barker 2012 and Bruening 2014b). In my experience, it seems immediately salient to Jupri and many other speakers of the language that Mandar differs from Indonesian in this respect, and as a result, I have gathered all judgments on pronominal coreference and variable binding in Mandar by asking Jupri (and all other speakers consulted) to directly compare the licit patterns of coreference in Mandar clauses with those that emerge in their Indonesian translations.

Without further ado, we now turn to the shape of the language.

2.1 The Mandar VP

The typical Mandar clause has the shape in (1): nominal arguments surface in the *voice*P in a space that linearly follows the verb and precedes adjuncts to the *voice*P. In this space, they take the rigid order of s-o-d: the external argument (ext) precedes the internal argument (int) and the int precedes the applied argument (goal) in ditransitives. While these arguments are not marked with morphological case, they trigger agreement: transitive and ditransitive verbs show ergative agreement with the ext, while every finite clause hosts a second-position clitic that agrees with the absolutive DP. When the verb is intransitive, this is the ext or int; when the verb is transitive, it is the goal (1).


(1) The Mandar Clause

- a. [voiceP Na-alliang i [EXT iKaco'] [INT bunga] [GOAL iCicci']] dio.

 3ERG-buy 3ABS NAME flowers NAME there
 'Kacho' usually buys Chichi' flowers there.'
- b. $\begin{bmatrix} voiceP & u-alliang & o & b & voiceP & voi$

The order EXT > INT > GOAL is typically the only order that is possible when postverbal arguments surface in the space between the verb and locative and temporal adjuncts like *dionging* 'yesterday.' This fact forms the beginning of a much wider case, laid out in Brodkin 2025b, for the syntax in (2): in Mandar, the EXT, INT, and GOAL are base-generated within an XP that corresponds to the extended VP, the verb raises to the left edge of this domain, locative and temporal adjuncts adjoin to its right, and the verb-initial word order of the language emerges when the EXT, INT, and GOAL are spelled out in their base positions in this domain.

(2) The Mandar voiceP

Central to this analysis is the claim that the string vsod forms a tight syntactic constituent— corresponding to the lower FP in (2)—in the unmarked Mandar clause (setting aside here a rich syntax of rightward Ā-scrambling, which places definite arguments above and after final adjuncts to the *voice*P: Brodkin 2025b). This is a claim that emerges from many distinct lines of evidence in the syntax and prosody, and it will be useful to review its foundations below.

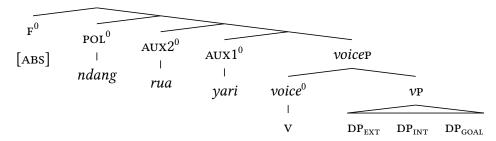
In the space above the Mandar verb sit a closed class of rigidly-ordered elements that I will refer to as auxiliaries. These elements introduce distinctions of polarity and aspect, and there has been a steady accumulation of evidence to suggest that they form a coherent class in the syntax (Brodkin 2021a,b, 2022a,c). Several elements of this set are presented in fragment contexts in the following set of examples: the realis clausal negator *ndang* (3a), the experiential perfect *rua* (3b), and the completive *yari* (3c).

(3) Three Mandar Auxiliaries

a. Ndan na-waca
 b. Rua na-waca
 c. Yari na-baca
 not 3E-read
 'Didn't read'
 Conce read'
 'Did read'

The auxiliaries are initially interesting for the way that they interact with absolutive agreement. In the finite clauses that contain auxiliaries, it is ungrammatical for absolutive agreement to follow the verb. Instead, it must surface after the highest overt auxiliary: in example (4), the negator *ndang* (and on the identical pattern across the subfamily, see Strømme 1994; Matti 1994; Valkama 1995a; Friberg 1996; Finer 1999).

(4) Absolutive Agreement: Follows the Highest Aux


Ndang i rua yari na-baca.

not 3ABS once DID 3ERG-read

'She never DID read it.'

The natural way to interpret these facts, after Brodkin 2022a, is as follows: (i) the auxiliaries spell out functional heads in the middlefield (POL > ASP1 > ASP2), (ii) absolutive agreement sits in a head that falls just above them in the syntax, and (iii) the absolutive agreement enclitic surfaces after the highest overt head in that space: the highest auxiliary whenever auxiliaries are present and the verb whenever they are not. Setting aside the exact mechanisms of its linearization, the result is the syntax in (5)—on which the vsod string corresponds to a relatively small constituent that sits immediately beneath the middle field. I take this to be the *voiceP*.

(5) Mandar Clause Structure

We can now leverage this starting sketch to reveal the constituency of the vsod string. Mandar shows a process of ellipsis that targets the complements of auxiliaries, and this process has much in common with the vp-ellipsis (vpe) of English and Indonesian (Fortin, 2007): it can license sloppy readings, occur in embedded clauses, and involve antecedents in embedded clauses (Hankamer, 1979; Johnson, 2009). An example of this ellipsis is shown in (6), where it targets the complement of *rua* "has."

(6) Mandar VP-Ellipsis

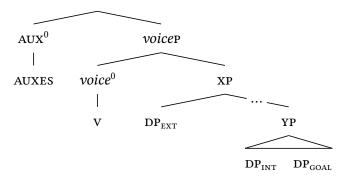
- a. U-sanga ndangi [perf rua [voice na-pikkiri iAli irama]].

 1ERG-think not.3ABS have 3ERG-think.of NAME prosody

 'I thought that Ali had never thought about prosody...'
- b. Tiwikke' a' apa' [perf rua i napikkiri iAli irama]. shocked 1ABS because have 3ABS thought of NAME prosody '…I'm shocked that he has thought about prosody.'

This process of ellipsis is important for the fact that it must suppress the full vsod string. The following example illustrates the key pattern: when VPE suppresses a ditransitive v in a VSOD clause, it is impossible for any postverbal argument to surface overtly in the space between the suppressed verb and a *voiceP*-final adjunct (7).

(7) Stable Constituency for VSOD


- a. Usanga ndangi rua nawengang iKaco' bulawang gamallo kotta'na.
 'I thought that Kacho' had never given fake gold to his girlfriend.'
- b. Mane u-issang i [CP mua' [PERFP rua i...
 just 1ERG-know 3ABS that have 3ABS

 [na-bengang (*do asu) (*do roppong) (*do tokasiasi)] dionging]].
 3ERG-give that dog that grass that poor thing recently

'Now I know (*that jerk) has given (*that junk) (*to the poor thing) recently.'

In light of this fact (and parallel results in the system of predicate clefting), Brodkin 2025b makes the following claim: in the unmarked case, the VSOD string forms a syntactic constituent. Building on the prosody of these strings, more specifically, he argues for the structure in (8): the VSOD string forms a *voice*P that contains a smaller XP that hosts the SOD string and an even smaller YP that hosts the substring OD inside.

(8) The Mandar VoiceP

2.2 Building the Mandar Verb

From this initial picture of clause structure, we can now turn to the mechanisms that position the verb. Despite the general predicate-initial order, the Mandar verb always surfaces at the left edge of the *voiceP* alone. Even in the contexts where the INT is indefinite, for instance, that argument must follow the EXT (9). The result is that Mandar differs from the many languages where verb-initial orders have been argued to emerge through a type of predicate-fronting that carries up the VP (Massam, 2001).

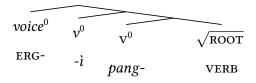
(9) Mandar: Verb Movement Never Pied-Pipes the Object

*Na-alli-ang i $[_{\text{o}}$ posa] $[_{\text{s}}$ iKaco'] $[_{\text{d}}$ iCicci'] dionging. 3erg-buy-appl 3abs cat name name yesterday Intended: 'Kacho' bought a cat for Chichi' yesterday.'

The total absence of pied-piping then correlates with a second fact of morphology. The standard transitive verbs of the language, as we have seen, host a prefix that spells out ergative agreement with the EXT. But beneath this prefix, there are many further affixes that fall closer to the verbal root. Many transitive verbs, to begin, host an additional suffix -i that is overtly realized whenever these verbs surface at the right edges of a high-level prosodic domain (the intonational phrase; on this affix see Brodkin To Appear). The following examples show its distribution: the suffix appears

after the transitive verb *napangino* 'play' when the verb is final, as when the INT is null (10a), but it is suppressed when the verb is followed by anything overt (10b).

- (10) Mandar Verbs: Morphological Complexity
 - a. {\(\begin{aligned} \text{Byasa i na-pangino-i} \\ \text{usually 3ABS 3ERG-play-TRANSITIVE} \end{aligned} \text{'They usually play it.'}
 - b. $\{_{\iota} \text{ Byasa i na-pangino-} \underline{\hspace{0.5cm}} \text{ do panginoang o } \}$ usually 3ABS 3ERG-play-TRANSITIVE that game there 'They usually play that game there.'


Beneath the transitivity suffixes, there are also several verbalizing prefixes that mediate the attachment of verbal morphology to nominal roots. The most productive elements in this class are the prefixes *pang-*, *pe-*, and *po-*, which surface in a type of complementary distribution that involves contextual allomorphy (Brodkin, 2022c).

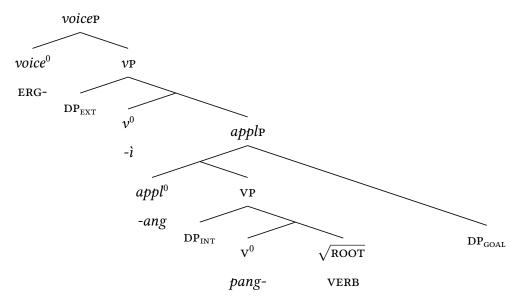
(11) Mandar Verbalizers

a. na-pang-inrang
 b. na-pe-bunga
 c. na-po-sara
 3ERG-VBLZ-flower
 3ERG-VBLZ-flower
 'to borrow'
 'to pluck'
 'to fuss over'

This morphological sketch suggests the following syntax of the VP: above the root sit three heads that host (*i*) the verbalizers pang-, pe-, pe'-, and po-, (*ii*) the transitivity suffix -i, and (iii) the ergative prefixes. The following tree presents the hierarchical organization of these heads and the labels that they will carry throughout this work. I will refer to the head that hosts the verbalizers as the category-defining v^0 , in the sense of Distributed Morphology (Halle & Marantz, 1993); I will refer to the head that hosts the transitivity suffix -i as v^0 , the head that introduces the EXT (Collins, 2005; Merchant, 2013); and I will refer to the head that hosts the ergative prefixes as $voice^0$.

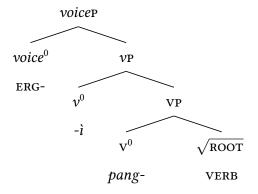
(12) Three Heads Above the Mandar Verb

To this starting picture we can now introduce the head $appl^0$. There are several types of DP-DP ditransitive in the language, and all of these require the appearance of applicative suffix on the verb. The most common of these applicative suffixes is -ang (13), and I will take it to spell out a low applicative head (Pylkkänen, 2008).


(13) The Applicative Suffix

Na-alli-**ang** i iKaco' lo'diang iCicci'. 3ERG-buy-APPL 3ABS NAME ring NAME

'Kacho' bought Chichi' a ring.'


Introducing this final head to the space above the verb, we arrive at the syntax in (14): in descending order, e the heads $voice^0$ (ergative prefixes), v^0 (transitivity suffix; introduces the EXT); $appl^0$ (applicatives; introduce the GOAL), and v^0 (verbalizers; introduce the INT). This footwork allows us to understand the facts of voiceP-internal constituency in the following way: the string sod forms an XP that corresponds to the vP, while the substring od forms a smaller XP that corresponds to the applP. Anticipating the results of the discussion to come, I will assume further that the order of arguments in this space emerges from the fact that the GOAL is postsyntactically linearized to the right of the applP—yielding the voiceP-internal order s > o > D.

(14) The Mandar VoiceP: The Heads

From this position, we can draw a classical link from the linear position of the verb to the mechanisms that deliver its morphological shape. I propose that the Mandar verb is carried up to the left edge of the *voice*P by a process of morphological head-movement: namely, the *Amalgamation* of Harizanov & Gribanova 2019. This process builds a tight morphosyntactic constituent of the verbal root and the exponents of v^0 , $appl^0$, v^0 , and $voice^0$, setting up a configuration where these elements will all be parsed into a contiguous prosodic word in the postsyntax. At the same time, it carries this head up to a position just above the vP—setting up a configuration on which the verb will be linearized before the sod string in the postsyntax. The result is a familiar analysis of the vso string: one that begins from a traditional vP, generating the ext above the v and the int, and derives the order of vso from the view that the ext and int are spelled out in a small domain that the verb escapes by head-movement.

(15) VSOD Order: Head-Movement of the Verb

2.3 The Voice System

We can now leverage this analysis to map the wider system of verbal morphology—and in particular, the network of alternations that make up the Austronesian system of *voice*. There are several more affixes in Mandar that surface in complementary distribution with the ergative prefixes, and these morphological alternations interact in complex ways with many systems of the syntax. For instance, there is a construction that is built by deleting both the transitivity suffix and the ergative prefixes and affixing the verb with the prefix *mang-*. I will refer to this as the antipassive.

(16) Voice Alternations: the Antipassive Voice

Byasa i **mam**-baca iKaco' buku diting o. usually 3ABS ANTIP-read NAME book there there

'Kacho' usually reads books over there.'

The antipassive corresponds to an inherited morphosyntactic construction that is known in the Austronesian tradition as the "Agent Voice" ((Kroeger, 1993)). Within the traditional terminology, it stands in morphological opposition to two further voices in the language: the "Patient Voice" (the transitive) and the "Locative Voice" (the ditransitive; for discussion, see Aldridge 2004; Paul & Travis 2006). The differences between these three voices, however, extend beyond the domain of morphology. When verbs are placed in the antipassive voice, they do not force visible demotion of the INT and GOAL—and as a result, both of those arguments may appear as regular nominals in their usual positions in the vsod string. But in this context, is clear that the syntax of those arguments is realigned: antipassive verbs exceptionally require both the INT and the GOAL to be indefinite (17a) and allow both arguments to be dropped (17b).

- (17) The Antipassive: Two Differences from the Transitive
 - a. Mam-beng-ang i iKaco' kandekande passikola.
 ANTIP-give-APPL 3ABS NAME snacks schoolchildren
 'Kacho' is giving snacks to schoolchildren.'
 - b. **Mam**-beso i iKaco ___ pole ri ATM ANTIP-pull 3ABS NAME NP from in ATM 'Kacho' withdrew from the ATM.'

Many properties of this alternation have risen into matters of serious dispute in other languages of the family, and as a result, the first task of our investigation will be to resolve the matter of its height. In other languages of the family, there is a strand of the literature that places the cognate morphology very high in the clause: certain analyses of Tagalog, for instance, place it in c⁰ (Chen, 2017) or T⁰ (Rackowski, 2002; Rackowski & Richards, 2005; Hsieh, 2020). But there is a second strand of work on Tagalog that places the relevant morphology within the *voice*P (Aldridge, 2004), and as we have seen in Mandar, the basic facts of clause structure point toward the same result. With no regard to the facts of voice, the Mandar verb surfaces beneath a string of auxiliaries that sit in the middle field. If the verb is carried up to this position by the same process of head-movement that amalgamates it with its associated morphology, then all of this morphology—including that of the antipassive verbs in (16)-(17)—must be distributed across a string of heads that lie beneath the middle field: in a syntactic space that I will term the *voice*P.

The task that follows, then, is to pin down the exact positions of the Mandar voice morphemes within this space. To this end, we can begin from the periphery: situating this initial alternations within the wider system of voice and building a gradual case that all of this morphology must be distributed across the heads $voice^0$, v^0 , and $appl^0$. Our starting point is thus a corner of this system that has a slightly more familiar shape: the passive construction in (18a). Mandar has a passive construction that is built with the prefix di-, and in this construction, the EXT is completely suppressed. That argument cannot be realized as an immediately postverbal nominal, as it can in the corresponding di-passive of Indonesian, and it also cannot be realized in a PP (18b).

(18) The Mandar Voice System: the Passive

- a. Di-issang di carita-nna de kappung e?
 PASS-know JUST.3ABS story-3GEN this village here
 'Are the stories of this village known?'
 Friberg & Jerniati 2000, 207
- b. Di-bokko' i sola-u (*sola/pole/di iting kanene) . PASS-bite 3ABS friend-1GEN with/from/in that crocodile 'My friend was bitten (*by that crocodile).'

The voice system then contains two further passive constructions that suppress the EXT in the same way: an involuntary passive built with the prefix ti- (19a) and its allomorphs (19b) and an adversative passive built with the circumfix ka-ang (19c).

(19) Mandar Passives: Two More Types

- a. Ti-saka mi do posa o.
 INVOL-catch PFV.3ABS that cat there
 'That cat has gotten itself caught.' Pelenkahu *et al.* 1983, 209
- b. Tas-sear o i'o daera Balanipa.
 INVOL-broadcast 2ABS you region PLACE
 'You're being broadcast throughout Balanipa.' Muthalib & Sangi 1991, 327
- c. **Ka**-issang-**ang** i dio di kappung ma'ua tau makikkir sanna'.

 ADV-know-ADV 3ABS there in village as person stingy very

 'He was known in the village as a miser.' Pelenkahu *et al.* 1983, 156

The facts of linear order, once again, suggest that these affixes spell out heads in the *voice*: if the Mandar verb combines with its morphology through a process of head-movement to *voice*⁰, then *di*-, *ti*-, and *ka*- must spell out heads along its path. The particular facts of these affixes, however, open up two further, lines of evidence for this same result. The first of these is an argument from the morphology: these affixes show patterns of allomorphy that are conditioned by the identity of the verb,

and this type of interactions should only be possible if they spelled out heads that sat close to the root (Embick, 2010; Merchant, 2015). The second is an argument from the interface with semantics: if patterns of argument introduction and suppression are restricted to a relatively narrow syntactic domain, like the *voice*P, then the heads that interfere with the introduction of the EXT must sit low in the clause (Baker, 1988; Ramchand, 2008). Brodkin 2022c thus proposes that di-, ti-, and ka- spell out various types of passive v^0 s that fail to introduce the EXT.

We can now extend the same logic to a fourth type of voice: the comitative, which is built with the prefix *si*-. Like the applicative -*ang*, this prefix spells out a head that introduces arguments: its presence allows comitative arguments to surface as DPs (20a) when they would otherwise have to surface in PPs (20b).

- (20) Another Voice: the Comitative
 - a. Diting o, **si-kadeppe' koko'**. there over there COM-near KITCHEN TOOL

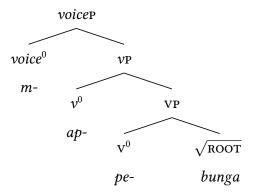
 'Over there near the *koko*'. Pelenkahu *et al.* 1983, 163
 - b. Boyan-na kaminang kadeppe' pole di sasi'.
 house-3GEN most close from in ocean
 'The house closest to the ocean.'
 Sikki et al. 1987, 464

Brodkin 2022c thus proposes that the comitative prefix *si*- spells out a low applicative head: one low enough to introduce arguments in the *voiceP* and be picked up by head-movement of the verb to *voice*⁰. In support of this view, we can now add one further fact: the comitative prefix is also recruited to build reciprocal verbs, and in this function, it often changes the meanings of verbal roots in the process—thus driving the shift from the transitive *na-ala* 'take' in (21a) to the reciprocal *si-ala* 'marry' in (21b). On the theory of contextual allosemy proposed by Marantz 2013, this fact provides further evidence for the low position of this prefix: if the construction of idiomatic readings is constrained by restrictions on syntactic locality, then *si*- must spell out a head that sits close to the root.

- (21) The Comitative Voice: Reciprocals
 - a. **Na-ala** i iKaco' sulo.

 3ERG-take 3ABS NAME torch
 'Kacho' took the torch.'

b. Si-ala i iKaco' iCicci.'COM-take 3ABS NAME NAME'Kacho' and Chichi' got married (took each other).'


With this much in place, we can return to the morphology of the antipassive. The morphology of this voice is relatively complex in Mandar (Brodkin, 2022c), and as we have seen, it is typically built by deleting the transitivity suffix and replacing the ergative prefixes with the prefix mang-, retaining all the verbalizers that sit just above the root (22a). Following the regular phonology, the final $/\eta$ / of this prefix assimilates completely to the following segment (though it remains nasal before $/b \ d \ d \ g$ /: Brodkin To Appear). Before many roots, however, this prefix takes the alternative forms ma'-, me-, and me'- (22b). These alternations are conditioned by the identity of the root, and as a result, they suggest that this morphology, too, must sit in the voiceP.

(22) The Antipassive (Agent Voice)

- a. **Mam**-baca, **mat**-tunu, **map-pe-bunga**, **map-po-sara**ANTIP-read ANTIP-roast ANTIP-VBLZ-flower ANTIP-VBLZ-fuss 'read, roast, pluck, fuss over.'
- b. Ma'-balu' (bau), me-bawa (tau), me'-guru (kalinda'da')
 ANTIP-sell fish ANTIP-bring person ANTIP-study poems
 'To sell fish, to escort people, to study poems.'

The phonological symmetries between these affixes, in turn, suggest that each is built from two parts: an outer affix m- and an inner morpheme that defines the remaining segmental content. This analysis finds support from many independent systems in the language (Brodkin, 2022c), and it is one that establishes a synchronic parallel with the analogous morphology in Tagalog (Rackowski, 2002; Nie, 2020; Hsieh, 2020) and Malagasy (Paul, 2000; Ting, 2023)). Adopting this view, Brodkin 2022c thus proposes the analysis in (23): the prefixal morphology of an antipassive verb like mappebunga 'pluck' is distributed across the heads $voice^0$ (m-), v^0 (ap-), and v^0 (pe-).

(23) The Structure of the Antipassive Voice

2.4 The System of Agreement

With the voice alternations now localized to the *voice*P, we can now begin to understand how they interact with the clausal syntax—and in particular, the system of agreement. As we have seen, there is an enclitic that sits high in the Mandar clause and spells out agreement with the absolutive DP: the intransitive EXT or INT, the transitive INT, the ditransitive GOAL, and the antipassive EXT. Beyond its second-position behavior, this enclitic shows a number of other properties to suggest that it sits very high. Beneath the irrealis subordinator *anna*, for instance, it shows a special pattern of allomorphy and surfaces as a suffix on c⁰. As a result, Brodkin 2022c proposes that this agreement sits in T⁰.

(24) Absolutive Agreement: Allomorphy Conditioned by C

Bulang, indoi a' mai, **anna'-u** mala ma'issangi alawe-u.
moon shine.on 1ABS me that-1ABS.IRREALIS can know self-1GEN

'Moon, shine on me, that I might know myself.' Bulang, by Sulkep Liaco

This analytical step opens up a key link to the syntax of finiteness. With one exception noted in Chapter Three, absolutive agreement appears in every finite Mandar clause. In the same vein, it is absent from the reduced clauses that lack the functional structure of the middle field, like control complements (25).

(25) Absolutive Agreement: Absent from Non-Finite Environments

Batabata **a'** [polP di-ita ____/*a' marondong].
reluctant 1ABS PASS-see 1ABS tomorrow

'I'm reluctant ____ to be seen tomorrow.'

We can now draw a connection to the syntax of nominal licensing: the network of syntactic systems that converge to determine where nominals can and cannot appear. In the non-finite constructions that lack absolutive agreement, it is generally possible to introduce an EXT whenever the verb hosts ergative agreement: in example (26), for instance, it is possible for an EXT to surface in the non-finite complement of *batabata* 'reluctant.' In that same space, however, it is ungrammatical to introduce an INT.

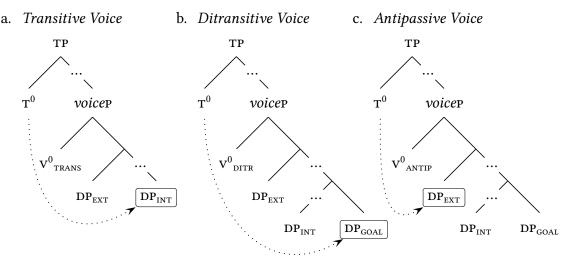
(26) Constructions without Absolutive Agreement: No Overt Absolutive DPs

Batabata a' yau [polP na-pelambi'i __ [EXT kindo'-u] [INT (*yau)]].

reluctant 1ABS 1SG 3ERG-visit mom-1GEN 1SG

'I'm reluctant to be visited by my mom.'

Brodkin 2022c thus proposes that the system of absolutive agreement endows its targets with abstract Case (on a par with ϕ -agreement more broadly: Raposo 1987). This analytical step, in turn, opens up a second layer to the system of Austronesian voice. In clauses built around transitive verbs, absolutive agreement targets the INT. When the verb is ditransitive, however, the same type of agreement must target the GOAL (27a)—and when the verb is antipassive, it must target the EXT (27b). The result is an exact mirror to the relationship between voice and the distribution of the morphologically unmarked case in the languages of the Philippines and Taiwan (Payne 1982; De Guzman 1988; Gerdts 1988; Aldridge 2004; Liao 2004; Chang 2011; and in Proto-Austronesian: Ross 2006; Blust 2015): the voice of the verb, in our terms, determines the identity of the absolutive DP.


- (27) Absolutive Agreement: Changes Targets with Voice
 - a. Na-beng-ang a' [EXT iKaco'] [INT buku] [GOAL pro] dionging. 3ERG-give-APPL 1ABS NAME book 1sG yesterday 'Kacho' gave me the book yesterday.'
 - b. Mam-baca **a'** [EXT **yau**] [INT buku] digena'.

 ANTIP-read 1ABS 1SG book earlier

 'I was reading a book earlier.'

This connection sets up a natural perspective on the clause structure of the language that is grounded in both the regional literature on Austronesian and the wider theory of ergativity. This is one that posits two separate and interacting layers of structure: a higher system of *agreement*, operating in the middle field to assign abstract absolutive Case, and a lower system of *voice*, operating in the *voice*P to determine the identity of the target DP. In the transitive *voice*Ps of the language, this lower system conspires to force the source of absolutive Case to make contact with the INT (28a); in the *voice*Ps that host ditransitive and antipassive verbs, it works to ensure that T⁰ will target the GOAL (28b) and EXT (28c). In the South Sulawesi subfamily, this is the type of syntax established by earlier work on Selayarese (Finer, 1997, 1999; Béjar, 1999); across the wider region, it has been put forward for Tagalog, Cebuano, Malay, Indonesian, and Malagasy by Guilfoyle *et al.* 1992 (avoiding the specific terminology of ergativity) and since developed by much further work.

(28) Two Layers to the Mandar Clause

The result is that the system of absolutive agreement seems to play a role similar to that of subject agreement in a language like English: it reaches down from the middle field to target a single nominal argument in the *voice*P. Its particular interaction with the system of voice, in turn, is familiar from the wide class of ergative languages where the identity of the absolutive argument is determined by alternations in voice: the role of the voice system, in short, is to determine the identity of the argument that must receive Case from T⁰. This is the understanding of Mandar clause structure that emerges from Brodkin 2022c, and it will serve as the foundation for the series of interconnected investigations of the language below.

Chapter 3

Subject Positions, High Absolutives, and Austronesian Voice

3.1 Introduction

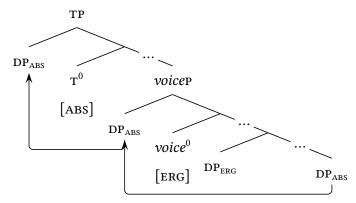
The notion of subjecthood comes down to Minimalism with a particular theoretical shape. The traditional conceptualization, familiar from Relational Grammar, took the notion to be a syntactic primitive associated with a cross-linguistically stable set of properties. The Standard Theory, in contrast, proposed a redefinition in terms of position: subjects occupied a dedicated space between the extended VP and CP, and from this position their properties flowed. The work that has followed in this tradition, in turn, has come to decompose that network of subject properties and link them, piece by piece, to a network of interacting and interlocking relationships established between a single DP and the functional heads of the extended TP (McCloskey, 1997).

In the framework that emerges from these parts, the notion of subject holds no formal status of its own—but it is still possible to provide a consistent cross-linguistic definition of what a subject must be. Syntactic derivation is now standardly understood to be driven by the need to satisfy the formal requirements of nominal arguments and functional heads, and the principle requirement that nominal arguments carry into the derivation is the need for abstract Case (Vergnaud, 1977). As this need pushes them to form relationships with the functional heads along the clausal spine, they are then subjected to the independent caprices of those heads—forcing, among other things, the steps of movement driven by Attract (Chomsky, 2001). On this view,

the syntax of subjecthood emerges from a particular theory of clause structure and Case: one on which the functional heads of the extended vp assign Case to all of their arguments but one, forcing that DP to receive Case from the heads of the the extended TP—or the middle field. It is in this context that the properties of subjects emerge: the DPs licensed in this way are drawn up to higher positions by the idiosyncratic and cross-linguistically variant properties of those heads (Cardinaletti, 2004); they often pass through strings of higher positions as a result (Bobaljik & Jonas, 1996; Shlonsky, 2000; Cable, 2012; Zyman, 2018); and they are subjected to finer requirements—like the need to be definite (Diesing & Jelinek, 1995)—in the same way.

One of the crowning achievements of this paradigm emerges in the realm of ergativity. Ergative systems have long been recognized to raise challenges for earlier theories of subjecthood, and this is because they often force the traditional properties of subjects to come apart (Schachter 1976; Keenan 1976; Van Valin Jr 1981; Manning 1996; see also Svenonius 2002). Some of these properties, like reflexive binding, consistently suggest structural prominence for the ergative DP (Anderson 1976; Brodkin & Royer 2024). But in many systems of this type, a second set of properties—bound up with the systems of case-marking and ϕ -agreement (Bok-Bennema, 1991; Tada, 1993), scope (Bittner, 1987, 1994), pronominal coreference (Kroeger, 1993; Brodkin, 2022c; Royer, 2023), and variable binding (Richards, 2000; Pearson, 2005)—strictly fall to the absolutive DP instead. The natural way to understand these systems is first put forward by Guilfoyle et al. 1992 in a discussion of Western Austronesian languages couched in non-ergative terms. Building from the VP-internal subject hypothesis (Fukui & Speas, 1986; Koopman & Sportiche, 1988), Guilfoyle et al. 1992 argue that ergative DPs strictly originate in the highest thematic position in the extended vp—the position from which their apparent subject properties flow. The distribution of higher subject properties, however, follows from a second fact: the functional structure of the extended VP can assign Case to the transitive external argument, rendering it ergative, but not to the internal argument—leaving it Caseless in that domain (see also Bok-Bennema 1991; Bittner & Hale 1996a,b; Ershova 2019). The result is a clausal architecture that shows what Coon et al. 2014 term High Absolutive Syntax: one on which the absolutive argument is forced to receive Case from the functional heads of the extended TP and is thus exposed it to the higher network of systems that deliver the middle field properties of subjecthood—often even raising it into that layer of the clause.

The theoretical elegance and explanatory force of this analysis has led to its adoption in many systems of this type: in Inuit (Bok-Bennema, 1991; Bittner & Hale, 1996a,b), Mayan (Coon *et al.*, 2014; Royer, 2023), Tupian (Storto, 1999), Salishan (Wiltschko, 2006), Tsimshianic (Brown, 2016), Circassian (Ershova, 2019), and Austronesian (Aldridge, 2004; Brodkin, 2022c)—where it is also often adopted and framed in the traditional (non-ergative) terminology (Guilfoyle *et al.*, 1992; Erlewine, 2018; Erlewine & Lim, 2023; Ting, 2023). But there are a number of puzzles that hang over the link from subjecthood to the syntax of High Absolutive DPs, and foremost among these are two:


One: to what extent do absolutive arguments interact with the functional structure of the middle field? There is by now a large literature to show that there are many systems where absolutive arguments are Case-licensed by heads in the extended vp even when they bear an unmarked morphological case (as in Warlpiri: Legate 2006) or control ϕ -agreement on τ^0 (as in Hindi-Urdu, seen especially in the arena of long-distance agreement: Bhatt 2005; Bhatt & Keine 2017). It is thus essential to understand the syntax of absolutive DPs in a case-by-case way—and build from there to a typology of interactions between absolutive DPs and the middle field.

Two: to what extent do absolutive arguments raise out of the extended VP? Many cases of High Absolutive syntax emerge in systems that show verb-initial order, and as a result, it is often assumed that High Absolutive arguments raise no farther than the edge of the extended VP (in Austronesian: Aldridge 2004; Erlewine 2018; Erlewine & Lim 2023 and in Mayan: Coon *et al.* 2014; Royer 2023). This stance would seem to separate High Absolutive DPs from nominative subjects, which often raise overtly into the middle field, and it raises a series of questions on whether absolutive DPs interact with that layer of the clause in the same way.

In the face of these puzzles, the task of this chapter is to work out the syntax of the absolutive DP in Mandar. Our goal will be to develop and defend the analysis in (2): one on which the absolutive DP covertly raises to a low subject position in the *voiceP* and then to a high subject position in the middle field. The path that leads us to this view will provide new linear evidence that high absolutive DPs often raise through the edge of the clause-internal phase (Aldridge, 2004) and ultimately move into the middle field (Guilfoyle *et al.*, 1992)—and redeem, in that way, the intuition that the absolutive

DP is a subject in the classical generative sense.

(2) Mandar: Rough Clausal Syntax

The remainder of this chapter is structured as follows. Section 2 shows that the absolutive DP raises covertly to a low subject position. Section 3 shows that it then raises further to a high subject position, leveraging a class of nominals whose movement is always overt. Section 4 shows that the feeding relationship between the two subject positions is able to break down and that each position can force the insertion of expletives along the way. Section 5 then concludes.

3.2 The Low Subject Position

Our investigation begins from the link from absolutive agreement to the syntax of subjecthood. When we control for the occurrence of rightward scrambling, we have seen that Mandar requires postverbal arguments to surface in the rigid order of s>o>d: when the verb is transitive (3a), ditransitive (3b), or antipassive (3c). In the general case, then, the absolutive argument does not visibly move to a consistent and high linear position—establishing a parallel between Mandar and Tagalog (Rackowski, 2002), many other languages of the Philippines (Reid & Liao, 2004), and all the languages of South Sulawesi (Friberg, 1996; Strømme, 1994; Matti, 1994; Valkama, 1995b; Finer, 1999; Béjar, 1999; Jukes, 2006; Laskowske, 2016).

(3) Verb-Initial Clauses: VSOD Order

a. Na-alli i [EXT iKaco'] [INT itim bunga].

3ERG-buy 3ABS NAME that flower

'Kacho' bought those flowers.'

- b. Na-alli-ang i [EXT iKaco'] [INT itim bunga] [GOAL iCicci'].

 3ERG-buy-APPL 3ABS NAME that flower NAME

 'Kacho' bought those flowers for Chichi'.'
- c. Ma'-alli-ang i [EXT iKaco'] [INT buku] [GOAL passikola].

 ANTIP-buy-APPL 3ABS NAME book schoolkid

 'Kacho' is buying books for schoolkids.'

This fact raises the following question: is there any dedicated step of movement that raises the absolutive DP to a consistent position, or are its features simply passed up to T⁰ without movement of that DP? The task of this section is to make a case for the first position: reviewing a series of arguments from Brodkin 2022c and then introducing a second body of facts from the domain of linear order, I will argue that the absolutive DP must move into a dedicated subject position at the edge of the *voiceP*.

3.2.1 High Absolutive Syntax

We can begin with a series of asymmetries in the domains of pronominal coreference and variable binding that were first documented by Brodkin 2022c. These restrictions are mirrored by analogous constraints in other languages of the region, including Tagalog (Kroeger, 1993; Richards, 2000) and Malagasy (Pearson, 2005), and their force is to lead us toward two interlocking conclusions: (*i*) the grammar of Mandar must enforce relatively classical versions of Conditions B and C of the Binding Theory (Chomsky, 1981; Reinhart, 1983), which must be formulated in terms of c-command, and (*ii*) based on its behavior with respect to these constraints, the absolutive DP must raise to an A-position above all other arguments in the clause.

3.2.1.1 Condition C

Mandar is a language that requires weak third-person singular pronouns to be null. Despite this fact, these null pronouns induce a familiar constraint: they cannot corefer with R-expressions within their c-command domains. The following example illustrates: a pronominal EXT cannot be coindexed with an R-expression in a lower PP.

(4) Mandar: Condition C

Sicaka i [EXT pro] [PP sola nyawa-na kanne'-na iAli].

convene 3ABS he with soul-3GEN grandfather-3GEN NAME

'He*i,i convened with the ghost of Ali;'s grandfather.'

This restriction operates in a consistent and simple way between non-absolutive DPS. When the EXT and the INT are both not absolutive, for instance, the EXT induces regular Condition C violations over the INT. When the verb is ditransitive, then, it is impossible for a pronominal EXT to be coindexed with an R-expression in the INT (5).

(5) Condition C: Ergative EXT > Accustive INT

Na-kiring-ang a' $\begin{bmatrix} EXT & pro \end{bmatrix}$ $\begin{bmatrix} INT & buku-na & iAli \end{bmatrix}$.

3ERG-send-APPL 1ABS he book-3GEN NAME 'He*_{i,j} sent me Ali_i's books.'

This restriction is insensitive to the facts of linear order, and as a result, it emerges in the same fashion between the INT and the following GOAL. Across the DP-DP ditransitives of the language, the INT is systematically base-generated beneath the GOAL (Chapters 4-5), and in this configuration, it can always be a pronoun coindexed with an R-expression in the following GOAL (though this can only be seen when the INT is inanimate, given certain complications discussed in Chapter Four). These facts suggest that the language enforces a version of Condition C that must be formulated with pure respect to C-command: without regard to the facts of linear order, null pronouns cannot C-command coreferential R-expressions.

(6) Condition C: Accusative INT < Absolutive GOAL U-kiring-ang i [$_{INT}$ pro] [$_{GOAL}$ penerbit-na buku-u] digena'. 1ERG-send-APPL 3ABS it publisher-3GEN book-1GEN earlier 'I sent it $_{i,i}$ to my book $_i$'s publisher.'

From this position, we can turn to the behavior of the absolutive DP. When the verb is transitive and the INT is absolutive, the INT gains the ability to contain R-expressions coindexed with the EXT.

(7) Condition C: Absolutive INT > Ergative EXT

Na-waca i [EXT pro] [INT buku-na iAli] dionging.

3ERG-read 3ABS he book-3GEN NAME yesterday

'Heii read Alii's book yesterday.'

When the verb is ditransitive and the GOAL is absolutive, in turn, the GOAL acquires the same privilege: it can contain an R-expression coindexed with the EXT, as if it raised out of the c-command domain of that DP (8).

(8) Condition C: Absolutive GOAL > Ergative EXT

Na-kiring-ang i $\begin{bmatrix} EXT & pro \end{bmatrix} \begin{bmatrix} EXT$

3.2.1.2 Variable Binding

The same asymmetries emerge in the system of variable binding. Mandar has a universal quantifier *nasang* "every" that is forced to subextract from its associates and raise to precede the absolutive enclitics in finite clauses (Brodkin, 2025e). This step is shown in the two clauses below: *nasang* follows its associate in the control complement in (9a), but it raises to follow the verb in the finite clause in (9b).

- (9) Universal Quantification: Nasang "Every"
 - a. Batabata a' [POLP na-pittule'i [EXT dospeng-u nasang]. reluctant 1ABS 3ERG-interrogate advisor-1GEN every 'I'm reluctant to be interrogated by every one of my advisors.'
 - b. Na-pittule'i **nasang** a' [EXT dospeng-u ___] digena'.

 3ERG-interrogate every 1ABS advisor-1GEN earlier

 'Every one of my advisors interrogated me earlier.'

The movement of *nasang* "every" does not influence patterns of variable binding: instead, the possibilities for coreference in this system are exclusively determined by the c-command relationships that hold between the associate of *nasang* and the other elements in the clause. As a result, variable binding is constrained exclusively by the following restriction: a pronoun cannot be bound by an *every*-associate that sits in its c-command domain. We can see this effect by considering the pair of examples in (10): when *every* originates in a low PP, it cannot bind into the EXT (10a), but when it originates in the EXT, it can bind into a low PP (10b).

- (10) Mandar: Variable Binding Requires Underlying C-Command
 - a. Sicaka **nasang** i $\begin{bmatrix} EXT \end{bmatrix}$ sanaeke-na D D D speak every 3ABS kid-3GEN his with dad 'His*D kid spoke with every D father.'
 - b. Sicaka **nasang** i [EXT sanaeke ____] [PP sola kama'-na *pro*]. speak every 3ABS kid with dad-3GEN his 'Every, kid spoke with his, father.'

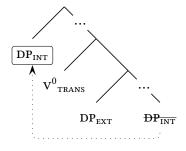
As a result, the restrictions on variable binding between non-absolutive DPs are identical to the restrictions that we have seen in the domain of Condition C. Without regard to the facts of linear order, the INT cannot bind into higher arguments like the preceding EXT (11a) or the following GOAL (11b) when it is not absolutive.

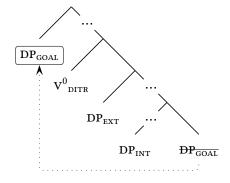
- (11) Variable Binding: Accusative INT < Preceding EXT/ Following GOAL
 - a. Na-kiring-ang **nasang** a' $\begin{bmatrix} EXT \\ EXT \end{bmatrix}$ panulis-na $\begin{bmatrix} PO \\ EXT \end{bmatrix}$ buku $\begin{bmatrix} EXT \\ EXT \end{bmatrix}$. 3ERG-send-APPL every 1ABS author-3GEN its book 'Its *_{i,j} author sent me every $\begin{bmatrix} EXT \\ EXT \end{bmatrix}$ book.'
 - b. U-kiring-ang **nasang** i [INT buku ____] [GOAL pengedit-na *pro*].

 1ERG-send-APPL every 3ABS book editor-3GEN its

 'I sent every book to its*, editor.'

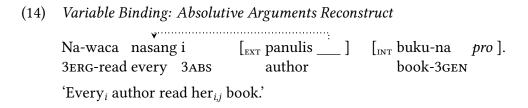
With this much in place, we can now turn to the behavior of the absolutive DP. When the verb is transitive and the INT is absolutive, the INT gains the ability to bind into the EXT (12a). When the verb is ditransitive and the GOAL is absolutive, in turn, the GOAL gains this privilege instead (12b).


- (12) Variable Binding: Absolutive INT/ GOAL > Ergative EXT
 - a. Na-waca **nasang** i $\begin{bmatrix} EXT & Panulis-na & Pro \end{bmatrix}$ $\begin{bmatrix} INT & Duku & \dots \end{bmatrix}$. 3ERG-read every 3ABS author-3GEN its book 'Its_{i,i} author read every_i book.'
 - b. Na-waca-ngang **nasang** i [EXT kindo'-na pro] [GOAL sanaeke ...]. 3ERG-read-APPL every 3ABS mom-3GEN her kid 'Her_{i,j} mom read to every_i kid.'


3.2.1.3 Reconstruction and A-Movement

These asymmetries in binding reveal that there is a second type of structural privilege that falls to the absolutive DP: beyond interacting with T⁰, this argument must invariably raise—in a manner not typically reflected in the word order—to a position that c-commands all other arguments in the clause. When the verb is transitive, this step targets the INT (13a); when it is ditransitive, it targets the GOAL (13b).

- (13) Absolutive Arguments: Raise to a High Position in Mandar
 - a. Transitive: High INT


b. Ditransitive: High GOAL

The particular impact of this movement on the systems of binding and coreference, in turn, fits naturally with the understanding that it is bound up with the assignment of abstract Case. Since the work of Postal 1971 and Chomsky 1981, it has become traditional to divide phrasal movements into two classes: A-movements and \bar{A} -movements. The body of work that follows in this tradition has found that the movements in these two classes interact in consistent ways with many independent systems in the syntax, and as a result, there are rich and far-reaching correlations between the ways that individual steps of movement interact with patterns of binding, case-assignment, and ϕ -agreement (along with other systems; for an overview, see Safir 2019). For our purposes, the most important correlation is the following: the steps of movement bound up with the assignment of Case—and thus subjecthood—should be A-movements, which have the ability to alter patterns of pronominal coreference and variable binding. If the absolutive DP is raised by systems that position it to receive Case from T^0 , then, we should expect the ensuing steps of movement to deliver the exact type of binding privilege that we have seen above.

We can tighten this identification with a short foray into the system of reconstruction. In a manner that cannot be reduced to the facts of linear order, Richards 2000 and Pearson 2005 show that variable binding works in a very similar way in Tagalog and Malagasy: in the terminology of the present investigation, nominal arguments gain the ability to bind into the ergative DP in those languages whenever they receive abstract absolutive Case. In spite of this fact, these authors propose that these DPs are carried up to their high position by a step of Ā-movement: one unrelated to the TP-level systems of Case-assignment and disconnected from the syntax of subjecthood (pace the analyses of those languages put forward by Guilfoyle et al. 1992). Setting aside a generalization about reflexive anaphors that turns out to be irrelevant to this debate (for reasons both internal to Malagasy: Paul 2004 and more general: Brodkin & Royer 2024), the primary argument for this view is a fact of reconstruction: when ergative DPs are quantified, they can still bind variables in the absolutive DP. This fact is true in Mandar as well, and it is shown in example (14).

The immediate force of this fact is to show that the absolutive DP is raised to its high position by a process that can reconstruct for variable binding. Nevertheless, there is no reason to take this fact as evidence that the absolutive DP is carried to its high position by a step of Ā-movement. This is because reconstruction for variable binding is a well-known property of A-movement: in English, for instance, Lebeaux 1991 shows that it is possible under raising to subject, which allows its targets to reconstruct beneath quantified PPs in the matrix clause.

(15) His mother seems to every boy
$$[$$
 to be a genius $]$. Lebeaux 1991, 231

The result is that the facts of reconstruction for variable binding actually provide evidence that the process that raises the absolutive DP must be a step of A-movement: it allows variable binding reconstruction but do not force it. From this position, we can now mount a similar case for A-movement from the domain of Condition C. In its system of A-reconstruction, English shows a difference between variable binding and Condition C: while it allows A-reconstruction for variable binding, it prohibits A-reconstruction for Condition C. When nominative DPS A-move across experiencer PPS, then, they cannot be pronouns coindexed with R-expressions within them.

(16) *He
$$_i$$
 seems to John's $_i$ mother [____ to be a genius].

If the absolutive DP were raised by A-movement in Mandar, then, we should expect that it will not reconstruct for Condition C: it should be unable to be coindexed with R-expressions in lower DPs. This prediction is correct: the transitive INT (17a) and ditransitive GOAL (17b) cannot be pronouns coindexed with R-expressions in the EXT.

(17) Condition C: Absolutive Arguments Cannot Reconstruct

- a. Na-peroa i $[_{\text{EXT}}$ sola-na iAli na iMina] $[_{\text{INT}}$ pro] dionging. 3ERG-invite 3ABS friend-3GEN NAME and NAME him yesterday 'Ali_i and Mina's friends invited him_{*i,i} yesterday.'
- b. Na-waca-ngang i $[_{\text{EXT}}$ kindo'na iAli na iMina] $[_{\text{GOAL}}$ pro] digena'. 3erg-read-APPL 3 mom-3GEN NAME and NAME him earlier 'Ali $_i$ and Mina's mom read to him $_{i,j}$ earlier.'

We thus emerge from our study of binding and reconstruction with two lines of evidence that the absolutive DP undergoes a systematic and covert step of A-movement above all other arguments in the clause. The task that follows is to understand how.

3.2.2 The Voice Head

The literature on High Absolutive Syntax suggests two ways to interpret the evidence for A-movement above. The first, put forward by Guilfoyle *et al.* 1992, would take these types of absolutive DP to raise directly into subject positions in the middlefield, such as SPEC,TP. The second, building on the later discovery of further A-positions for objects along the clausal spine (Johnson, 1991; Takano, 1998), would places the absolutive DP much lower in the clause: for instance, in an A-position at the edge of the clause-internal phase (Aldridge 2004; see also Rackowski 2002). The immediate task before us, then, is to identify the exact path of raising that targets the Mandar absolutive DP: what is the head that first draws it to a position above the EXT in SPEC, VP?

3.2.2.1 Raising in Reduced Clauses

The natural place to begin this investigation lies in a type of reduced clause introduced by the subordinating preposition *mau* 'though.' This element can select complement clauses of several different sizes, and one of these is shown in example (18a): a non-finite clause that hosts all the usual heads of the middle field except the absolutive enclitic. Brodkin 2025e argues that these clauses show the syntax in (18b): they project only up to the highest visible layer of functional structure they contain (PolP).

- (18) Mau "Though": Non-Finite Complement Clauses
 - a. Mau ndang rua na-ita dio di perpus, masskripsi i de'.
 though not ever 3ERG-see there in library dissertate 3ABS allegedly
 'Though never seen in the library, he's allegedly working on his thesis'
 - b. $\left[p_P \ mau_{p^0} \left[p_{OLP} \ NEG^0 \left[ASPP \ AUX^0 \left[voiceP \dots \right] \right] \right] \right]$

Unlike all other environments that lack absolutive agreement in Mandar, these clauses can host overt absolutive DPs (19a). Brodkin 2025e thus proposes that they show a distinct syntax of Case-licensing: they allow the absolutive DP to receive abstract Case from the subordinating P^0 , on a par with the *for-to* clauses of English (19b).

- (19) Mau-Complements: Exceptional Case-Marking
 - a. Mau [polp ndang rua na-pikkiri [ext iAli] [int penutupang]], though not ever 3erg-think of NAME conclusion 'Though Ali hasn't thought about [-fin] the conclusion,'

b.
$$\begin{bmatrix} \vdots \\ p_{PP} & mau_{P^0} \end{bmatrix} \begin{bmatrix} p_{OLP} & NEG^0 & AUX^0 \end{bmatrix} \begin{bmatrix} voiceP & V & DP_{ERG} & DP_{ABS} \end{bmatrix} \end{bmatrix}$$

These *though*-clauses are important to the present investigation for the following fact: even in the absence of the functional structure of the middle field, they require the absolutive DP to show all of its usual privileges in the systems of pronominal coreference and variable binding. Thus when *mau* selects a bare transitive *voiceP*, the INT still seems to c-command the EXT for the purposes of Condition C: it can contain an contain an R-expression coindexed with a pronominal EXT (20a) and cannot be a pronoun coindexed with an R-expression in that DP (20b).

- (20) Condition C: Absolutive INT > Ergative EXT in the VoiceP
 - a. Mau [$_{voiceP}$ na-waca [$_{EXT}$ pro] [$_{INT}$ buku-na iAli]] dionging, though 3erg-read he book-3gen name yesterday 'Though he $_{i,j}$ read [$_{FIN}$] Ali $_i$'s book yesterday,'
 - b. Mau [$_{voiceP}$ na-peroa [$_{EXT}$ sola-na iAli na iMina] [$_{INT}$ pro]], though 3erg-invite friend-3gen name and name him 'Though Ali $_i$ and Mina's friends invited [-FIN] him $_{i,j}$,'

In the system of variable binding, the facts are the same: when *mau* selects a transitive *voice*P, a quantified INT can still bind into the EXT—even though *nasang* must remain adnominal in this context (21a). The step of movement that licenses this pattern, moreover, allows the same type of reconstruction that we have seen in finite clauses: in these clauses, too, the INT can be bound by a quantified EXT (21b).

- (21) Variable Binding: Absolutive INT > Ergative EXT in the VoiceP
 - a. Mau [$_{voiceP}$ na-waca [$_{EXT}$ panulis-na pro] [$_{INT}$ buku nasang]], though 3ERG-read author-3GEN its book every 'Though its author $_{i,j}$ read [$_{FIN}$] every $_i$ book,'
 - b. Mau [$_{voiceP}$ na-waca [$_{\text{EXT}}$ panulis nasang] [$_{\text{INT}}$ buku-na pro]], though 3ERG-read author every book-3GEN her 'Though every $_i$ author read [$_{\text{FIN}}$] her $_{i,j}$ book,'

The result is a straightforward case that the absolutive DP must raise even in the absence of the usual functional structure of the TP. If the complement clauses in (20)-(21) only project to the *voice*P, moreover, then it stands to reason that the absolutive DP must already raise above all other arguments in the clause within the *voice*P—likely drawn up to the edge of the phase edge along the lines proposed by Aldridge 2004 for Tagalog and for many other languages in later work (Coon *et al.*, 2014; Royer, 2023).

3.2.2.2 Absolutive Preposing

It is against this backdrop that we can introduce one final fact of linear order. Under a fine network of phonological conditions laid out by Brodkin 2025a, there is a context where absolutive DPs are forced to surface in a linear position that falls between the *voiceP* and the auxiliaries of the extended TP. This effect is shown in the examples below: in a clause that contains a string of auxiliaries, a transitive verb, and an absolutive INT, the INT must take its usual postverbal position (22a). But when an additional prosodic word is introduced into the *voiceP*—for instance, an EXT—the INT is forced to surface between the verb and the higher auxiliaries (22b).

- (22) Linear Evidence: Absolutive DPs \rightarrow Edge of the VoiceP
 - a. Rua i yari [voiceP] na-saka [INT] iAli] . once 3ABS DID 3ERG-catch NAME 'They once DID arrest Ali.'
 - b. Rua i yari [voiceP [INT iAli] na-saka [EXT polisi] ____].
 once 3ABS DID NAME 3ERG-catch police

 'The police once DID arrest Ali.'

Brodkin 2025a shows that this alternation is governed by constraints on balance that guide the system of chain reduction at the syntax-prosody interface in a manner irrelevant to our present work. What is important is a restriction in the syntax: the only DPs that can surface at the edge of the *voiceP* are absolutive DPs. When the verb is transitive, then, the DP forced to appear in this position is always the INT and cannot be the EXT. When the verb is ditransitive, in turn, the DP that takes this position must be the GOAL (23a), and when the verb is antipassive, it must be the EXT (23b).

Linear Evidence: Absolutive DPs → Edge of the VoiceP
a. Ndang i rua [voiceP [GOAL iCicci'] na-carita-ngang [INT rasia]] _____.
not 3ABS ever NAME 3ERG-tell-APPL secret
'He never told Chichi' the secret.'
b. Ndang i rua [voiceP [EXT iCicci'] ma'-ande ____ [INT boe]].
not 3ABS ever NAME ANTIP-eat pork
'Chichi' never ate pork.'

Taking this high position to be SPEC, *voiceP*, we thus arrive at a two-part case for the syntax in (24): no matter the voice of the verb, the absolutive DP systematically raises

to SPEC, *voice*P. In verb-initial clauses, this step is typically covert—yielding *voice*P-level binding privilege for the absolutive DP and the linear order VSOD. But under the conditions that force this effect, the absolutive DP is realized in SPEC, *voice*P.

(24) The Low Subject Position

a. Antipassive: $\begin{bmatrix} voiceP & S & V & \begin{bmatrix} vP & S & \begin{bmatrix} applP & \begin{bmatrix} vP & O & \end{bmatrix} & D & \end{bmatrix} & \end{bmatrix} \end{bmatrix}$ b. Transitive: $\begin{bmatrix} voiceP & \Theta & V & \begin{bmatrix} vP & S & \begin{bmatrix} vP & O & \end{bmatrix} & \end{bmatrix} \end{bmatrix}$ c. Ditransitive: $\begin{bmatrix} voiceP & \Theta & V & \begin{bmatrix} vP & S & \begin{bmatrix} applP & \begin{bmatrix} vP & O & \end{bmatrix} & \end{bmatrix} \end{bmatrix}$

This conclusion establishes the first link in our wider case for subjecthood: the absolutive DP consistently moves to a dedicated landing site, defined by the formal requirement to fill spec, voiceP, that systematically attracts the transitive int, ditransitive goal, and antipassive ext. This analytical step separates our analysis of the High Absolutive configuration from a broad range of alternatives, following Aldridge 2004, that deny a consistent position to the absolutive DP and simply require absolutive Case to fall to the highest DP at the edge of the clause-internal phase. Its force, in turn, is to establish a singular launching point for a higher series of interactions that will ultimately allow the absolutive DP to receive Case from T⁰—a launching point I will term the low subject position below.

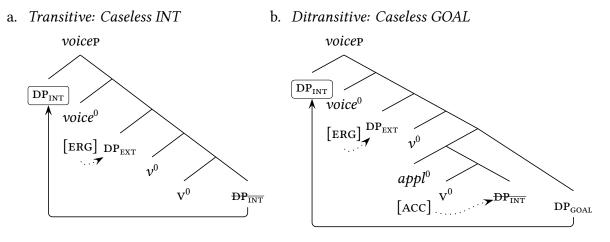
3.2.3 Locality and Activity

We can now prepare to advance to the middle field with a brief turn to the syntax of Case. In transitive and ditransitive clauses, we have seen, the low subject position forces a step of attraction that skips over the ergative DP to draw up the INT and the GOAL (25a). In this respect, it breaks from the heads that define subject positions in nominative-accusative systems (25b), which typically attract the highest DP in the *voice*P. We are thus forced to ask: why should this divergence emerge?

```
(25) The Puzzle of Locality

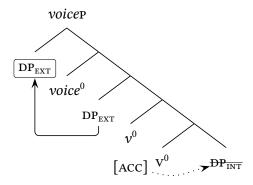
a. High-Absolutive Attraction: \begin{bmatrix} voiceP & voice_{TRANS} & vP & DP_{ERG} & vP & V & DP_{ABS} \end{bmatrix} \end{bmatrix}

b. Regular A-Movement: \begin{bmatrix} voiceP & voice_{TRANS} & vP & DP_{NOM} & vP & V & DP_{ACC} \end{bmatrix} \end{bmatrix}
```


The natural solution to this puzzle lies in the domain of Case. In transitive and ditransitive *voice*^{ps}, we have seen that ergative DPs trigger agreement on *voice*⁰. In

tandem with this fact, we have seen that ergative DPs surface freely in non-finite environments, like the control complements reviewed in (25). This fact suggests that the formal needs of the ergative DP must be satisfied by the functional structure of the extended VP—and more specifically, that it receives Case from the ϕ -probe on $voice^0$.

The first result of this analytical step is a link to the wider theory of ergative Case. On the basis of similar facts, it has been argued that ergative Case originates in the *voiceP* in many families beyond Austronesian (e.g., Inuit (Bok-Bennema, 1991; Bittner & Hale, 1996a,b), Salishan (Wiltschko, 2006), and Mayan (Coon *et al.*, 2014)). In these systems, then, ergative DPs show the same type of syntax as other non-subject DPs: their needs are met by a network of relationships with the functional heads of the extended VP. It is this property that allows them to surface in non-finite clauses and it is this property that allows them to avoid interaction with the heads of the TP.


The second consequence of this step is a path to force skipping of the ergative DP. To capture the pattern of High Absolutive attraction, the literature has long appealed to the logic of Activity (Chomsky, 2001): when A-probes reach into the extended VP, they skip past the ergative DPs that have already received Case (Guilfoyle *et al.*, 1992; Bittner & Hale, 1996a,b; Legate, 2014). The result is a way to link the special pattern of locality to a reversal in the *voiceP*-level system of Case: as the transitive INT and ditransitive GOAL will always be the highest Caseless arguments in the *voiceP*, they will always be targeted by the A-probe that defines the low subject position.

(27) High Absolutive Syntax: Absolutive DPs Lack Case in the VoiceP

From this perspective, we can assign a clear syntax to the *voice*P-level syntax of voice: it guides patterns of Case-assignment to ensure that every argument except the absolutive gets Case in the *voice*P and then attracts the absolutive to edge of the *voice*P. Extending the same analysis to the antipassive, we conclude with the following result: that voice must show something like a nominative-accusative pattern of licensing, requiring the INT to receive Case within the ν P and the EXT to receive no Case from *voice*⁰ (fitting neatly with the lack of ϕ -agreement), yielding the raising in (28).

(28) Antipassive: Caseless EXT

3.3 The High Subject Position

The theory of clause structure that emerges from these parts is one that neatly positions the absolutive DP to interact with the functional structure of the extended TP. This possibility emerges in part from the systems of relative locality and Case, which converge to make the absolutive DP the closest and neediest target for ϕ -probes in the middle field (29). But it is also reinforced by an intuition from the domain of absolute locality: namely, the hypothesis that all material beneath spec, *voice*P will be rendered invisible to the TP by the boundary of a phase. This pair of expectations has driven the range of proposals, after Aldridge 2004, that place absolutive DPs at the edge of the clause-internal phase in other systems where they receive Case from T⁰ (Erlewine, 2018; Erlewine & Lim, 2023; Coon *et al.*, 2014; Royer, 2023). And this positional expectation has now been redeemed, in a relatively straightforward way, by all the facts of the language that we have already seen.

Against this backdrop, we can now raise a second question of position: how much higher does the absolutive DP raise? Taking the facts of word order seriously, for instance, we might assume—after Aldridge 2004— that the absolutive DP does not raise past the edge of the *voiceP*. This is because the pressures that force subjects to raise to higher positions in the middle field are now widely understood to emerge from the idiosyncratic and cross-linguistically variable properties of individual heads. It is this type of idiosyncracy that gives rise to the staggering diversity of behavior among subjects (Cardinaletti, 2004), and from this same idiosyncracy emerges the possibility that some systems will feature no obligatory middle-field positions at all (McCloskey, 1997; Cable, 2012). We may thus be dealing with the "stop and tap" syntax in (29): one on which the absolutive DP moves to the low subject position, receives Case in-situ from T⁰, and never raises out of the *voiceP*.

3.3.1 Strong Quantification

But there is good evidence to suggest that such an analysis of Mandar would not be correct, and it turns on the behavior of a wide set of nominals that move in a curiously overt way. Setting aside *nasang* 'every' and a range of related quantifiers that subextract in finite clauses (Brodkin, 2025e), the functional heads of the Mandar DP typically appear before the noun (Brodkin, To Appear). In this space appear two categories of interest: the strong quantifiers *inggannanna* 'all' and *ianasanna* 'each' (30a) and a range of weak quantifiers that include *mai'di* 'many,' *sicco*' 'a few,' and all numerals (30b). I assume that these elements spell out quantificational heads and I will refer to these constituents as OPS below.

(30) Quantificational Phrases in Mandar

- a. [QP InggannannaQ bonde], [QP ianasannaQ batu bonde]
 all sand each grain sand
 'All the sand, each grain of sand'
- b. [QP Mai'diQ anjoro], [QP siccoQ' anjoro], [QP talluQ anjoro]
 many coconut few coconut three coconut
 'Many coconuts, a few coconuts, three coconuts.'

These QPS are useful because they wear their syntactic positions on their sleeves. In the contexts where they take the positions of absolutive DPS, then, it is generally ungrammatical for them to surface in the usual postverbal positions of argument DPS.

What happens instead is shown in (31): when a strong QP takes the position of a transitive INT in a non-finite clause, it must be realized in the low subject position—even outside of the prosodic configuration that forces that pattern of spell-out for ordinary absolutive DPs.

(31) Quantified Absolutive Arguments: Always Move Overtly

Mau rua yari [voiceP [INT inggannanna paccoro] na-saka ____]

though once DID all thief 3ERG-catch

'Though once they DID catch [—FIN] all the thieves,'

This step of movement shows all the syntactic properties of the process that raises the absolutive DP. First, it targets the same linear position—the juncture between the lowest overt auxiliary and the verb. Second, it fills this position with a single QP—and as a result, it never attracts multiple QPS to the same landing site. The following examples illustrate: when the INT and the GOAL are both quantified in a ditransitive *voiceP*, this process applies to the GOAL and leaves the INT in its usual postverbal position (32a). It is ungrammatical, in this context, for the INT to be drawn up to the same juncture in the same way (32b).

- (32) Quantificational Phrases: Movement only targets the Absolutive
 - a. Mau rua [voiceP [GOAL ing. sola-u] u-carita-ngang [INT ing. fakta]], though once all friend-1GEN 1ERG-tell-APPL all fact 'Though once I told [-FIN] all my friends all the facts.'
 - b. *Mau rua [voiceP [GOAL ing. tau] [INT ing. fakta] u-carita-ngang _____], though once all person all fact 1ERG-tell-APPL

 'Though once I told [—FIN] everyone all the facts,'

Third, this process can only target absolutive QPs. It thus fails to apply to QPs in all other positions—for instance, those in PPs and those adjoined to the *voice*P (33).

(33) Quantificational Phrases: Only Move When Absolutive

Mau byasa [woiceP ____ sita [pp sola ing. tau]] [AJT tuttu allo], though usually meet with all person every day 'Though usually meeting [-FIN] with everyone every day,'

Fourth and finally, this process has a familiar impact on the systems of pronominal coreference and variable binding. To begin, it fails to reconstruct for Condition C—and

thus when absolutive QPS raise in this way, they can always contain R-expressions that are coindexed with the EXT (34a). In the same vein, it introduces new possibilities for variable binding—and thus these QPS can always bind variables in the EXT (34b).

- (34) Quantificational Phrases: Evidence for A-Movement
 - a. Mau rua [$_{voiceP}$ [$_{INT}$ ing. sola-na iAli] na-ita [$_{EXT}$ pro] ____]. though once all friend-3GEN NAME 3ERG-see 'Once $he_{i,j}$ saw [$_{FIN}$] all of Ali's $_i$ friends.'
 - b. Mau byasa [$_{voiceP}$ [$_{INT}$ ian. kindo'] na-ita [$_{EXT}$ sanaeke-na pro] _____]. though usually each mom $_3$ ERG-see child- $_3$ GEN her 'Though usually $her_{i,i}$ kid sees [$_{-FIN}$] each mom $_i$.'

These facts suggest that absolutive QPS are drawn into the low subject position by the same syntax that attracts regular absolutive DPS. What separates these two steps of movement, on this view, is a surface-level fact: QPS must be spelled out in the highest syntactic positions they occupy. This understanding will be essential to our case for a higher syntax of subjecthood, and it is sketched in the diagram below.

- (35) An Asymmetry in Spell-Out
 - a. A-movement of DPs = Covert

b. A-movement of QPs = Overt

3.3.2 The Aspectual Enclitics

When we introduce slightly more structure into the Mandar middle field, the absolutive QPs that raise to the low subject position must surface farther to the left. The key effect turns on a pair of second-position enclitics that surface in complementary distribution and mark distinctions of outer aspect: *mo* 'already' and *pa* 'yet.' These elements belong to a class that is well-studied across the South Sulawesi subfamily (Strømme, 1994; Friberg, 1996; Matti, 1994; Valkama, 1995a; Jukes, 2006; Laskowske, 2016), and we can pin down their rough syntax with four facts. First, they can surface in the non-finite *though*-clauses that lack absolutive agreement (36a). In that context, second, they are forced to follow the highest overt auxiliary or verb—exactly like the

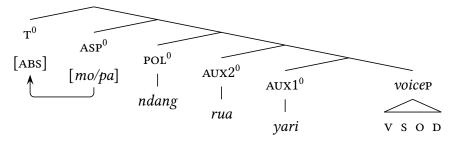
absolutive enclitics. From that position, third, they are forced to take scope over their hosts—like the negator in example (36b).

(36) The Aspectual Enclitics

- a. Mau yari **mo** [voiceP u-ita [INT iAli]], though DID ALREADY 1ERG-see NAME
 'Though I already DID see [-FIN] Ali,'
- b. Mau ndang **mo** [voiceP u-ita [INT iAli]], though not ALREADY 1ERG-see NAME

 'Though I no longer see [-FIN] Ali,' (ALREADY > NOT)

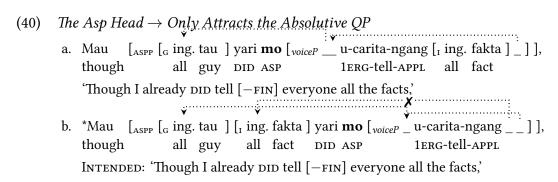
Fourth and finally, in finite clauses, these enclitics cluster together with the absolutive agreement enclitics and combine with them in phonologically irregular ways. The sequence /mo-i/ ALREADY-3ABS, for instance, is realized as [mi], while the sequence /mo-a'/ ALREADY-1ABS is realized [ma'] (37). Brodkin 2022c shows that these forms must be treated as portmanteaux, much like their counterparts across the subfamily (e.g., Valkama 1995a).


(37) The Aspectual Enclitics: Portmanteaux with Absolutive Agreement

Massau **mi**, yari malai **ma'**. recover Already.3ABS so return Already.1ABS

'He's already recovered, so I've already returned.' Friberg & Jerniati 2000, 174

What these facts collectively suggest is the syntax in (38): mo and pa spell out a head in the middle field, ASP^0 , that sits above POL^0 and below T^0 . The high position of this head provides a natural explanation for the facts of scope (ASP^0 scopes above NEG because it sits above it), and it delivers a similar path to understand the facts of linear order (like absolutive agreement, mo/pa are postsyntactically placed after the highest head beneath them). On the view that syntactic locality constraints govern the formation of portmanteaux, moreover, it also allows us to understand the patterns in (38) on the view that ASP^0 moves into T^0 , placing mo and pa into a complex head with absolutive agreement.


(38) The Mandar Middle Field: Revised

Turning back to the non-finite complements of mau, we can now see the key syntactic effect of the head ASP^0 . When we introduce mo/pa into these clauses, it becomes ungrammatical for absolutive QPs to remain in the low subject position. Instead, they are forced to raise to a higher landing site: one just above the highest auxiliary (39).

(39) The Asp Head \rightarrow Higher Movement for Absolutive QPs When Mau [ASPP [INT ing. sola-u] yari mo [voiceP ___ u-ita ___]] though all friend-1GEN DID ALREADY 1ERG-see 'Though I already DID see [-FIN] all my friends,'

This process shows all the characteristic properties of movement driven by the formal needs of an attracting head. First, it can only target a single QP—on a par with the process that raises the absolutive QP to the low subject position in non-finite clauses. Second, it can only target the highest QP—and thus when the INT and GOAL are both quantified, it must target the GOAL and leave the INT low.

Third, it can only attract the QP that raises to the low subject position. It is thus unable to target the QPs that fail to raise to SPEC, *voiceP*, like adjuncts and QPs in PPs.

(41) The Asp Head \rightarrow Only Attracts QPs from the Low Subject Position

Where \mathbf{X} is the Low Subject Position

Mau [ASPP] rua \mathbf{mo} [VoiceP] sita [PP] sola ing. sola-u [PP] though once ALREADY meet with all friend-1GEN

'Though already having once met [-FIN] with all my friends,'

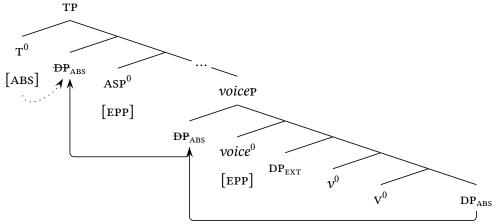
Fourth, it is obligatory across all the clauses that we should expect to contain ASP⁰. In all finite clauses, then, it operates in the same way—even in the absence of the enclitics that instantate this head. This fact suggests that our step is driven by a head that is consistently projected by the systems that build the TP.

(42) The Asp Head
$$\rightarrow$$
 Attracts Even Without Overt Mo/Pa

[TP [GOAL Ing. tau] yari (m)i [voiceP _ u-carita-ngang [i ing. fakta]_]].

all person DID (ASP)3ABS 1ERG-tell-APPL all fact

'I already DID tell [+FIN] everyone all the facts.'


This network of properties suggests that we are facing down the syntax in (43): high in the middle field, there is a head ASP⁰ that consistently projects and attracts QPS from the low subject position to SPEC, ASPP. The linear shape of this movement follows from the position of this head: ASP⁰ sits above the auxiliaries and thus its specifier falls just before the highest AUX. Its syntactic profile, in turn, follows from the logic of Relative Locality and Activity: the probe on ASP⁰ must always target the closest Caseless DP and this will always be the QP that raises to the low subject position.

On the view that ASP^0 sits beneath T^0 , we can then complete this picture with one final claim: absolutive agreement targets the QPs that raise to SPEC, ASPP. The result is that this step must position its targets to receive absolutive Case from T^0 .

3.3.3 The Syntax of Subjecthood

We are now in a position to redeem the foundational hypothesis of syntactic parallelism between QPS and DPS—and more specifically, the empirical observation that absolutive DPS seem to move covertly through the exact set of positions that visibly attract absolutive QPS. Within the *voiceP*, we have seen that this parallel holds in the low subject position, whose formal needs force movement of both absolutive DPS and QPS. At the level of the TP, then, it seems natural to extend the same logic to the head ASP⁰—and take the formal requirements that force movement of absolutive QPS to drive covert movement of absolutive DPS as well. This view leads us to posit the syntax in (45): one on which there is a second and higher subject position, falling just beneath the TP, that requires its specifier to be filled and thus attracts absolutive DPS from the low subject position to position them to interact with T⁰.

(45) The High Subject Position

On this view, the usual facts of linear order mask a rich and canonical syntax of subjecthood: one on which the absolutive DP enters into a cascading series of relationships with higher heads that carry it through a sequence of subject positions and ultimately culminate in the assignment of Case. In this respect, the Mandar absolutive DP shows the exact type of syntax that might be expected of a preverbal nominative DP and diverges from those types of arguments only at the postsyntactic stage that determines the positions where A-moved DPs are pronounced. This conclusion echoes the results of a long tradition of work that has found delicate evidence for the raising of postverbal DPs that receive nominative Case (see e.g., McCloskey 2017a), but it runs against the intuitions of much work on verb-initial ergative systems that show little overt movement of the absolutive DP. Its wider force, then, is to raise the pos-

sibility that postverbal absolutive DPs may much more often show a fine syntax of subjecthood that is fully covert.

3.4 Two Layers of Expletives

The analysis that has now come together is one that emerges from four language-internal claims: (i) the Austronesian voice system emerges from the layered interaction of a regular middle field syntax of subjecthood with a vP-level syntax of voice that defines a lower subject position and guides the assignment of Case; (ii) this system forces the absolutive DP to raise through two defined subject positions in response to the formal needs of heads along the clausal spine; (iii) the relevant steps of Amovement are canonically covert; and (iv) their paths are only revealed by the idiosyncratic and language-specific fact that movement of QPs is always overt. While assumption (iii) is common in the wider context of Austronesian, however, claims (i) and (ii) are contested and property (iv) is unknown. It is thus an important fact that each of these three final components is required to explain the final corner of this system: the middle field syntax of weak QPs. The fine effects that emerge in this domain will reveal a total breakdown of the relationship between the high and low systems of subjecthood, and our ensuing investigation will reveal two distinct layers of expletive insertion and strengthen the case that the high subject position exists.

3.4.1 Weak Quantification

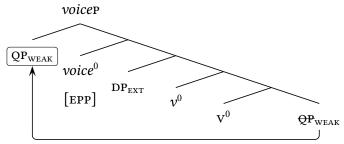
The class of weakly quantified nominals show several properties that seem expected in the framework built so far. When these elements take the position of the absolutive DP, for instance, they raise in a consistently overt fashion to the low subject position in non-finite clauses that lack the head ASP⁰ (46).

(46) Weakly Quantified Nominals
$$\rightarrow$$
 Low Subject Position

Mau yari [$_{voiceP}$ [$_{QP}$ lima boyang] u-landur _____], though DID five house 1erg-go past

'Though I DID walk past [$_{-FIN}$] five houses,'

This step of movement, in turn, shows all the usual hallmarks of attraction to the low subject position. First, it strictly targets a single QP: when both the GOAL and the


INT are weakly quantified, it draws up the GOAL with no regard to the relative scope of the two QPS (47a). Second, it reshapes patterns of pronominal coreference: the weak QPS that raise do not reconstruct for Condition C and can thus contain R-expressions coindexed with the EXT (47b). Third, it never applies to weak QPS outside nominal argument positions, such as those embedded in PPS or adjoined to the VP (47c).

(47) Weakly Quantified Nominals: Evidence for Attraction

- a. Mau rua [GOAL tallu lessang] u-be-ngang [INT sappulo loka] _ though once three monkey 1ERG-give-APPL ten banana 'Though I once gave [-FIN] three monkeys ten bananas,' (✓3>10; ✓10>3)
- b. Mau rua [o tallu buku-na iAli] na-padai' [s pro] _ di lingbuzz, though once three book-3GEN NAME 3ERG-upload he on SITE 'Though he,; once uploaded [—FIN] three of Ali,'s books onto lingbuzz,'
- c. Rua i [voice sicaka iAli [PP sola 3 setang] [AJT san-jang]]. once 3ABS convene NAME with 3 demons one-hour 'Ali once convened with three demons for an hour.'

Weak absolutive QPs thus seem to move to the low subject position in the usual way. In the language-particular fashion of QPs, moreover, they seem to be spelled out in the highest positions they occupy, yielding the *voiceP*-level syntax in (48).

(48) Weak QPs \rightarrow Low Subject Position

When we turn to the higher syntax of the middle field, however, this usual syntax breaks down. In the non-finite clauses that host mo/pa, weak absolutive QPs fail to raise to the high subject position. Instead, they remain in the low subject position.

(49) Weakly Quantified Nominals \rightarrow Never Raise Past the Low Subject Position

'Though I already DID walk past [-FIN] five houses,'

We thus arrive at a fact that threatens the wider analytical framework we have built up to this point. The failure of raising in this context may be taken to suggest that the high subject position goes unfilled (50a), undercutting our case for a regular type of EPP. As an alternative, the failure of raising may suggest that weak QPs can be drawn up to this position in a manner that is exceptionally covert (50b)—undermining the empirical generalization about QPs that has been central to our wider case. As a final alternative, however, we might also consider the hypothesis in (50c): one on which the high subject position in this context is exceptionally filled by a null expletive (50c).

(50)High Subject Position: Three Possibilities

a. EMPTY SPEC, ASPP:

b. Covert Movement:

c. Null Expletive:

We can round out the shape of the problem with three further observations. In the contexts where weak absolutive QPs raise to the low subject position, first, the high subject position cannot attract anything else. When a weakly quantified GOAL raises to the low subject position, then, the high subject position cannot reach past it to draw up a strongly quantified INT from the *voice*P.

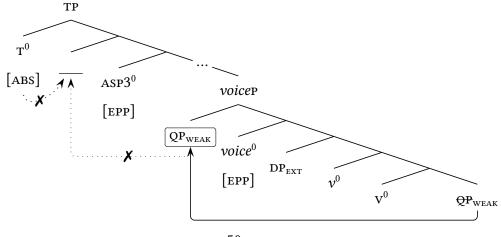
Second, the apparent emptiness of the high subject position correlates with a total disruption to the system of absolutive agreement. When weak QPS raise to the low subject position in root clauses, they fail to control agreement in τ^0 .

(52) Weak Absolutive QPs \rightarrow Absolutive Agreement Disappears

'He usually walks past five houses as he goes to work.'

Third and finally, it is equally impossible for the system of absolutive agreement to reach into the *voice*P and interact with anything else. Just as the high subject position cannot skip over weak QPs in the low subject position, the ϕ -probe on T^0 cannot skip these elements to target the ditransitive INT or EXT (53). The result is the sole exception to an otherwise ironclad trend: these root clauses contain no absolutive agreement.

(53) Agreement on T⁰: Cannot Skip Past the Low Subject Position


Ndang pa_/*o/*a' [voiceP [D mesa terapis] u-kiring-ang [s pro] [O pro].

not YET_/2ABS/1ABS one therapist 1ERG-send-APPL 1SG 2SG

'I haven't sent you to a single therapist yet.'

The force of these facts is to suggest a collapse of the feeding relationship between the lower and higher systems of subjecthood: weak QPs can meet the needs of *voice*⁰ and raise into the low subject position, but—taking seriously the language-internal generalization that movement of QPs is always overt—it would seem that they fail to meet the needs of the high subject position, fail to raise into the middle field, and fail to interact with T⁰ (54). As a result, it is not at all clear how the formal needs of ASP⁰ and T⁰ are met—and on the view that the feature [EPP] must always be satisfied for derivations to converge, it is thus unclear whether ASP⁰ bears this feature or whether the high subject position exists at all.

(54) The Breakdown in Subjecthood

3.4.2 The Case for Expletives

It is thus a telling fact that there is evidence for null expletive insertion into the high subject position in this context. Mandar has a class of raising verbs that select non-finite clauses and show a special pattern of agreement: the matrix T^0 agrees with the embedded absolutive DP. Beneath the raising verb *minnassa* 'clear' in (55), for instance, the absolutive agreement enclitic in the matrix clause agrees with the embedded INT.

(55) Raising Verbs in Mandar

'It's clear that you visited Chichi.'

When we replace these embedded absolutive DPs with strong QPs, we can see that this pattern of agreement belies a series of steps through at least both matrix subject positions. When the matrix clauses of these constructions are made non-finite, absolutive QPs raise overtly from their ordinary positions in the embedded clause to the low subject position of the matrix clause (56a). When the matrix clauses of these constructions are finite, in turn, these QPs raise further into the high subject position of the matrix clause (56b).

(56) Raising Constructions: Movement through Subject Positions

a. Mau rua [$_{voiceP}$ [$_{INT}$ ing. tau] minnassa [$_{TP_{[-FIN]}}$ na-piosa $\dot{}$]], though once every person clear 3ERG-stop

'Though once it was clear [-FIN] that they stopped everybody,'

b.
$$[_{INT}$$
 Ing. tau $]$ rua i $[_{voiceP}$ ___ minnassa $[_{TP_{[-FIN]}}$ na-piosa ___ $]$], every person once 3ABS clear 3ERG-stop

'Once it was clear that they stopped everybody,'

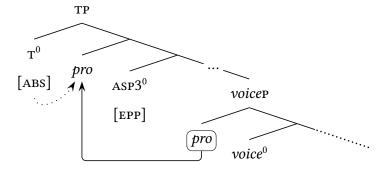
The result is a syntax that fits with everything we have seen so far: in this context, the absolutive DP is drawn from the embedded high subject position to the low subject position of the matrix clause and then to the high subject position therein (57).

This analysis sets up a line of attack on the particular syntax of weak QPS. When weak QPS are absolutive, they cannot raise overtly out of the embedded clause. When they move to the low subject positions of raising complements, rather, they simply remain low—and there is no overt evidence that the low and high subject positions of the matrix clause are filled. Even so, however, they force the loss of absolutive agreement in the matrix clause—as if their presence in the low subject position of the embedded clause set up a chain reaction that derailed the matrix syntax of subjecthood.

(58) Raising Constructions: Weak QPs Fail to Raise

'It was once clear that he usually smoked two packs a day,'

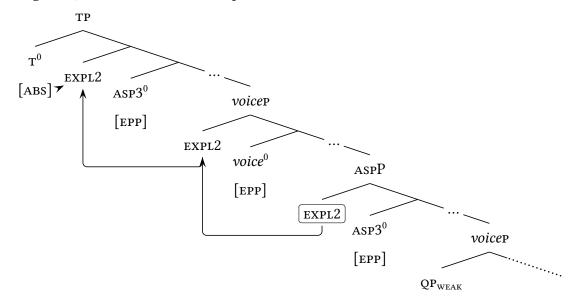
Given that T⁰ must agree with the element in the high subject position, we can thus be sure that the high subject position, in this context, is either empty or filled by an expletive that fails to trigger third-person agreement. And as the high subject position strictly attempts to attract the element that raises into the low subject position, we can deduce that the same must be true of the matrix low subject position as well: SPEC, *voiceP* must be empty (59a) or contain an expletive that fails to agree (59b).


(59) Low Subject Position: Two Possibilities in the Matrix Clause

It is against this backdrop that we turn to the following fact: in other contexts there is clear evidence that expletives are inserted into SPEC, *voiceP*. In weather verb constructions, Mandar shows a syntax that is familiar and notorious across the subfamily (Kaufman, 2008): the clauses built around these verbs must host third-person absolutive agreement (60a). The same pattern also emerges in *voiceP* that lack nominal arguments, such as those built around certain adjectival predicates (60b).

- (60) "Subjectless" Clauses: Third-Person Absolutive Agreement
 - a. Urang i [pro] rain 3ABS it 'It's raining.'
 - b. Minnassa **i** [pro] [CP mua' urang i [pro]]. clear 3ABS it that rain 3ABS it 'It's clear that it's raining.'

When the *voice*P contains nothing that can be attracted to SPEC, *voice*P, then, I propose that the low subject position is filled by a null expletive. This is one that can interact with the higher syntax of the middle field, and as a result, it controls agreement on T⁰—raising, by hypothesis, to the higher subject position on the way.


(61) Low Subject Position: Pronominal Expletives

This analytical step provides the linchpin of our case for expletive insertion into the high subject position. In the raising complements where the low subject position is filled by a weak QP, we have seen that absolutive agreement is forced to disappear in the matrix clause. This fact suggests that the matrix clause cannot contain the type of expletive that is inserted directly into SPEC, *voiceP*. But given that the low subject position demonstrably forces the insertion of these expletives when it fails to attract anything else, it stands to reason that it must be filled in this context by some other type of element that fails to control the usual pattern of agreement on T⁰. Given that there is no plausible candidate for attraction in the *voiceP*, this must be one that originates in the lower clause. On the language-internal hypothesis that QPs always move in a manner that is overt, moreover, it cannot be the embedded weak QP. As a result, I argue that the matrix low subject position must be filled by a second type of expletive that is drawn up from the high subject position of the embedded clause. I

will temporarily use the label EXPL2 to represent this second type of expletive, which is inserted in that position whenever it fails to attract a weak QP.

(62) High Subject Position: Locative Expletives

This final conclusion allows us to reinforce and extend the central results of the second half of our investigation. The contrast between two types of null element in SPEC, *voiceP* in the raising contexts above suggests that ASP⁰ must force the introduction of expletives into its specifier when it cannot attract the elements that raise to the low subject position. This property, in turn, suggests that ASP⁰ must enforce a purely formal requirement that its specifier be filled—reinforcing the case we built in Section 4 from the facts of strong QPs. And with this second line of support in place, we can now double down on the argument that the same position must also draw up ordinary absolutive DPS—yielding the systematic sequence of covert movement through the two interlocking systems of subjecthood in (63).

(63) Two Steps to the Syntax of Subjecthood

In the Austronesian context, finally, the case for expletives leads to one further result. Across the region, there is a strand of work that recasts the absolutive DP as a type of Ā-topic and links its movement to the left-peripheral syntax of topicalization (Pearson, 2005; Chen, 2017). The facts of binding and case raise challenges for this

view across the region, as does the fact that absolutive DPs generally lack the discourse properties of topics (e.g. in Tagalog: Kroeger 1993). But in Mandar, we can now mount a new argument against this view: if the position that draws up the absolutive DP can force expletive insertion, it cannot be bound up with the \bar{A} -syntax of topicality.

3.4.3 Deriving the Pattern of Insertion

With this vision of clause structure in place, we can wrap up our investigation with a turn to the finer properties of the high subject position—and in particular, three questions that emerge when the link between the two subject positions breaks down.

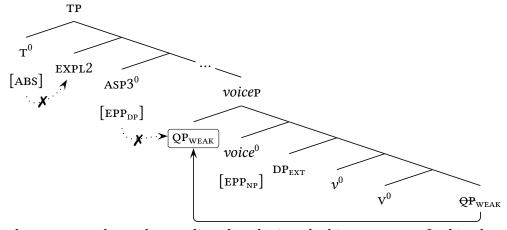
- (i) when the high subject position hosts EXPL2, why is absolutive agreement lost?
- (ii) when the high subject position hosts EXPL2, how do weak QPS get Case?
- (iii) when weak QPs raise to SPEC, voiceP, why is EXPL2 inserted at all?

The path through these puzzles runs through a relatively uncharted empirical terrain, and this is one that emerges in the clauses built around two verb-like elements: the copula *ia* and the existential *diang*. The copula *ia* always surfaces before its arguments, as if it raised to *voice*⁰, and the clauses built around it show the usual pattern of absolutive agreement when their apparent subjects are definite (64a). But this agreement disappears, in a telltale fashion, when their apparent subjects are indefinite: for instance, in characterizing statements like (64b).

(64) Copular Clauses: Indefinites $\rightarrow X$ Agreement

- a. Ia **di** [Subject? pro] gau'-na: mallaga lopi, ma'ala panginrangang. is JUST.3ABS it habit-3GEN dock boat take debt 'It's just his habit: dock his boat, take on debt.' Muthalib & Sangi 1991, 379
- b. Ia ____/*i [_subject? mesa koin] mesa poin. is /3ABS one coin one point

'One coin is one point.'


We see the same effect with all indefinites in the clauses built around the existential *diang*: when the only nominal is indefinite, absolutive agreement is lost.

These facts show that the suppression of absolutive agreement is keyed to definiteness: descriptively speaking, T⁰ fails to appear in clauses that lack a definite target of
agreement. The syntax beneath this system, then, must be sensitive to a distinction between definite and indefinite nominals—one instantiated in the syntax, I will assume,
as a divide between DPs and NPs. This is a division that must generally be covert in
Mandar (though it is drawn overtly in most languages of the South Sulawesi subfamily), as the language lacks a visible definite article and requires contextually unique
but discourse-new nominals to surface bare (66a). But it is one that is referenced by
many further systems in the language: for instance, the antipassive construction always requires the INT and GOAL to surface bare and receive indefinite interpretations,
as if it requires those arguments to be NPS (66b).

- (66) Definiteness: Covert Syntactic Distinction
 - a. U-ita **i** $[_{DP} \mathcal{O}_{D}$ **bulang**]. 1ERG-see 3ABS the moon 'I saw the moon.'
 - b. Wattu'u dyaya di Pluto dionging, $\mathbf{ma'}$ -ita a' [NP **bulang**]. When I was up on Pluto the other day, ANTIP-see 1ABS moon 'When I was up on Pluto the other day, I saw a moon.'

This analytical step allows us to understand the disappearance of agreement as follows: whenever an indefinite raises to the low subject position (or its counterpart, if any exists, in the clauses built around the copula and the existential), it is structurally too small to be attracted further into the middle field. The head ASP⁰, in other words, must only ever attract the class of nominals that project up to or past the level of DP (thus accepting DPs and strong QPs but rejecting NPs and weak QPs). This property separates it from *voice*⁰, which freely attracts nominals of this second and smaller size—and in the cases where *voice*⁰ pulls up a nominal of this second type, the high subject position must be filled with EXPL2. It is the presence of this element that forces the ensuing loss of agreement in T⁰.

(67) Indefinites: Rejected by the High Subject Position

We thus come to the understanding that the interlocking systems of subjecthood differ in their capacity to attract indefinite NPS: the low subject position can and the high subject position cannot. It is this difference in selection that delivers the breakdowns that we have seen so far—and it is one that delivers a syntax almost identical to that of the English clause in (68). This is one on which an indefinite raises to a low subject position that seems to fall at the edge of the clause-internal phase, just above the head that hosts the morphology of voice, and yet the highest subject position foregoes this NP to host the expletive *there*.

(68) The Connection to English [TP [HIGH SUBJ] There] have been [voiceP [LOW SUBJ] ten kids] being painted there all day]].

At the outset, it is clear that the parallel between these two systems is not exact: the heads that define the higher system of subjecthood in English are able to draw up indefinite NPS, while the head ASP⁰ in Mandar is not. But this difference reflects the type of idiosyncratic and head-specific variation that is very familiar from the wider literature on subjecthood (Cardinaletti, 2004)—and the narrow requirement for definiteness in the high subject position in Mandar is one that is mirrored exactly by parallel restrictions on absolutive arguments across the Philippines (Adams & Manaster-Ramer, 1988) and on nominative subject positions further afield (as in Egyptian Arabic: Diesing & Jelinek 1995). As a result, it seems natural to imagine that the breakdown cases in Mandar and the clause like (68) in English share an essentially similar syntax—and more specifically, that the expletive recruited to fill the high subject position in Mandar behaves much like *there*.

It is with this step of identification that the final properties of the system fall into place. When this expletive is inserted into the high subject position, we can imagine that it fails to control regular absolutive agreement because it is featurally deficient: a natural result if (i) there acquires ϕ -features from its associates via Agree (Deal, 2009) and (ii) the person features relevant to this pattern of agreement canonically fall in D^0 (e.g., Bernstein 2008). Through the same relationship, in turn, we can now see how the associate receives Case: it is first assigned to the expletive (which plausibly requires Case: Lasnik 1992, 1995; Groat 1995; Hazout 2004) and is then passed down to the lower associate through a familiar type of Case-sharing (best understood in the minimalist context to turn on Agree: Deal 2009). The result is an account that renders EXPL2 a there-expletive of an entirely ordinary type.

3.5 Conclusion

We thus conclude of our study of Mandar with the understanding that the vsod order of the language masks a rich and relatively ordinary syntax of subjecthood: one on which the absolutive DP is systematically raised to a low subject position at the edge of the *voiceP* and is then canonically drawn up to a second high subject position within the middle field. These steps of movement are driven by the formal requirement that particular specifiers be filled along the clausal spine, and their force is to ferry a single nominal—the absolutive—to a position where it ultimately receives the highest clause-internal source of abstract Case. It is this set of properties that establishes the absolutive DP as a subject, in the familiar generative sense, and it is the interaction of this system with the network of alternations that guide Case-licensing in the extended VP that yields the Austronesian system of voice.

The wider perspective that emerges from this research is one that draws two puzzles into focus for future work. The first of these lies with the distinction between movements that are overt and covert. It is both familiar and expected, on the copytheoretic approach (Chomsky, 1993), that A-movement should allow its targets to be spelled out in their base positions (Potsdam & Polinsky, 2012). But it is a curious fact

that the preference for covert A-movement should be so persistent in Mandar (and seemingly in many other languages of the region)—and stranger still that it should be suspended in Mandar for the class of QPs. The systems that lie beneath these preferences are at present not well understood (though see Sabbagh 2014 for an attempt to link an analogous pattern in Tagalog to the prosody), and as a result, they remain a clear target and priority for future work across the region.

The second mystery lies with the exact height of the low subject position. The facts of linear order provide relatively clear evidence that the Mandar absolutive DP must raise to a position that falls between the extended VP and the middle field: in our terms, SPEC, voiceP. Within the frameworks that take the extended VP to form a cyclic domain of computation, this is one that can be identified as the edge of the clause-internal phase (Chomsky, 2001). This abstract position is one that high absolutive DPS have long been held to pass through on primarily theory-internal grounds—and more particularly, in light of the view that DPS must raise to the edge to be accessible to the middle-field heads that they rely on for Case (Aldridge, 2004; Coon et al., 2014). This is a vision that has immediate implications for the wider theory of subjecthood, as it seems to require all types of subjects to pass through this edge, and it has been challenged by the strands of work that take phases to be porous to Agree (Bošković, 2007) or reject the existence of a voiceP-phase (Keine 2020). It is thus a telling fact that in Mandar it is borne out—and it remains to be seen what this will reveal.

Chapter 4

Inversion, Priority, and A-Locality

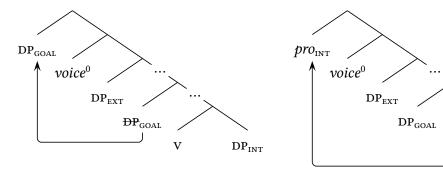
4.1 Introduction

When we speak of the A-syntax in contemporary minimalism, we speak of a system defined by the regular interaction of two component parts: the consistent needs of nominal arguments and the consistent needs of the clausal spine. The first of these, since Vergnaud 1977, has primarily been understood as a need for abstract Case: one that every derivation must resolve by placing nominals into particular structural relationships with the heads of the extended VP and TP (Larson, 1988; Pollock, 1989). The second component, in turn, has been gradually reworked from Chomsky 1965 to the framework familiar today: one on which general principles force the construction of a stable clausal spine (Grimshaw, 1991), where arguments are introduced in consistent positions (Baker, 1988) and the variable properties of individual heads define the positions that assign Case, trigger agreement, and define the positions that must be filled by MOVE (Chomsky, 1981; Borer, 1984). The theory of the A-syntax that emerges from these parts is one that drives each derivation to meet these paired sets of requirements by establishing consistent relationships between consistent positions: forcing heads to interact with nominals in particular positions to resolve formal needs of Case and ferrying nominals from particular launching points to particular landing sites to satisfy the need that certain specifiers be filled (Chomsky, 2001).

As the nature of this system has come into focus, the steps of movement that it drives have been recognized to show a consistent and distinctive shape: among other properties, they strictly target nominals, affect patterns of pronominal coreference and variable binding, and feed higher interactions with the A-syntax (for a recent

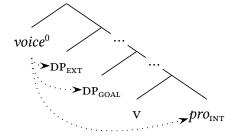
overview, see Safir 2019). Chief among their properties, however, is a restriction on relative locality (Rizzi, 1990): the dependencies of the A-syntax generally cannot skip over intervening nominal arguments. Thus it has been established that subjects and objects typically show the type of A-syntax sketched in (1): one on which they undergo successive steps of strictly local movement through fine strings of tightly interconnected positions that culminate in the assignment of Case (Koopman & Sportiche, 1988; Johnson, 1991; McCloskey, 1997; Cardinaletti, 2004).

Against this backdrop, it comes as an architectural mystery that there are many cases where this usual pattern of movement is derailed: cases where the heads of the A-syntax skip over the targets in the usual launching sites of A-movement to attract special elements in non-canonical launching sites further below. This is the pattern that seems to manifest in cases of locative inversion in English (Collins, 1996), and it occurs equally in a range of systems documented early in the history of the Minimalism—from scrambling in Japanese (Miyagawa, 2001) to the Generalized Inversions known from Russian (Bailyn, 2003, 2004). This type of pattern, shown in (2), raises three fundamental questions about the A-syntax: (*i*) what allows the A-syntax to forego its usual pattern of locality and skip the highest DP, (*ii*) how does the A-syntax ensure that Case is still assigned to DPs skipped in this way, and (*iii*) what principles drive the A-syntax to target the particular goals that it raises instead?

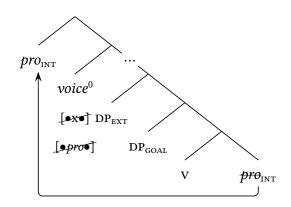


To answer these questions, the task of this chapter is to document and analyze a set of inversions that play out in the A-syntax of Mandar. In the canonical case, we have seen, the head at the edge of the clause-internal phase defines a low subject position that attracts the absolutive DP, and in DP-DP ditransitives, it targets the GOAL (3a). This pattern, however, is derailed when the GOAL is a regular DP and the INT belongs to a class of syntactically special nominals, including pronouns and quantified expressions.

When the INT is a member of this class—henceforth a PRIORITY PARCEL—it is drawn up to SPEC, *voice*P instead to yield the inversion in (3b).


- (3) The Pattern in Mandar
 - a. Ditransitives: Regular Syntax
- b. Priority Parcels: Inversion

 pro_{INT}



To make sense of this effect, this chapter lays out a revised theory of A-attraction: one that derives both priority effects and inversion from a type of non-local A-movement that emerges at the edge of the phase. Building from work on ϕ -agreement, it argues that A-movement must be prefigured by a mechanism that links movement-driving heads with all possible goals in their search space (Miyagawa, 2001). From that position, it situates the comparison of goals in a strictly local calculus of economy (Collins, 1996; Van Urk & Richards, 2015): one that weighs targets for attraction against the derivational pressure of Best match (Coon & Bale, 2014; Oxford, 2014, 2019), yielding the patterns of priority attraction in (4). Breaking from earlier work on selective attraction, it then argues that these effects must emerge in the A-syntax—showing that it feeds both A-movement and ϕ -agreement. The ensuing patterns of inversion then emerge from the interplay of two ingredients: a theory of positional locality and a corresponding flexibility in the system of Case.

- (4) The Structure of Inversion
 - a. Starting Paths for Attraction

b. Multitasking + Priority

The rest of the chapter takes the following path. In Section 2 I present the canonical syntax of the DP-DP ditransitive and introduce the priority effect in the pronominal system. In Section 3, I lay out the systems of connection and comparison that lie beneath A-attraction and develop an analysis of Priority that turns on the logic of Multitasking. In Section 4, I extend the analysis to quantified xPs and make the case that priority attraction must operate fully within the A-syntax, then work out the theory of non-local A-movement to the edge of the phase. In Section 5, I turn to the matter of Case and show that these priority effects are bound up with realignments in the system of licensing, then build an analysis that turns on a particular type of Anti-Agreement. Section 6 then concludes.

4.2 Background

Our work begins from the syntax of the ditransitive. Mandar has a range of DP-DP ditransitive constructions, and all of these share two properties: they require applicative suffixes on the verb and they force the *voiceP*-level word order of vsod (Brodkin, 2022c). The following example reillustrates this fact in a *voiceP* built around the root *jolo* "show," which I will use to illustrate the typical behavior of all ditransitive verbs.

(5) The DP-DP Ditransitive

```
Na-yolo-ang i [EXT iKaco'] [INT iGary] [GOAL iCicci'] dionging.
3ERG-show-APPL 3ABS NAME NAME NAME yesterday
'Kacho' showed Gary (a cat) to Chichi' yesterday.'
```

To see into the syntax of this construction, we can begin from the facts of linear order. When we embed ditransitive *voice*Ps beneath middle-field auxiliaries, we can recreate the configuration that forces overt movement of absolutive DPs, and in this context, we consistently see the following shift: SPEC, *voice*P must host the GOAL (6a), rather than the INT (6b).

```
(6) DP-DP Ditransitives: Absolutive Argument = Goal

a. Rua i yari [voiceP [GOAL iCicci'] na-yolo-ang [INT formulir] ____ ].

once 3ABS DID NAME 3ERG-show-APPL form

'He once DID show Chichi' the forms.'
```

```
b. *Rua i yari [voiceP [INT formulir] na-yolo-ang ____ [GOAL iCicci']].
once 3ABS DID form 3ERG-show-APPL NAME

INTENDED: 'He once DID show Chichi' the forms.'
```

This linear asymmetry then correlates with a set of restrictions on variable binding which suggest, even in clauses of the order VOD, that the GOAL must raise to SPEC, voiceP. As we have seen, Mandar has a universal quantifier nasang "every" that follows its associated DP in non-finite environments, like the complements of mau "though," and otherwise raises to cluster with absolutive agreement. This type of quantification licenses patterns of variable binding that track c-command in a manner that is insensitive to linear order (Chapter Three), and in the DP-DP ditransitives of the language, two of these stand out. When the GOAL is quantified, to begin, it can always bind into the preceding INT (7a). When the INT is quantified, in the same vein, it cannot bind into the following GOAL (7b). We can understand this asymmetry in much the same way as the facts of visible movement to SPEC, voiceP: in the typical ditransitive voiceP, the GOAL must originate and remain above the INT.

- (7) Variable Binding: Ditransitive GOAL > INT
 - a. Mau [$_{voiP}$ na-yolo-ang [$_{s}$ iCicci'] [$_{o}$ lukisang-na pro] [$_{D}$ pallukis **nasang**]], though 3erg-show-appl name painting-3gen her painter every "Though Chichi' showed [$_{FIN}$] every $_{i,j}$ painter her $_{i}$ painting,"
 - b. Mau [woip na-yolo-ang [s iCicci'] [o lukisang **nasang**] [d pallukis-na pro]], though 3erg-show-appl name painting every painter-3gen its 'Though Chichi' showed [-FIN] its it, i painter every i painting,'

4.2.1 Priority Parcels

Putting these facts together with the theory of clause structure developed so far, we arrive at an analysis that predicts a relatively stable syntax to the ditransitive *voiceP*: when the verb is ditransitive, the highest Caseless argument in the *voiceP* should always be the GOAL, and as a result, that argument will always be drawn up to SPEC, *voiceP* and agree with T⁰. From this perspective, then, it should come as a surprise that the usual pattern of movement is derailed when the GOAL is a regular DP and the INT is an animate pronoun. The first sign of this shift is shown in example (8): whenever the INT is a pronoun, it controls agreement on T⁰.

(8) Pronominal INT → Agreement Derailed

[TP [voiceP na-yolo-ang a' [EXT iKaco'] [INT pro] [GOAL iCicci']]].

3ERG-show-APPL 1ABS NAME me NAME

'Kacho' showed me to Chichi.'

This morphological shift then triggers a string of changes in the systems of movement and binding. When we set up the configuration that forces overt movement of the absolutive DP, to begin, we get the result in (9a): the ditransitive GOAL must stay in the *voice*P. In this context, the GOAL cannot move overtly in its usual way (9b).

(9) Pronominal INT → Low GOAL

a. [TP Yari a' [voiceP _ na-yolo-ang [s iKaco'] [o prolsg] [b iCicci']]].

DID 1ABS 3ERG-show-APPL NAME me NAME

'Kacho' DID show me to Chichi.'

b. [TP *Yari a' [voiceP [b iCicci'] na-yolo-ang [s iKaco'] [o pro] ___]].

DID 1ABS NAME 3ERG-show-APPL NAME me

INTENDED 'Kacho' DID show me to Chichi.'

This suspension of Absolutive Preposing is then mirrored by a shift in variable binding. In the finite clauses that contain absolutive agreement, as we have seen, the quantifier *nasang* subextracts from its associate to cluster with T^0 (Chapter Three). This type of subextraction has no effect on the system of variable binding, and as a result, we see the same possibilities of coreference across finite and non-finite clauses. In finite ditransitive clauses where the INT is a DP, then, the GOAL can still bind into the EXT, as if it raised covertly (10a). The INT, in turn, cannot (10b), as if it stayed low.

(10) Variable Binding in Finite Clauses: GOAL > EXT > INTa. [TP Na-yolo-ang nasang i [s kindo'-na pro] [o seni] [D sanaeke ____]].

3ERG-show-APPL every 3ABS mom-3GEN her art kid t_{nasang} 'Her ij mom showed every ikid some art.'

b. [TP Na-yolo-ang nasang a' [s kindo'-na pro] [o sanaeke ____] [D pro]].

3ERG-show-APPL every 3ABS mom-3GEN her kid t_{nasang} me

'Her ij mom showed me every kid.'

When the INT is a pronoun, however, the pattern is reversed. The GOAL loses the ability to bind into the EXT (11a), as if it had ceased to move to SPEC, *voiceP*. The INT, in turn, gains the ability to bind into the EXT (11b), as if it moved instead.

```
(11) Variable Binding + Pronominal INT: INT > EXT > GOAL

a. [TP Na-yolo-ang nasang a' [s kindo'-na pro] [o pro] [b sanaeke ____ ]]

3ERG-show-APPL every 1ABS mom-3GEN her me kid t_nasang

'Her*_i,j mom showed me to every, kid.'

b. [TP Na-yolo-ang nasang i [s kindo'-na pro] [o pro ____ ] [b dottor]].

3ERG-show-APPL every 3ABS mom-3GEN her her t_nasang doctor

'Her_i,j mom showed the doctor every, one of them.'
```

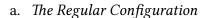
We can also see the same realignment in the domain of Condition C. In the system of pronominal coreference, we have seen that Mandar imposes a second restriction that traces c-command: pronouns cannot c-command coreferetial R-expressions, yielding a classical network of Condition C effects. In regular DP-DP ditransitives, this restriction yields two related effects. When the GOAL moves to the low subject position, to begin, it gains the ability to contain R-expressions coindexed with a pronominal EXT (12a). In the same vein, it becomes ungrammatical for the EXT to contain R-expressions coindexed with a pronominal GOAL (12b).

(12) Condition C: GOAL > EXT

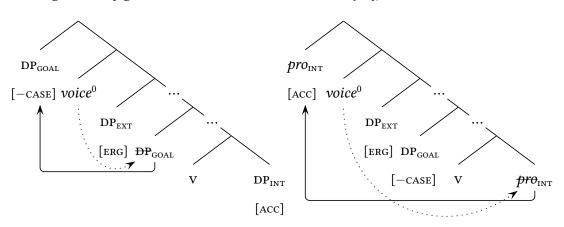
- a. $[_{TP}$ Na-yolo-ang i $[_{S}$ pro] $[_{O}$ seni] $[_{D}$ kindo'-na $[_{\mathring{\mathcal{C}}P}$ iKaco' na iCicci']]]. 3erg-show-appl 1abs she art mom-3gen name and name 'She $_{i}$ showed Kacho' and Chichi' $_{i}$'s mom some art.'
- b. $[_{TP}$ Na-yolo-ang i $[_{s}$ kindo'-na $[_{\mathring{e}_{TP}}$ iKaco' na iCicci']] $[_{o}$ seni] $[_{D}$ pro]]. 3ERG-show-APPL 1ABS mom-3GEN NAME and NAME art her 'Kacho' and Chichi', 's mom showed her $_{i}$ some art.'

In the same configuration, the same constraints show that the INT remains low. We can see the most important piece of evidence in contexts where both the INT and the GOAL are pronouns. In this configuration, absolutive agreement must target the GOAL, and in that context, the INT can corefer with an R-expression in the EXT (13).

(13) Condition C: EXT > INT [TP Na-yolo-ang a' [s kindo'-na [&p iKaco' na iCicci']] [o pro] [p pro]. 3ERG-show-APPL 1ABS mom-3GEN NAME and NAME her me 'Kacho' and Chichi', s mom showed her, to me.'


The facts are reversed, however, when the GOAL is a DP and the INT a pronoun. In that context, the GOAL cannot host R-expressions coindexed with the EXT (14a). In the same vein, the EXT cannot host R-expressions coindexed with the INT (14b).

(14) Pronominal INT: INT > EXT > GOAL


- b. $[_{TP}$ Na-yolo-ang i $[_{S}$ kindo'-na $[_{\mathring{\mathcal{C}}P}$ iKaco' na iCicci']] $[_{O}$ pro] $[_{D}$ dottor]]. 3ERG-show-APPL 1ABS mom-3GEN NAME and NAME her doctor 'Kacho' and Chichi', 's mom showed her $_{*i}$ to the doctor.'

The combined force of these pieces is to suggest a system with the following shape. In all DP-DP ditransitives in Mandar, the GOAL is base-generated above the INT—originating in the rightward specifier of a head *appl*⁰ that assigns Case to the INT. When the GOAL and INT are both pronouns or both DPS, the GOAL is then drawn to SPEC, *voiceP*, an A-position that feeds Case-licensing by T⁰, by a probe that canonically targets the highest Caseless DP (15a). But if the GOAL is a DP and the INT is a pronoun, this step is derailed—and *voice*⁰ skips the GOAL to attract the INT instead (15b). I will refer to this as a PRIORITY EFFECT.

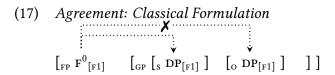
(15) The Syntax of the Mandar Ditransitive

b. The Priority Effect

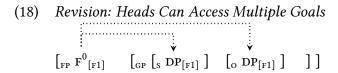
The immediate force of this conclusion is to reveal a case of Generalized Inversion, in the terminology of Bailyn 2004: there is a single position that triggers attraction, well-integrated with the wider A-syntax, which seems able to skip past its usual targets to attract non-canonical goals from positions beneath that point. In this respect, it falls together with many further cases of this shape—from locative inversion in English (Collins 1996) to analogous steps of A-attraction that can skip subjects to target objects in Japanese (Miyagawa, 2001) and a wider range of elements in Russian (Bailyn, 2004). But unlike these cases, it is specifically conditioned by the shapes

of the GOAL and the INT—falling together in this way with a range of effects known from the literature on AGREE. We thus move forward with three questions in hand:

- (16) The Guiding Questions of the Investigation
 - 1. What allows the A-syntax to forego strict locality and skip the GOAL?
 - 2. What allows derivations of this type to evade the ensuing issues of Case?
 - 3. What makes certain goals into priority parcels that are favored for MOVE?


4.3 Best-Match Attraction

We can thus launch the next stage of our investigation from the matter of priority: how might the A-syntax compare among multiple targets for Move, rank them along scales of preference, and drive the selective pattern of movement above? To this end, we will turn to the network of parallel effects that emerge around ϕ -agreement, leveraging several lines of progress from that domain to articulate a revised theory of Move. In this connection, I will argue that both movement and ϕ -agreement play out at a derivational stage where heads have already made contact with all licit goals in their search space—one established by a third operation LINK that sets up the derivational arteries for Move and Agree. It is in this moment that the priority effect is forced by a type of Best-Match attraction—one that plays out in the narrow set of contexts where the usual rules of A-locality are relaxed.


4.3.1 The Operation Link

Our work begins with the theory of probing: the mechanism that links heads with their goals at the derivational stage before MOVE and AGREE. The movement and agreement dependencies of the A-syntax, like all systems in language, show a locality profile with a finely relativized shape (Rizzi, 1990): they freely cross over many types of constituents, from adjuncts and Ā-elements to the heads that define locality domains for head-movement, but in the general case, they do not skip intervening DPs. To capture this pattern in derivational terms, Chomsky 2001 proposes that MOVE and AGREE are prefigured by a mechanism of PROBING: one that searches through the c-command domain of its driving head and proceeds until it encounters a matching goal. The result is a theory that builds the usual locality profiles of these operations directly into

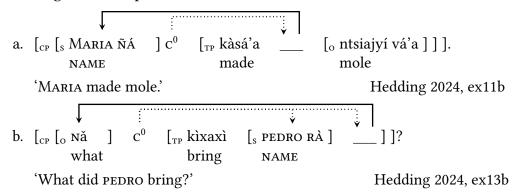
the searching mechanism itself, along the lines in (17): once this process links a head with the highest goal beneath it, it stops.

In the realm of ϕ -agreement, however, many patterns converge to suggest that the system of probing must be able to look past the highest licit targets in its search domain—yielding patterns of probing with the shape in (18). This understanding emerges from a range of interconnected effects: (i) cases where AGREE copies back the same feature from multiple targets at once, yielding patterns of omnivorous agreement (Nevins, 2011), (ii) cases where AGREE for a wider category of features, like person, copies back subfeatures from multiple goals (Deal, 2015; Coon & Keine, 2021), and (iii) cases where AGREE seems to compare among multiple goals and copy back the full feature bundle of one or the other (Coon & Bale, 2014; Oxford, 2014, 2019). The collective force of these effects is to suggest that ϕ -agreement must emerge from the joint work of two distinct mechanisms: an operation of PROBING that links heads with goals and an operation of AGREE that copies ϕ -features back (Béjar & Rezac, 2003, 2009; Deal, 2015; Coon & Keine, 2021).

In the domain of movement, patterns of inversion then force the same analytical step. This is a point first made by Miyagawa 2001 in a study of Japanese, where the system of attraction to SPEC,TP seems able to skip over the subject and draw up the object instead (19). To deliver this pattern of attraction, Miyagawa 2001 observed, it must be possible for T⁰ to make contact with the object—but to capture the fact that the subject still receives Case in its usual way, it must also be possible for T⁰ to make contact with the subject as well. Miyagawa 2001 thus proposes that MOVE must also be prefigured by separate operation of probing with the shape in (18) above: one that connects the driving head with multiple goals and allows it to compare among them.

(19) Miyagawa 2001: Multiple Agree in Japanese

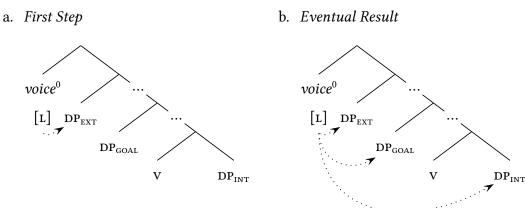
CASE


[TP Sono tesuto-o
$$T^0$$
 [VP gakusei no zen'in-ga [VP ____]] ukenakatta] koto]

that test-ACC all the students-NOM $t_{that\ test}$ didn't take fact

'The fact that all the students didn't take the test.'

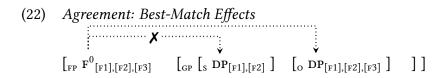
Beyond this initial case, the same mechanism has since been extended to many analogous patterns in the domain of movement. In the A-syntax, to begin, Bailyn 2004 extends a similar framework to analogous cases of inversion in Russian, building in a central way on the theory of EQUIDISTANCE (Kitahara, 1997). In the Ā-domain, moreover, Hedding 2022 proposes a similar analysis for a pattern of priorty in San Martín Peras Mixtec: in that language, there is a single position in the left periphery that attracts wh-phrases and foci (20a), but in the clauses that host elements of both types, it skips foci to preferentially attract wh-phrases from lower in the clause (20b).


(20) Hedding 2022: Comparison between Goals in the Ā-Domain

In light of these effects, I thus propose that Move and Agree are systematically preceded by an operation that links heads with all possible goals in their search space. I will refer to this operation as LINK. Unlike the classical form of Agree, I take it to proceed in an iterative fashion, continuing after encountering each goal and proceeding through the phase until all possible goals are found. The shape of this operation is sketched in the diagrams in (21): when a head like *voice*⁰ carries the driving feature L, it launches a search, probes downward, and eventually encounters the highest goal that matches its relativization. The head then establishes a connection with the goal, marked with the dotted line in diagram (21a), and renders the GOAL visible to the systems of MOVE and Agree—though it has no featural effect on either the goal or the head itself. With this link established, the head then proceeds with the search until it

encounters the next goal, forms an analogous connection, and then continues in the same iterative fashion until all licit goals have been found (21b). At this point, further steps of LINK become impossible, and as a result, I assume that the operation simply fails (Preminger, 2011), passing the ensuing connections to the next derivational stage.

(21) The Operation Link



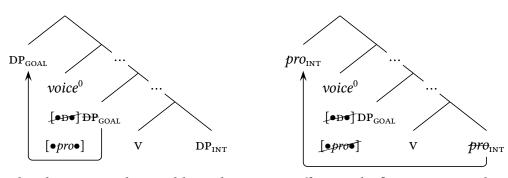
4.3.2 Best-Match Effects

From this position, we can now lay the foundations for the theory of PRIORITY A-attraction. Within the literature on AGREE, the standard account of the analogous patterns is built around the early Minimalist notion of Economy: the derivational pressure to check features in a maximally efficient way. The account flows from three interlocking hypotheses. The first holds that multiple features on syntactic heads can be accessed at the same time, yielding a parallel calculus of feature-checking (Chomsky, 1995; Pesetsky & Torrego, 2001; Longenbaugh, 2019). The second hypothesis holds that heads must check as many features as they possibly can once they begin to interact with a single goal: if it carries features that drive Move and AGREE, for instance, it must check both with a single goal (the Free Rider Condition of Chomsky 1995; Bruening 2001; Rezac 2013). In the cases where heads make contact with multiple goals, at last, the third hypothesis holds that the choice among them must be guided by a parallel constraint: one that favors the goals that satisfy the maximum number of features at once (the pressure for MULTITASKING: Pesetsky & Torrego 2001; Van Urk & Richards 2015; Van Urk 2015; Newman 2024).

The combined weight of these ingredients is to allow the derivation to select among multiple possible goals in response to two factors: (*i*) the featural requirements of heads and (*ii*) the featural profiles of goals. Patterns of agreement in person, for in-

Stance, are routinely taken to be driven by a range of separate features on heads: (Béjar & Rezac, 2009), for instance, propose that it implicates a series of *segments*, or sub-probes, that search independently for the hierarchically nested features that make up the category of Person (e.g., Person, Participant, and Speaker: Harley & Ritter 2002). When a sub-probe of this type makes contact with a goal, they argue, Free Rider Condition forces it to copy back as many features as it possibly can (and see Deal 2015; Coon & Keine 2021 for similar views). When probes of this shape make contact with multiple goals at once, in turn, Coon & Bale 2014 and Oxford 2014, 2019 argue for a second type of effect: one on which the target for Agree is directly determined by the requirement for Multitasking. The shape of this second effect is shown in diagram (22): when a head with features F1-F2-F3 is linked with two goals and one satisfies F1-F2 but the other satisfies F1-F2-F3, it is forced to Agree with the second. I will refer to this pattern as a Best-Match Effect.

We now have a path to derive the priority effect. In the Mandar *voice*P, I propose that $voice^0$ carries two features: one that forces attraction of DPs and one that forces attraction of pronouns. Denoting these features as $[\bullet D \bullet]$ and $[\bullet pro \bullet]$, we can organize them into a hierarchy: [pro] entails [D], such that any element that satisfies $[\bullet pro \bullet]$ will satisfy $[\bullet D \bullet]$.


In this configuration, we can leverage the logic of economy to force our result. When the head $voice^0$ triggers link and makes contact with the ditransitive goal and int, it engages in a calculus of the following shape. To satisfy $[\bullet D \bullet]$, it will always suffice to attract either the goal or the int. In the derivations where the goal and the int are both dps, however, there will be no way to satisfy $[\bullet pro \bullet]$. As a result, the syntax defaults to the pattern of attraction in (23a): one on which $voice^0$ draws up the goal in response to the pressure for strict locality in the A-syntax. In the derivations where the int is a pronoun, however, a second possibility emerges: if the constraints on strict locality were relaxed, both $[\bullet D \bullet]$ and $[\bullet pro \bullet]$ could be checked by attracting the int. In contexts of priority, I propose this is exactly what occurs: the A-syntax manages to evade these constraints and forego the goal to draw up the int instead (23b). The result is a pattern of attraction that follows the logic of BEST MATCH Coon

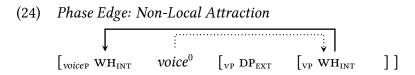
& Bale 2014; Oxford 2014, 2019: in the terminology of Hedding 2022, 2024, a type of BEST-MATCH ATTRACTION.

(23) Priority Movement via Economy: Derivation

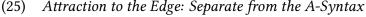
a. Canonical Attraction

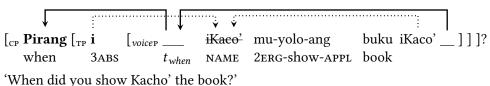
b. *Priority Attraction*

We can thus begin to understand how the priority effect might fit into a general theory of attraction. In the calculus of economy that follows LINK, the derivation must systematically weigh the features of the driving head against those of all possible goals. In the A-syntax, the typical result is movement of the closest DP: a pattern forced by the usual constraints on A-locality. But under a network of conditions that loosen those constraints and manage the consequences for Case—conditions that must soon be understood—the pressure for Multitasking can force the priority effect.


4.4 Locality at the Edge

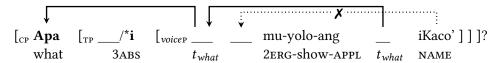
With this much in place, we can shift to the second guiding question of our investigation: within the system of priority, what allows the usual rules of A-locality to be relaxed? The path ahead, I propose, is one that runs through a conspicuous fact of position: the steps of non-local movement in this system all target the edge of the extended VP, which is a position widely recognized to play a central role in the Ā-domain. The task of this section is thus to make sense of this fact—and ultimately build a positional theory that allows the rules of A-locality to be loosened at the edge.


4.4.1 The Ā Connection

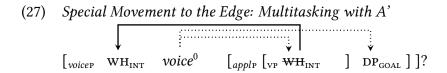

Chomsky 2001 proposes that the edge of the extended VP plays a central role in the system of Ā-extraction because it defines a cyclic domain for syntactic computation: in

his terminology, a phase. As a result, Chomsky 2008 proposes that the head at the edge of the extended VP must be endowed with a second type of movement-driving feature: one that specifically targets the class of elements that must be removed from cyclic domains for the derivation to converge. It is this second type of feature, he argues, that drives A-attraction to the edge (24): a step of movement evinced by patterns of wн-quantifier stranding (Barbiers, 2002; Koopman, 2010; Henry, 2012; Doliana, 2022), morphological extraction-marking (Bruening, 2001; Bennett et al., 2012) and partial spell-out (Van Urk, 2018), and many further effects (Fox, 1999; Nissenbaum, 2000).

Chomsky 2008 argues that the EDGE FEATURES in this system belong to the Adomain: they trigger steps of movement that canonically show the standard Ā-properties (lacking category restrictions, skipping intervening DPS, licensing parasitic gaps, and preferentially reconstructing) and they place their targets in positions that are invisible to the A-syntax (failing to intervene for ϕ -agreement, Case-assignment, and higher steps of A-movement). In the general case, this must be correct: in Mandar, for instance, WH-phrases pass through this edge as they raise to the left periphery (Chapter Five), and this step typically has no affect on the connection between the absolutive DP in spec, voicep and т⁰. When adjunct wн-phrases move in this way, then, ditransitive GOALS still AGREE with T⁰ (25).



Despite this fact, there is a growing body of evidence to suggest a second possi-


bility at this edge: in some cases, the steps of attraction triggered by EDGE FEATURES seem to derail independent steps of A-movement to SPEC, voiceP (Van Urk, 2015; Holmberg et al., 2019; Newman, 2024). This type of interference is one that we can see in the Mandar voice, and it emerges when WH-phrases take the position of the ditransitive INT. In that context, it is clear that the GOAL does not raise: it loses its binding privileges, cannot undergo Absolutive Preposing, and ceases to AGREE with T⁰ (26).

(26) Certain Types of Movement to the Edge: Interaction

'What did you show Kacho'?'

Van Urk 2015 proposes that these effects turn on a particular type of Multitasking: the phase head carries triggers for A-movement ($[\bullet D \bullet]$) and edge features that drive \bar{A} -extraction ($[\bullet x \bullet]$), the syntax seeks to check them both with a single goal, and as a result, the derivation foregoes regular A-movement for a type of mixed A- \bar{A} attraction: one that derails the A-syntax because it checks A-features but skips over regular DPs because it is driven by \bar{A} -features as well (27).

The result is a system that draws a particular link from locality to height to \bar{A} -attraction: (i) the head that defines the phase edge has the capacity to drive special types of attraction, (ii) those effects reflect the work of edge features, which license non-local movement, (iii) edge features operate in the \bar{A} -domain, prioritizing \bar{A} -elements like WH-phrases, and (iv) these \bar{A} -edge features lie behind all non-local movement, such that non-local A-movements actually involve mixed \bar{A}/\bar{A} -attraction.

4.4.2 The Theory of Visibility

To evaluate this proposed link from loose locality to \bar{A} -interference, we can begin by building a set of predictions about what it might mean for steps of movements and their associated landing sites to be simultaneously A and \bar{A} . To this end, it will be useful to draw a distinction that has largely passed under the radar in prior work: one that splits the properties of movement from the ways that their landing sites are treated by the external systems of the A-syntax. This cut is sketched in (28).

- (28) The A-Ā Divide: Two Parts
 - a. Properties of Movement: category restrictions, strict locality, reconstruction
 - b. Properties of Positions: feeding Case-assignment; ϕ -agreement; A-movement

This distinction is useful for the way it allows us to contrast our priority effects with a second class of movements that share two properties of type (28a): namely, those that show the locality profile of A-attraction but the binding profile of A-movement. The most notable operations of this type are those traditionally grouped under the label of A-scrambling, familiar from Germanic (Vanden Wyngaerd, 1989; Jonas & Bobaljik, 1993; Collins & Thráinsson, 1993; Merchant, 1996; Grewendorf & Sabel, 1999), Hindi (Mahajan, 1989), Japanese (Saito, 1992; Miyagawa, 1997), and many other languages (Frank et al., 1996; McGinnis, 1998; Ko, 2014; Gong, 2023), as well as the types of movement that seem to underlie clitic doubling in languages like Rioplatense Spanish (Suñer, 1988), Romanian (Dobrovie-Sorin, 1994), Greek (Alexiadou & Anagnostopoulou, 1997; Angelopoulos, 2019), Bulgarian (Harizanov, 2014), and Amharic (Kramer, 2014). Like priority attraction, all of these operations seem able to draw DPs across higher nominal arguments, and all of them seem to license various types of binding into the elements they cross. The following examples illustrate this effect in Rioplatense Spanish: when the INT is doubled by a clitic, it undergoes a type of movement above the EXT that allows it to bind variables in that DP.

(29) Second Class of Movements: \bar{A} for Locality, A for Binding

his mother CLITIC loves everyone everyone. Suñer 1988, 69a

The network of operations in this second class are valuable for the ways in which they seem to contrast with our priority effects with respect to the second property above: the ways in which they interact with the higher systems of the A-syntax. Across systems of A-scrambling and clitic doubling, it has been consistently observed that steps like (29a), which place INTs and GOALS above the EXT, have no effect on the syntax of subjecthood. When these arguments seem to undergo A-movement above the EXT for the purposes of binding, more specifically, they fail to intervene for higher steps of AGREE and ATTRACT. This fact can be seen neatly in Spanish, where subjects typically agree with T⁰ and raise to SPEC,TP (Goodall, 2001; Suñer, 2003; Camacho,

2006; Gutiérrez-Bravo, 2007; Sheehan, 2016): in that language, both processes skip the INT in the apparent A-position in (30).

(30) Second Class of Movements: Landing Sites Invisible to the A-Syntax

'His $_i$ mother loves everyone.

Suñer 1988, 69a

There is a natural way to understand these effects, and it is one that emerges from the literature on feeding relationships between different types of Move. It has long been observed that there is a restriction on the types of positions that can launch Amovement (Chomsky, 1973; May, 1979): descriptively speaking, movement into an A-position must be launched from an A-position, rather than an adjunct position or a landing site of the Ā-syntax (31a). This restriction, known as the BAN ON IMPROPER MOVEMENT, has typically been invoked to explain patterns of the shape in (31b): patterns of A-attraction will systematically look past Ā-elements in Ā-positions, like WH-phrases at the edge of the *voice*P. But in a study of A-scrambling in German, Müller & Sternefeld 1993, 1996 propose that it also underlies invisibility effect in (31c): the A-syntax must also ignore the elements that occupy the landing sites of A-scrambling, as if they occupied positions that formed illicit launching sites for later A-movements as well (and see also Abels 2007 for a similar view).

(31) The Ban on Improper Movement

a. Movement into A-positions must be launched from lower A-positions.

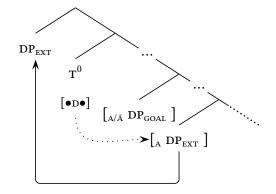
To capture this restriction, Abels 2007 proposes that the constraint beneath the Ban on Improper Movement is one that is finely relativized to a richer series of distinctions that fall between the endpoints of A and \bar{A} : pure A-movements cannot be fed by A-scrambling, and A-scrambling cannot be fed by pure \bar{A} -operations like, for instance, wh-movement. If we accept the hypothesis that movements and positions can be simultaneously A and \bar{A} , it then seems natural to recast the key restriction along the

following lines: A-scrambling cannot feed regular A-movement because it is a mixed A- \bar{A} operation (Webelhuth, 1989a). The ensuing constraint and derivational consequence are presented below in (32).

- (32) The Ban on Improper Movement: Revised
 - a. Addendum: Movement into A-positions cannot proceed from A-Ā-positions.

b.
$$[_{\text{TP}}$$
 subj $_{\text{T}}^{0}$ $[_{\text{FP}}$ $[_{\text{A-$\bar{\text{A}}}}$ $_{\text{POS'N}}$ $_{\text{A-SCRAMBLED}}$ xp $]$ $[_{voicep}$ $[_{\text{A-POS'N}}$ $_{\text{SUBJ}}$ $_{\text{Voice}}^{0}$... $]]]]]$

Formally speaking, I propose that this analysis plays out along the following lines. To derive the facts of binding, I propose that these movements are driven by heads that carry the feature $[\bullet D \bullet]$: the ordinary driver of A-attraction and one that enforces a preference against reconstruction in the calculus of binding and coreference. To capture the facts of locality, however, these heads must also host an \bar{A} -feature that drives non-local attraction: either an edge feature or a second type of feature that drives A-scrambling, like $[\bullet \Sigma \bullet]$. When these features cooccur, the system of economy will force movement-driving heads to draw up a single target, yielding non-local steps of attraction like (33a). And as these steps are driven by the joint work of A-and \bar{A} -features, we might then imagine—following the featural definition of A- and \bar{A} -positions in Van Urk 2015—that they will place their targets in A- \bar{A} -positions as well. As a result, I propose that they will be invisible to LINK as it builds the arteries of the higher A-syntax—and thus invisible for A-attraction (33b).


- (33) Mixed A-Ā Positions: Towards a Theory
 - a. Scrambling: A-Ā Mixing
 - DP_{INT} ...

 voice⁰ ...

 [•A•] DP_{EXT}

 [•Ā•] V ĐP_{INT}

b. Mixed Positions: Invisible

4.4.3 Priority and Proper Movement

All this footwork is useful for the link that it builds to a second layer of the Mandar clause: the higher syntax of subjecthood. Above the low subject position at the edge of the *voice*P, Chapter Three establishes that there is a second and higher subject position that is consistently projected in the middle field. On a par with *voice*O, this is one defined by a head that canonically triggers movement that is covert. But under a fine network of circumstances, it is possible to directly observe a higher step of A-movement to this position—and in that context, we will see that our patterns of priority feed the A-syntax in a different way.

The case begins from the syntax of the adnominal quantifiers documented and analyzed in Chapter Three. This class incudes elements of two types: weak quantifiers like *mai'di* "many" and *sicco'* "few" (34a) and strong quantifiers like *inggannanna* "every" and *ianasanna* "each" (34b). All of these elements appear in prenominal positions, on a par with the demonstratives and determiners of the language, and I will continue to assume that they spell out quantificational heads within the extended NP.

(34) A Second Class of Quantifiers

- a. [QP Mai'di anjoro], [QP sicco' anjoro] many coconut few coconut 'Many coconuts, a few coconuts.'
- b. [QP] Inggannanna bonde [QP] ianasanna batu bonde [QP] all sand each grain sand 'All the sand, each grain of sand'

As we have seen, these QPs are useful because they move in a fashion that is systematically overt. When they are absolutive, then, they never surface in the usual postverbal positions of argument DPs: when generated as a transitive INT in a non-finite clause, for instance, such a QP must be pronounced in the low subject position (35). This step of movement, moreover, shows all the usual properties of the process that raises the absolutive DP: it targets the same linear position (the juncture between the lowest auxiliary and the verb), it fills this position with a single QP (targeting the GOAL and not the INT when both are quantified), and it ignores QPs outside the positions of argument DPs (such as adjuncts to the *voiceP* or QPs in PPs).

(35) Quantified Arguments: Move Overtly Mau rua yari [voiceP [INT inggannanna paccoro] na-saka ____] though once DID all thief 3ERG-catch 'Though once they DID catch [-FIN] all the thieves,'

In the same vein, we have seen that this process has a familiar impact on the systems of pronominal coreference and variable binding: it fails to reconstruct for Condition C, allowing absolutive QPS to contain R-expressions coindexed with the EXT (36a), and it introduces new possibilities for variable binding, allowing these QPS to bind variables in the EXT as well (36b). As a result, we can assume that absolutive QPS are drawn to the low subject position by the same syntax that attracts regular DPS.

(36) Quantificational Phrases: Evidence for A-Movement

- a. Mau rua [voiceP [INT ing. sola-na iAli] na-ita [EXT pro] ____]. though once all friend-3GEN NAME 3ERG-see

 'Once heij saw [-FIN] all of Ali's friends.'
- b. Mau byasa [$_{voiceP}$ [$_{INT}$ ian. kindo'] na-ita [$_{EXT}$ sanaeke-na pro] _____]. though usually each mom 3erg-see child-3gen her 'Though usually $her_{i,j}$ kid sees [$_{FIN}$] each mom $_i$.'

For our purposes, these QPS are useful because they move with priority as well. In the ditransitive *voice*PS where the GOAL is a regular DP, then, both weak and strong QPS are exceptionally attracted to SPEC, *voice*P from the position of the INT.

(37) Quantified Arguments: Priority Movement

- a. Mau [voiceP [INT mai'di fakta] u-yolo-ang _ [GOAL sola-u]], though many fact 1erg-show-appl friend-1gen 'Though I showed [-FIN] my friends many facts,'
- b. Mau [voiceP [INT ing. fakta] u-yolo-ang _ _ [GOAL sola-u]], though all fact 1ERG-show-APPL friend-1GEN

 'Though I showed [-FIN] my friends all the facts,'

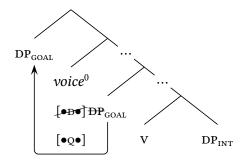
This step of movement shows all the hallmarks of the priority effect. To begin, they force the usual changes to suggest that *voice*⁰ no longer attracts the GOAL. Under the conditions that force this movement to be overt, to begin, they prevent the GOAL from surfacing in that position. In the same vein, they derail the patterns of binding that suggest that it moves covertly: for instance, they block binding from the GOAL into the EXT (38).

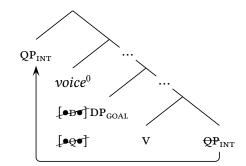
(38) Priority Movement: Derails Binding from the GOAL into the EXT

- a. Mau [voiP [o] mai'di fakta] na-yolo-ang [s kindo'-na pro] [d ana' nasang]], though many fact 3erg-show-appl mom-3gen her kid every 'Though her*, i mom showed [-FIN] every; kid many facts,'
- b. Mau [$_{voiP}$ [$_{0}$ ing. fakta] na-yolo-ang [$_{s}$ kindo'-na pro] [$_{D}$ ana' **nasang**]], though all fact 3erg-show-appl mom-3gen her kid every 'Though her* $_{i,i}$ mom showed [$_{FIN}$] every $_{i}$ kid all the facts,'

When QPS raise in this way, in the same vein, they show all the hallmarks of undergoing A-movement themselves. Just like the QPS that raise from the position of the GOAL, then, the QPS raised from the position of the ditransitive INT can contain R-expressions coindexed with the EXT (39a) and can bind into the EXT as well (39b).

(39) Priority Movement: New Binding Relationships with the EXT


- a. Mau [voiP [o mai'di lukisan-na iCicci'] na-yolo-ang [s pro] [d iKaco']], though many friend-3GEN NAME 3ERG-show-APPL she NAME 'Though shei showed [-fin] Kaco' many of Cicci's paintings,'
- b. Mau $[voiP]_{O}$ ian. lukisang] na-yolo-ang $[s]_{S}$ pallukis-na $[s]_{D}$ iKaco']], though each painting $[s]_{S}$ though its $[s]_{S}$ painter showed $[s]_{S}$ circle each $[s]_{S}$ painting,'


It thus seems clear that QPS must be drawn up to SPEC, voiceP through the same system of priority attraction as the pronouns of Sections 2-3: when they take the position of the ditransitive INT, some pressure for Multitasking must force them to be prioritized over regular DPS in the position of the GOAL. Formally, we can understand this effect to follow from the presence of a third type of feature on voice⁰: one that demands attraction of a QP. In the usual ditransitive voicePS, this feature takes no effect, fails, and disappears, on a par with the [•pro•] of Section 3 (40a). But in the voicePS that host QPS, it drives priority attraction to SPEC, voiceP (40b).

(40) Quantified Phrases: Priority Movement

a. Canonical Dervation

b. Priority Attraction

With this much in place, we can begin to understand how priority attraction feeds into the higher syntax of subjecthood. In the finite clauses of the language, the strong QPs in this system trigger the same patterns of agreement as the pronouns in Sections 2-3. When they undergo regular A-movement from the position of the ditransitive GOAL, they control agreement with T^0 (41a). But when they undergo priority attraction from the position of the INT, they trigger agreement in the same way (41b).

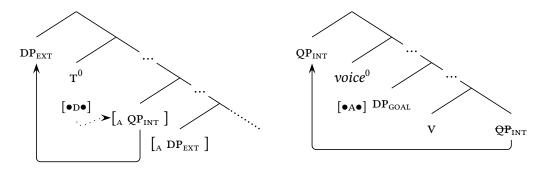
(41) Priority Movement: Feeds Agreement with T^0

- a. $[_{TP} \ [_{D} \ ing. \ sola-na \] \ na-yolo-ang \ i \ [_{S} \ iCicci'] \ [_{O} \ lukisan-na \] \].$ all friend-3GEN 3ERG-show-APPL 3ABS NAME painting-3GEN 'Cicci' showed all her friends her paintings.
- b. $[_{TP} \ [_{O} \ ing. \ lukisan-na \] \ na-yolo-ang \ i \ [_{S} \ iCicci'] \ [_{D} \ sola-na \] \].$ all painting-3GeN 3ERG-show-APPL 3ABS NAME friend-3GEN 'Cicci' showed her friends all her paintings.

This pattern of agreement then correlates with a positional fact from Chapter Three: in finite clauses, strong QPs visibly raise into the middle field. This process places them in a position that precedes auxiliaries and shows all the hallmarks of Amovement to a subject position: most importantly, it only targets the single QP that raises to SPEC, *voiceP*. This process targets QPs when they raise from the position of the ditransitive GOAL (42a), and it targets them in the same way when they undergo PRIORITY ATTRACTION from the position of the INT (42b).

(42) Priority Movement: Feeds Raising to SPEC, TP

a. [TP D ing. sola-na] rua i [voiP na-yolo-ang s iCicci'] [O seni-na]]].

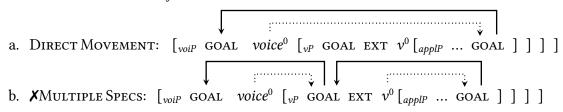

all friend-3GEN once 3ABS 3ERG-show-APPL NAME art-3GEN

'Cicci' once showed all her friends her art.

These facts establish a central line of contrast between priority attraction and the mechanisms that underlie A-scrambling and clitic doubling: the system of priority attraction places its targets in positions that feed AGREE with T⁰ and raising to SPEC,TP. In this respect, it is clear that it must define landing sites that are fully visible to the A-syntax—ones that can be accessed by LINK and fed into the calculus of MOVE and AGREE (43a). And on the theory of visibility outlined above, this conclusion leads to an important conceptual result: if the A-syntax can only access positions that are defined by A-features alone, then the features that drive priority attraction must belong fully to the A-domain. In other words, the types of loose locality that emerge in this system cannot be linked to interaction with features drawn from the Ā-domain: they must instead be driven by A-features of the type in (43b).

(43) Priority Movement: A-Syntax

- a. Priority Positions: Visibile
- b. $Priority\ Moveemnt = A$ -Features


4.4.4 Loose Locality at the Edge

The force of this conclusion is to suggest that the A-syntax must relax the usual rules of locality to license non-local attraction to the edge of the phase. This is a conclusion that runs against the standard perspective on A-locality, which holds that it is not relativized to position. But in wider perspective, I argue, it is one that should follow in a relatively straightforward way from the theory of cyclic spell-out put forward by Chomsky 2001—and more specifically, from the theory of Case.

To see this connection, we can return to a second pattern of A-movement to the edge of the phase: the process that draws absolutive DPS to the low subject position. In

Mandar, I have proposed that this step shows the same deviation from the usual rules of A-locality: it draws ditransitive GOALS and transitive INTS from their base positions across the EXT in SPEC, vP (44a). The result is an analysis that requires a second type of non-local A-movement to SPEC, voiceP, and it contrasts in this way with a alternative that has been put forward for many languages that require the absolutive DP to raise above the ergative EXT: those that show High Absolutive Syntax, in the terminology of Coon *et al.* 2014. This is one which draws absolutive DPs above the EXT through a strictly local step of movement that places it in an outer specifier of v^0 (44b): a view first put forward by McGinnis 1998, developed for Tagalog by Rackowski 2002 and Aldridge 2004, and then extended to parallel systems in Austronesian (Erlewine, 2018; Erlewine & Levin, 2021; Erlewine & Lim, 2023; Nie, 2020; Ting, 2022, 2023) and beyond (Coon *et al.*, 2014; Royer, 2023).

(44) Movement to the Low Subject Position: Non-Local A-Movement

The appeal of this alternative follows from the status of ACTIVITY: the principle we leveraged in Section 2 to license non-local attraction of the absolutive DP. Despite its utility to the analysis of High Absolutive syntax, a decisive consensus has now coalesced to suggest that Activity is not a general principle of the A-syntax (Nevins, 2005; Chomsky, 2020): in the default case, the A-syntax cannot simply skip over Caselicensed DPs in this way. This is a position that has been established decisively, to my mind, by the following network of patterns: (i) many languages feature subject positions that trigger A-attraction of arguments marked with various types of lexical Case (Zaenen et al., 1985; Belletti & Rizzi, 1988; Sigurðsson, 1989; Masullo, 1992; Franks, 1995; Anagnostopoulou, 1999; Rivero, 2004; Landau, 2009) and are often explicitly unable to look past them to attract nominative objects below (Platzack, 1999b; Barðdal, 1999, 2001) (ii) many ergative languages show parallel patterns of A-attraction, forcing subject positions to attract ergative arguments that receive Case in the voicep (Anand & Nevins, 2006; Legate, 2006), and (iii) many languages show patterns of hyperraising that reach into finite embedded clauses to target subjects that already bear Case (Alexiadou & Anagnostopoulou, 1999; Ferreira, 2004, 2009; Nunes, 2008; Zyman, 2017, 2023; Deal, 2017; Halpert, 2019; Fong, 2019).

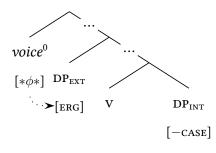
Despite the woes of Activity, however, it is clear in Mandar that the absolutive DP must be drawn above the EXT by a single non-local step to SPEC, voiceP. The case for this view emerges directly from the system of priority: the facts of Absolutive Preposing show that absolutive DPs must raise to SPEC, voiceP (45a), priority attraction of other arguments prevents them from raising to this position (45b), and in this context, they lose the ability to bind into the EXT (45c). There is thus a straightforward link from movement to SPEC, voiceP to movement above the EXT: absolutive DPs like the ditransitive GOAL only raise above the EXT when attracted to SPEC, voiceP.

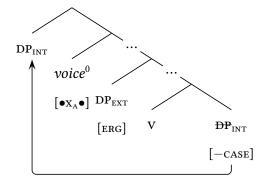
These facts suggest a second tension in the domain of locality: in the general case, A-movement cannot skip Case-licensed DPS, but at the edge of the Mandar *voiceP*, it must. Returning to the theory of CYCLIC SPELL-OUT, however, there is a natural way to explain this fact. In the framework of Chomsky 2001, phase heads like *voice*⁰ are special for the fact that they impose a particular requirement on their complements: they must be emptied of all elements that will cause problems at the stage of TRANSFER. In formal terms, he proposes, this means that phase heads must force movement of all the constituents that carry unchecked features—forcing Ā-elements like WH-phrases to be drawn out by the edge features of Section 4.1. At this derivational moment, however, the same need for escape should fall on the class of regular DPS that lack Case: namely, the types of nominative and absolutive arguments that receive Case from the heads of the middle field. If the absolutive DP were to remain beneath the EXT until this derivational stage, then, we would thus arrive at the formal tension in (46): it should be impossible for the phase head to rescue the absolutive DP through regular A-attraction, as that process should be unable to skip the EXT (46a), but it should be

equally impossible for the phase head to rescue the absolutive DP with an edge feature associated with the specification \bar{A} , as that second type of attraction would place it in a position defined by \bar{A} -features: thus rendering it invisible to the A-syntax and blocking the requisite step of Case-assignment by T^0 (46b).

(46) Absolutives at the Edge

a. A-Movement: Strictly Local:
$$\begin{bmatrix} voiceP & & & \\ voiceP & & & & \\ voiceP & & & & \\ voiceP & & & & \\ \hline & & & & & \\ \end{bmatrix} \begin{bmatrix} v_P & DP_{ERG} & & \\ v_P & DP_{ABS} \end{bmatrix} \end{bmatrix} \end{bmatrix}$$

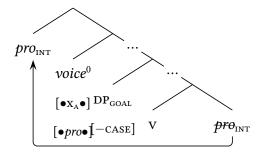

b. \bar{A} -Movement: Invisibility. $\begin{bmatrix} T^0 & & \\ T^P & T^0 & & \\ voiceP & & & \\ \end{bmatrix} \begin{bmatrix} v_P & DP_{ABS} & & \\ voiceP & & & \\ \end{bmatrix} \begin{bmatrix} v_P & DP_{EXT} & & \\ \end{bmatrix} \end{bmatrix}$

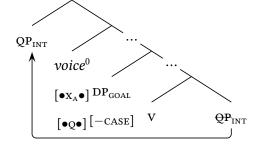

To rescue absolutive DPs in this configuration, then, I propose that the phase head must be endowed with a second type of edge feature: one that has the capacity to trigger non-local attraction and yet forms part of the A-syntax, defining positions that are visible to the higher workings of that system. I will denote this second type of feature $[\bullet x_A \bullet]$. In the usual *voice*Ps of the language, it is the presence of this feature that allows this tension to be resolved and licenses the non-local A-attraction in (44a).

The following trees sketch out the basic derivational path. When $voice^0$ is first merged, the feature $[\bullet L \bullet]$ triggers LINK and establishes connections with all lower DPS: in the transitive voicePS below, the EXT and the INT. To yield ergative agreement and Case-license the EXT, I assume that the derivation then proceeds to a round of AGREE: one forced by the feature $[*\phi*]$, which I take to precede MOVE as a result of its lexically-specified order on the head $voice^0$ (Heck & Müller, 2007). The head $voice^0$ thus AGREES with the EXT and assigns it Case, drawing us to the stage in (47a). The derivation then proceeds to the next feature at the root: $[\bullet x_A \bullet]$. Like $[\bullet D \bullet]$, this feature triggers MOVE and draws its targets to an A-position—but unlike that feature, it is immune to the pressure to attract the closest DP. As a result, it is free to select among its goals in response to a second constraint: the pressure to remove Caseless elements from the voiceP. It is this second pressure that drives the step of non-local A-movement in (47b): the one that rescues the absolutive DP.

(47) Absolutive Arguments: Rescued by A-Edge Features

- a. Stage One: Ergative Agreement
- b. Stage Two: A-Movement

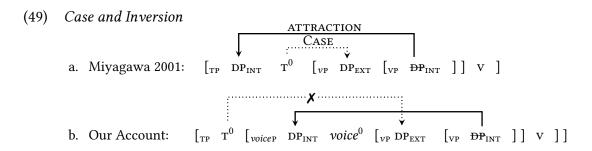

We thus arrive at a system that allows a second type of A-movement at the edge: one driven by the familiar class of edge features that rescue needy elements from within the phase and one that leverages these to resolve a Case-theoretic tension that arises in the systems that require the heads of the middle field to license the absolutive DP. The ensuing framework, in turn, extends neatly to other High Absolutive systems where the absolutive DP has been argued to raise above the ergative DP at the edge of the clause-internal phase (in Austronesian: Rackowski 2002; Aldridge 2004; Nomoto 2013, 2015; Erlewine 2018; Erlewine & Levin 2021; Nie 2020; Ting 2023).


Turning back to the system of priority, at last, we can leverage the same features to draw priority parcels to the edge. At the derivational stage where movement plays out, we might imagine that the preference to rescue Caseless DPs is overruled by the pressure to multitask and parasitically check $[\bullet pro\bullet]$ and $[\bullet x \bullet]$ —forcing $[\bullet x_A \bullet]$ to raise pronouns (48a) and QPs (48b) instead. It is the task of the following section, then, to understand how these effects might unfold without causing problems of Case.

(48) Absolutive Arguments: Rescued by A-Edge Features

a. Pronominal Priority

b. Quantifier Priority



4.5 Secondary Licensors and Anti-Agreement

Generalizing the results of our work so far, we thus arrive at a perspective on A-inversions that differs in important respects from the proposals Miyagawa 2001 and Bailyn 2004. Across the systems where A-movement can skip its usual targets and trigger special patterns of attraction that feed the A-syntax, specifically, we can advance three new claims: (*i*) inversions must emerge from a type of Economy that mandates the attraction of xps that carry specific features, rather than following in certain configurations as a free choice; (*ii*) inversions must implicate non-local A-movement, rather than Equidistance, and (*iii*) because this type of A-movement is keyed to features that fall at the edge of the phase, inversions must always occur in a restricted set of positions: the edges of the VP and CP.

This final theoretical claim—that inversions must operate at the edge of the phase—is important for the way in which it reshapes the problem of Case. Miyagawa 2001 and Bailyn 2004 both propose that inversions operate at the level of the TP, and as a result, their accounts preserve a path for the assignment of Case: when T⁰ passes up the subject for movement, it can still AGREE with that DP and assign it Case (49a). If we situate inversion at the edge of the *voice*P, however, we arrive at a different result: when inversions pass up the subject, they sever a link along the usual derivational path that allows this argument to receive Case. By preventing it from raising to the edge, more specifically, this system prevents the subject from reaching the position that feeds interaction with the heads of the middle field—and traps it in a domain of transfer to the interfaces without Case (49b).

The result is an account that imposes a secondary requirement on systems of inversion: when the A-syntax strands the types of nominative and absolutive DPs that rely on functional heads outside of the extended VP for Case, it must provide those el-

ements with an exceptional path to licensing in the clause-internal phase. Restricting our attention to the system of PRIORITY in Mandar, the task of this section is to show that such a path exists.

4.5.1 Conflicting Priorities

The case begins from the class of *voices*P that host priority parcels of two different types. In the general case in Mandar, we see strictly local attraction when the INT and GOAL are priority parcels of the same types. When both elements are pronouns, for instance, *voice*⁰ must attract the GOAL, and when both are quantified, the facts are the same. When the two arguments contrast, however, we see a secondary effect. When the GOAL is a QP and the INT a pronoun, *voice*⁰ attracts the GOAL (50a). But if the GOAL is a pronoun and the INT a QP, *voice*⁰ skips the pronominal GOAL to target the quantified INT (50b).

```
(50) Quantifiers > Pronouns

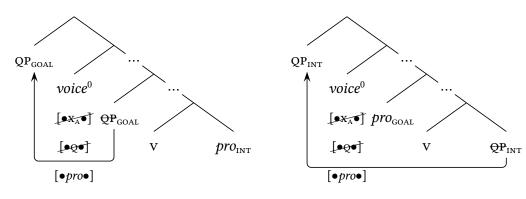
a. [TP [D Ing. sola-na ] na-yolo-ang i [s iCicci'] [O pro]].

all friend-3GEN 3ERG-show-APPL 3ABS NAME him

'Cicci' showed him to all of her friends.

b. [TP [O Ing. lukisan-na ] na-yolo-ang i [s iCicci'] [D pro]].

all painting-3GEN 3ERG-show-APPL 3ABS NAME him


'Cicci' showed him all of her paintings.
```

In narrow perspective, this pattern suggests that the head $voice^0$ imposes a second preference in the system of PRIORITY: when faced with the choice of satisfying $[\bullet Q \bullet]$ and $[\bullet pro \bullet]$, it must select the targets that satisfy $[\bullet Q \bullet]$ (51). This second preference seems unlinked to the system of Economy, as there is no clear way to derive it from the logic of Multitasking (for instance, by positing some type of containment relationship between $[\bullet Q \bullet]$ and $[\bullet pro \bullet]$). But it is of a kind with the types of head-specific preference that are imposed by heads in the system of ϕ -agreement, which frequently follow idiosyncratic scales of the same type (Coon & Bale, 2014).

(51) Quantified Phrases: Higher Priority

a. Regular Attraction

b. Priority Attraction

When we introduce more structure into the clauses in (50), however, we come to a second and more important result. In the clauses that lack auxiliaries, the absolutive agreement enclitics dock at the right edge of the verbal complex (4). But this pattern turns out to mask a second effect: when absolutive agreement is allowed to dock on auxiliaries in clauses like (50b), the right edge of the verb begins to host a new type of agreement with the GOALS skipped by *voice*⁰.

(52) Low Agreement: Stranded Pronominal GOALs

a. [TP [O Ing. seni] rua i [voiceP na-yolo-ang o [S iCicci'] [D pro]]].

all art once 3ABS 3ERG-show-APPL 2ACC NAME you

'Cicci' once showed you all of the art.'

b. [TP [O I'o mie' ing.] rua o [voiP na-yolo-ang i [S iCicci'] [D pro]]].

you PL all once 2ABS 3ERG-show-APPL 3ACC NAME him

'Cicci' once showed you all to him.'

The agreement enclitics of this second type are segmentally identical to the absolutive agreement enclitics in τ^0 , but they contrast with them syntactically in several respects. Most importantly, they show a difference in position: the low agreement enclitics must follow the verb. In clauses that host multiple auxiliaries, then, they retain their postverbal position and cannot climb to any higher auxiliary (53).

(53) Low Agreement: Strictly Postverbal

[TP [O Ing. seni] rua i yari [voiceP na-yolo-ang a' [s iCicci'] [D pro]]].
all art once 3ABS DID 3ERG-show-APPL 1ACC NAME me

'Cicci' once DID show me all of the art.'

In the same vein, the low agreement enclitics show a second restriction: they only appear when *voice*⁰ passes up pronouns of this type. As a result, this agreement cannot appear in the *voice*Ps where *voice*⁰ strands DPs in the position of the GOAL (54a), but it is required when *voice*⁰ strands pronouns in that position (54b).

```
(54) Low Agreement: Only with Pronouns

a. [TP [o Ing. seni ] rua i [voiP na-yolo-ang (*i) [s iCicci'] [d iKaco']]].

all art once 3ABS 3ERG-show-APPL 3ACC NAME NAME

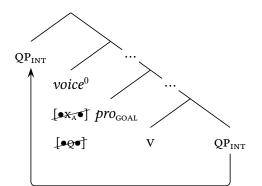
'Cicci' once showed Kaco' all of the art.'

b. [TP [o Ing. seni ] rua i [voiP na-yolo-ang *(i) [s iCicci'] [d pro ]]].

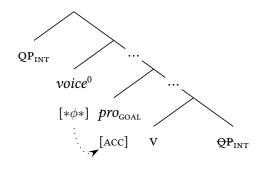
all art once 3ABS 3ERG-show-APPL 3ACC NAME him

'Cicci' once showed him all of the art.'
```

Third and finally, the low agreement enclitics emerge strictly in contexts of priority. Pronominal GOALS never trigger this type of agreement in regular non-finite clauses, like the control complement in (55a). In those non-finite clause, moreover, it is always impossible for an overt ditransitive GOAL to appear (55b): a restriction that follows from the claim that such clauses cannot assign Case to the absolutive DP.


(55) Low Agreement: Restricted to the System of Priority

- a. Batabata i iKaco'[voiceP] u-bengang (*i) [INT do tugas] [D PRO] o]. reluctant 3ABS NAME 1ERG-give 3ACC that task him there 'Kaco' is reluctant for me to give him that task.'
- b. *Batabata i iKaco' [voiceP] u-bengang (i) [INT] pro][D] ia][D] reluctant 3ABS NAME 1ERG-give 3ACC it him 'Kaco' is reluctant for me to give it to him.


To capture these facts, then, I propose that these low agreement enclitics reflect a type of SECONDARY LICENSOR, in the terminology of Levin & Massam 1985; Bobaljik 1993; Laka 1993; Rezac 2010: one that assigns Case to the ditransitive GOAL whenever it is cut off from the middle field and forced to stay in the *voiceP*. In light of their low position and link to inversion, I propose that they originate in *voiceO*. In the ditransitive *voiceO*s where that head attracts the INT, they are mobilized to resolve the problem of licensing in (56a): whenever the GOAL is stranded without Case, it triggers the pattern of AGREE in (56b). This is one that must only be exponed when its target is a pronoun, and it is one that must be suppressed in the morphology under linear adjacency with absolutive agreement in TO. But in the syntax, it is one that has a consistent effect: when the GOAL is kept low by PRIORITY, it provides that DP with a new path to Case.

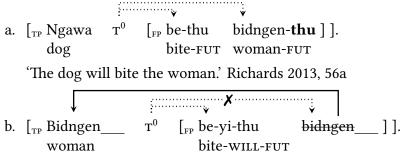
(56) Stranded Goals: Low Agreement

a. Stage One: Priority

b. Stage Two: Licensing

4.5.2 The Ordering Account

Our final task is thus to build a theory of how this agreement might emerge. In the derivational framework of this investigation, we can begin from the following hypothesis: the distribution of this agreement must be determined in derivational terms at the level of the *voiceP*. The solution we pursue, then, must eschew transderivational comparison (Safir, 1993; Chomsky, 1995), often evoked in the analysis of secondary licensors, to derive its emergence from the derivational behavior of *voice*⁰. In the same vein, our solution must also obey the INCLUSIVENESS CONDITION (Chomsky, 1995): the requirement that no material be introduced in the course of the derivation.

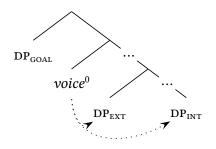

To this end, I propose that low agreement is forced by a feature that is always present on *voice*⁰. This feature agrees with the GOAL and assigns it Case in the derivations where the INT is raised to SPEC, *voiceP* with priority, but in the derivations where the GOAL is raised, for reasons that we must understand, this pattern of AGREE must be derailed—ruling out the presence of overt GOALs in non-finite *voiceP*s and forcing the GOAL to receive Case from T⁰. The result is that we can understand its distribution to turn on a type of ANTI-AGREEMENT EFFECT (Ouhalla, 1993): these features target and Case-license the GOALs that remains low (57a) but fails to target and license those that raise to SPEC, *voiceP* (57b).

(57) Low Agreement: the Anti-Agreement Analysis

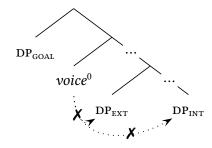
a. Goals Low: Success:
$$\begin{bmatrix} voiceP \end{bmatrix}$$
 DP_{INT} $voice^0 \begin{bmatrix} v_P DP_{EXT} & DP_{INT} & DP_{GOAL} \end{bmatrix} \end{bmatrix}$ b. Goals Move: Failure: $\begin{bmatrix} voiceP \end{bmatrix}$ DP_{GOAL} $Voice^0 \begin{bmatrix} v_P DP_{EXT} & DP_{INT} & DP_{GOAL} \end{bmatrix} \end{bmatrix}$

To understand this effect, we can turn to the wider network of cases where Amovement seems to render elements invisible to AGREE. Across a wide range of systems, it has been argued that the traces left by A-movement must be invisible to this operation: thus T⁰ has been argued to skip past the traces of A-moved dative subjects to target nominative objects in Icelandic (Holmberg & Hróarsdóttir 2003; Sigurðsson & Holmberg 2008; Chomsky 2008, and on similar effects in Faroese: Asarina 2011), to skip the traces of A-moved nominative subjects to target accusative objects in Passamaquoddy (Bruening, 2005, 19-20) and varieties of Neo-Aramaic (Kalin & Van Urk, 2015), to skip the traces of A-moved ergatives to target absolutive objects in Hindi (Anand & Nevins, 2006), to skip the traces of clitic-doubled genitives to attract nominative objects in Greek (Anagnostopoulou 2003; and on analogous effects elsewhere: Béjar & Rezac 2003, Halpert 2012, 193-195). Richards 2013, at last, lays out an especially relevant pattern of this type: when T⁰ attracts arguments to SPEC, TP in Lardil, it ceases to AGREE with them for the purposes of tense concord. Thus there are arguments that agree with T⁰ when they remain low, like the INT in (58a), but cease to trigger the same agreement when they undergo A-movement to SPEC, TP (58b).

(58) Lardil: A-Movement Bleeds Case-Assignment


'The woman will be bitten.' Richards 2013, 56b

The standard account takes these effects to emerge from the interaction of two parts: (i) a lexical ordering of features on a single head, such that it triggers MOVE before AGREE, and (ii) a relational constraint which demands that AGREE target the


heads of chains and ignore all lower links (Chomsky 2001; see also Béjar & Rezac 2003; Anagnostopoulou 2003; Holmberg & Hróarsdóttir 2003; Sigurðsson & Holmberg 2008; Richards 2013; Kalin & Van Urk 2015; for alternative perspectives: Rezac 2004; van Koppen 2005; Georgi 2014). On the framework developed here, we can understand this effect to turn on a disruption of the pathways built by LINK: whenever a head attracts a goals, it severs its connection with the lower instance of that element. The following diagrams show how this analysis derives our result: in a regular ditransitive *voiceP*, the head *voiceO* draws up the GOAL and proceeds to the feature $[*\phi*]$ with the lines of connection in (59a): it only has access to the EXT and INT. As both of those elements are Case-licensed within the *voiceP*, however, the ensuing operation of AGREE has no licit goals to assign Case—and as such, it fails (59b).

(59) The Anti-Agreement Effect

a. The Remaining Connections

b. Low Agreement: Fails

4.6 Conclusion

With the final pieces of the analysis in place, we can now step back to take stock. Drawing together the various lines of our investigation, we thus come to a theory of Inversion and Priority that reshapes the wider picture of the A-syntax in several important ways. The cornerstone of our analysis is the claim that there are steps of selective and non-local attraction that operate fully within the A-syntax: steps that show the locality profile of A-attraction, the binding profile of A-movement, and unlike the operations that lie beneath A-scrambling and clitic doubling, feed the higher systems of A-movement and ϕ -agreement in a completely regular way. I have argued that these steps implicate what is essentially a second type of A-movement: one that is localized to the edge of the phase and driven by a second class of Edge Features that are independently required to draw up absolutive arguments, which must get Case from \mathbf{T}^0 , from relatively low positions within the *voice*P. To resolve the problems

of Case that emerge when these arguments are passed up, I have proposed that the A-syntax can only license inversions at this juncture when it has the capacity to deploy a secondary line of licensing to rescue the elements it traps in the clause-internal phase: one that operates along strictly derivational lines and turns on a type of Anti-Agreement within the A-syntax. To capture the fine patterns of preference in this system, at least, I have argued that A-movement must play out in a calculus that mirrors that of AGREE: one that is preceded by an operation that links heads with multiple possible goals and guided by constraints of economy and the idiosyncratic preferences of heads. The combined force of these parts is to sharpen our understanding of a single empirical system and deliver a general theory of how inversions might emerge.

The perspective that emerges from this investigation, in turn, is one that reshapes our understanding of many systems across the A-syntax. The first of these surrounds the role of the edge of the phase: a juncture central to the A-domain whose status in the A-syntax has historically been much less clear. The claim that non-local Aattraction must operate at the edge, more specifically, delivers a positional prediction about the movements that descriptively obey the Activity Condition: one that fits neatly with the results of work on High Absolutive systems and one that may well fit with the general claim that, across all other positions, the Activity Condition cannot be in force. The same stance then pushes toward a positional rethinking of the patterns of Inversion laid out up to this point: one which suggests that they may also emerge at the same edge and raises corresponding questions on their relationships to the syntax of Case. Beyond the matter of locality, moreover, a second network of possibilities emerge from the deeper claim that there is a second type of A-movement that occurs at this edge. This view may well open up a path to understanding cases where secondary restrictions A-movement seem to fall away: for instance, the network of cases under which the A-syntax seems able to draw up PPs. A case in point emerges at the edge of the Mandar voiceP, where the usual lines of evidence suggest, in cases like (60), that the low subject position hosts a PP.

The highest mysteries that emerge from this investigation, however, are those that fall at the frontiers of the A-Ā divide. The first surrounds the cases where inversion

seems to operate in response to elements from the Ā-domain. In the ditransitive Mandar *voice*Ps where the INT is a WH-phrase, for instance, we see the signature of priority: the facts of variable binding, for instance, show that the GOAL stays below the EXT (61). It is thus tempting to imagine that these interactions implicate priority A-attraction as well—allowing the label of mixed A-Ā movement to be reserved for the processes that fail to feed the higher A-syntax (Webelhuth 1989b; *cf.* Van Urk 2015).

The final puzzle that emerges in this domain lies with the A-syntax that emerges when certain priority parcels take the position of the EXT. From that position in Mandar, both quantified nominals and wh-phrases are drawn up in a way that forces the total loss of ergative agreement and the emergence of a construction known as the AGENT FOCUS (62): a central focus of comparative work on ergativity (Coon *et al.* 2014, Coon *et al.* 2021). It remains to be seen what truths may emerge from this fact.

Chapter 5

Pseudopassives, Pied-Piping, and A-Movement of PPs

5.1 Introduction

Since Postal 1971 and Chomsky 1977, the phrasal movements of the syntax have typically been divided into two internally coherent categories that are mutually opposed: A and Ā. The movements of the first class are those that ferry regular nominals through consistent positions along the clausal spine, interacting with the systems of Case and ϕ -agreement to deliver the derived structural prominence of subjects, objects, and other core arguments. The movements of the second class, in turn, are those that draw a finer class of elements (which are not always present) to a second class of peripheral positions (which otherwise often fail to project). The divisions that follow from this initial characterization are then mirrored by a range of secondary distinctions that trace the same divide: the operations grouped together as A-movements, for instance, typically share three further properties. (i) They reshape the possibilities of pronominal coreference, often avoiding reconstruction for Condition C and yielding new paths of variable binding (Reinhart, 1983; Lasnik, 1999a), (ii) they feed higher operations of the A-syntax, positioning their targets to receive Case, trigger agreement, and undergo later steps of A-movement (May, 1979; Rezac, 2003), and (iii) in the ATTRACT-based framework of Chomsky 2001, they strictly target the closest DP.

The analytical framework that follows from this divide is one that has been extended to achieve impressive results, delivering a path to capture recurrent general-

izations on movement and its place in the syntax. But given the scale and depth of the predictions it drives, it is no surprise that this theory has come to a series of increasingly complicated questions as it has begun to unfold: on the nature of the divide, on the origins of its component parts, and on the mechanisms that draw them together and split them up to yield the attested typology of phrasal movements. One of these surrounds the specific hypothesis in (1).

(1) The Generalization on Category
A-movement does not target PPs. (see, e.g., Polinsky 2016; Safir 2019)

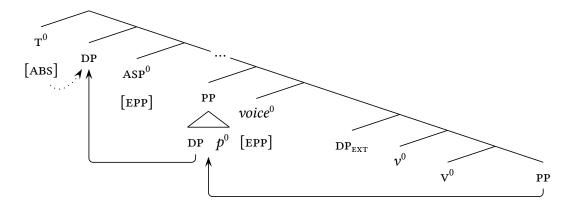
This generalization on category fits together with a wider network of restrictions to suggest that the mechanisms of the A-syntax are strictly relativized to interact with DPS: the operations beneath Case-assignment and agreement, for instance, seem to ignore PPS as well (Lasnik, 1999b; Chomsky, 2001; Bošković, 2002; Bruening, 2014a). But even so, there exist a series of effects to suggest that this constraint is not absolute. Many languages, to begin, allow dative and ergative arguments to raise into the usual A-positions of subjects (Zaenen *et al.*, 1985; Sigurðsson, 1989; Davison, 2004; Anand & Nevins, 2006), which would violate this constraint if these arguments were encased in PPS (Řezáč, 2008). More pressing, however, is a challenge from the arena of LOCATIVE INVERSION: the types of PP in (2) seem to undergo A-movement in English (Bresnan, 1977; Coopmans, 1989; Culicover, 1991; Culicover & Levine, 2001), even if they later raise to the Ā-domain (Bresnan, 1994; Rizzi & Shlonsky, 2006; Den Dikken, 2006).

(2) Locative Inversion: A-Movement of PPs

[PP Under the bed] lived a relatively innocuous demon.

The goal of this chapter is to study the status of constraint (1) through close investigation of a parallel pattern in Mandar. This language has a class of complex PPs that are built around directional and locative prepositions (3a), and it allows these phrases to surface in the positions that feed absolutive agreement with T^0 (3b). In this context, it becomes possible to strip away the usual source of abstract Case in the PP, and in this context, the complements of P^0 raise to the edge of the PP and interact with T^0 .

- (3) Mandar: Absolutive Agreement Into the PP
 - a. Lamba i iCicci' [pp dai' di boyan-na]. go [INTRANSITIVE] 3ABS NAME up to house-her 'Chichi' went up to her house.'
 - b. Naola i iCicci' [pp boyan-na [p dai']]
 go [TRANSITIVE] 3ABS NAME house-her up
 'Chichi' went up to her house.'


As we work through the syntax of this construction, we will find that it runs parallel to the English pseudopassive in (4a): it requires the complement of P^0 to raise to a middle-field subject position, albeit covertly, on its path toward interaction with T^0 . But this step is prefigured, somewhat surprisingly, by a process that raises the full PP to the edge of the *voiceP*: one that, in specific contexts, we can overtly see (4b).

- (4) Mandar: Pseudopassive via A-Movement of PP
 - a. Her house was gone up to ____.
 - b. Rua i [voiceP [PP boyan-na dai' _] diola _ _] AE! once 3ABS house-her up go [PASSIVE] PRT

 'Her house was once gone up to, I'm telling you!'

The analytical task that falls to us is thus to work out the syntax beneath this step—and more specifically, to understand what systems conspire to allow A-movement of PPs. The core of the analysis will emerge from the same connection to position that we established in Chapter Four: in Mandar, PPs can only be targeted by the steps of A-movement that proceed to the edge of the *voiceP*. By studying the path of A-movement to the middle field, then, we will see that these clauses show the syntax in (5): when $voice^0$ attracts a PP, the higher heads of the A-syntax must then subextract the DP to feed interaction with T^0 , often overtly stranding the p^0 in SPEC, voiceP.

(5) The Asymmetry in Category

To capture these effects, I propose that the A-syntax acquires the capacity to attract PPS exclusively at the edge of the phase: an analysis which allows us to link these effects to a wider positional breakdown of the requirement for A-attraction to target the closest DP. The force of these facts, I will argue, is to show that the phase edge must license a second type of A-attraction: one that diverges from the usual profile of A-movement with respect to this constraint, skipping intervening DPS and targeting PPS, but feeds the higher systems of the A-syntax in a regular way.

The rest of this chapter is structured as follows. Section 2 introduces the relevant types of PPS, then lays out the PP-internal shifts in Case-licensing and the movements that unfold in the contexts that license interaction with T⁰. Section 3 then demonstrates that interaction between the complements of P⁰ and T⁰ must be fed by a step of A-movement which pied-pipes the full PP to SPEC, *voice*P. Section 4 shows that this type of pied-piping is restricted to the edge of the *voice*P, failing to emerge under corresponding patterns of A-attraction into the TP, and draws a link to a breakdown in locality at that edge. Section 5 then concludes with a reflection on the consequences for locative inversion, which also seems to involve A-movement of PPS.

5.2 Background

Our work begins with the internal syntax of the PP. Mandar has a preposition di that continues a locative element from Proto-Austronesian (Blust, 2015), widespread across Sulawesi (Mills, 1975; Mead, 1998) and western Indonesia. In Mandar, however, this preposition only appears without higher functional structure in a very limited set of contexts: mostly in the types of temporal expression in (6).

(6) The Low Preposition di

- a. Matamba' i urang [pp di bongi].
 heavy 3ABS rain P night
 'The rain was heavy at night.' Friberg & Jerniati 2000, 252
- b. [PP **Di** gena'] pa anna' meoro'i dio di kadera, iSitti.
 P earlier and sit 3ABS there P chair NAME

 'Since earlier, Sitti has been sitting in a chair.' Sikki *et al.* 1987, 836

The typical spatial PPS of the language are built around two parts: the lower P⁰ di and a higher preposition that denotes the position of the location relative to the speaker. This second class contains elements of two types: some denote relative height (dyaya 'up,' diong 'down') or position with respect to boundaries (lalang 'inside,' and lai' 'outside'), while others denote relative distance alone (indi 'right here', dini 'here,' dio 'there,' and diting 'over there'). All of these elements are functional heads in the extended PP (Van Riemsdijk, 1990; Jackendoff, 1990; Rauh, 1993; Ayano, 2001) and I will refer to them as LOCATIVE PREPOSITIONS below. Some examples are given in (7).

(7) The Higher Locative Prepositions

- a. **Dyaya** di buttu', **diong** di kalo'bo', **lalang** di lamari, **lai'** di toko up P hill down P hole inside P cabinet outside P store 'Up in the hills, down in a hole, inside in the cabinet, outside at the store.'
- b. **Indi** di lima-u, **dini** di boya'-u, **dio** di boyan-na, **diting** di pasar here P hand-1GEN here P house-1GEN there P house-3GEN there P market 'Here in my hand, here in my house, there in her house, there in the market'

As the locative prepositions denote position relative to the speaker, they differ from the spatial prepositions which denote position relative to other arguments: for instance, *olo* 'in front of' and *bao* 'on top of.' These are the elements identified as AXIAL PARTS by Svenonius (2006, 2008, 2010) (see also Watanabe 1993; Jackendoff 1996), and in the syntax, they can be distinguished from the locative prepositions in two ways: they directly select nominals and they must be embedded beneath the low preposition *di* (and the ensuing phrases must also be embedded beneath higher locative Ps).

(8) Locative Prepositions: Distinct from Axial Parts

Dio... [**di olo** boyang / **di bao** ate' / **di se'de'** pasar / **di pondo'** masigi'] there P front house P top roof P side market P back mosque 'There in front of the house / atop the roof / next to the market / behind the mosque'

The locative prepositions and di are both obligatory in canonical spatial PPS. Outside the registers most consciously influenced by Indonesian, where the typical spatial PPS contain only the homophonous preposition di, it is impossible to drop the locative P. Outside the contexts reviewed below, moreover, it is impossible to drop di.

- (9) Spatial Prepositional Phrases: Require Both Parts
 - a. Pole a' ummorong [*(diong) *(di) uwai].
 just 1ABS swim down P water
 'I was just swimming *(down) in the river.' Friberg & Jerniati 2000, 224
 - b. U-anna i [*(dyaya) *(di) meya].
 1ERG-put 3ABS up P table
 'I put it *(up) on the table.'

This requirement is then matched by a series of effects to suggest that the locative Ps are functional heads that select di. First, they cannot iterate: every spatial PP requires exactly one locative P (10a). Second, their positions are rigid: they cannot shift right and must immediately precede di (10b). Third, they impose requirements of adjacency on the following di-PP: for instance, they prevent it from scrambling (10c), though it is freely possible to scramble the entire PP (Brodkin, 2025b).

- (10) Locative Prepositions: Functional Heads
 - a. [voicep *Ummorong i [diong diting di uwai]].
 swim 3ABS down there p water
 INTENDED: 'She swam down there in the river.'
 - b. [voiceP*Ummorong i [di uwai diting]].
 swim 3ABS P water there
 INTENDED: 'She swam in the river there.'
 - c. [voicep *Ummorong i [diong ____]] dionging [di uwai]. swim 3ABS down yesterday p water INTENDED 'She swam down there yesterday in the river.'

Fourth, the locative Ps can be prefixed with a locative pronoun in-, syntactically similar to the English there, which forces the suppression of the following di-PP. This pronoun appears in contexts of deixis and combines with both types of locative P.

(11) Prefixal Locative Pronouns: Suppress di-PPs

- a. Matindo i [il-lalang (*di kamar)] sleep 3ABS there-in P room 'She's sleeping therein.'
- b. U-anna i [in-dio (*di meya)]1ERG-put 3ABS there-there P table'I put it there-thereupon'

Fifth, the locative PS interact with a second class of prepositions that seem to sit higher in the extended PP. These are the elements that denote PATHS, and they encode both the position of an argument relative to the speaker and the direction of motion towards or away from it. Like the locative PS, these elements seem to select PPS headed by di (12a), they host in-(12b), they cannot drop or iterate, and they must immediately precede their di-PPS. I will refer to them as the DIRECTIONAL PREPOSITIONS.

(12) The Directional Prepositions

- a. Lolong i [tarrus sau di sasi'].
 flow 3ABS straight outward P sea
 'It flows straight out to the sea.' Friberg & Jerniati 2000, 215
- b. Bemme i [it-tama (*di kalo'bo')].fall 3ABS there-into P hole'It fell thereinto.'

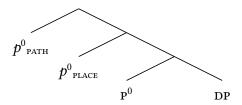
The directional and locative Ps show the types of interaction that are typical of functional heads adjacent in a single extended projection. First, they never co-occur: when directionals appear, locatives are suppressed (13a). Second, they come in pairs: almost every preposition in each class has a counterpart in the other, aside from the directionals *pole* 'from' and *sung* 'out of' and the locative *indi* 'right here' (13b). Third, there is a context that forces two of the locative Ps to supplete to their corresponding directional forms: the pronoun *in*- never combines directly with *dyaya* 'up' and *diong* 'down,' and the meanings that would emerge from these combinations are instead expressed with the directional forms *dai* 'upward' and *naung* 'downward' (13c).

(13) The Directional-Locative Relationship

a. Na-laccar i [tama (*lalang) di kamar].

3ERG-throw 3ABS into inside P room

'He threw it into the room.'


- b. directional: dai' naung tama sau mai mating lao dyaya diong lalang lai' dini dio diting LOCATIVE: GLOSS: up down in out here there out there
- c. U-anna i [in-dai' /in-naung /*in-dyaya/*in-diong]

 1ERG-put 3ABS there-upward / there-downward / thereup / theredown

 'I put it up there / down there.'

To capture these patterns, I propose that the Mandar PP shows the syntax in (14): it is built from a head PATH⁰ that hosts the directionals, a lower head PLACE⁰ that hosts the locatives, and then a final head P⁰ that hosts di. The result is a structure familiar from much work on the extended PP (Kracht 2002, 2008; also Cinque & Rizzi 2010) and one that fits neatly with the patterns we have seen so far. As the typical spatial PPs require locative Ps, I propose that they always project up to PLACE⁰ (unlike the temporal PPs that only host di). As the language requires overt locative Ps in this context, I take the native lexicon to lack a freestanding null exponent of PLACE⁰ (though the loan strata may contain one borrowed from Indonesian). In directional PPs, at last, I propose that PLACE⁰ is projected but morphologically suppressed: PLACE⁰ undergoes head-movement into the higher head PATH⁰ and the two heads are spelled out as directional portmanteaux.

(14) The Complex PP

In the system that follows from these parts, a special role falls to the head P^0 . Following Grimshaw 1991, I take the prepositional sequence to fall in the extended projection of N^0 , with P^0 marking the juncture between the two parts of that spine. As a result, I propose that P^0 must be present whenever the higher P^0 s combine with nominal material: even when the locative pronoun *in*-forces the suppression of P^0 instance, I assume that it is selected by P^0 (which is then morphologically suppressed in the complex head built by raising from P^0 to P^0). This hypothesis will be central to the following investigation of P^0 .

5.2.1 Prepositional Inversion

The effects of interest emerge below transitive verbs of motion and position, which typically select nominal INTs. This class of verbs is open and large, and it includes many roots that only show this syntax, like *ola* "go" (15a) and *engei* "be in" (15b).

(15) Transitive Verbs of Path and Place

- a. Byasa i u-ola [DP tangngalalang kaiang]. usually 3ABS 1ERG-go along road grand 'Usually I take the highway.'
- b. Apana sata mu-engei i [DP kamar-mu]? Why always 2ERG-be in 3ABS room-2GEN 'Why are you always in your room?'

It also includes many verbs that host the applicative suffix -*i* (which continues the Proto-Austronesian locative voice (Ross, 1995; Zobel *et al.*, 2002)). The root *lamba* 'walk,' for instance, typically takes the intransitive form in (16a) and selects a path PP, but it can also be transitivized with -*i* to select a nominal INT (16b).

(16) Transitive Applicative Verbs

- a. Lamba i iAli [PP sau di pasar]. walk 3ABS NAME out P market 'Ali walked out to the market.'
- b. Na-lamba-i i iAli [DP tangngalalang].
 3ERG-walk-APPL 3ABS NAME road
 'Ali walked the road.'

Beneath these verbs, it is always possible to nest the INT in a PP. This shift will raise questions about the syntax of subjecthood in Section 3, as its immediate effect is to create clauses that lack absolutive DPs. What matters most at present, however, is its effect on the system of the absolutive agreement: these clauses always host the third-person enclitic i, suggesting that they do not allow T^0 to interact with the EXT.

(17) Transitive Verbs: Complements Nested in PPs

```
Apana sata mu-engei i [p_P] lalang di kamar-mu ]? Why always 2erg-be in 3ABS inside P room-2GEN 'Why are you always inside in your room?'
```

This configuration is important for a shift that it licenses within the PP. Mandar is a language that lacks non-human articles, and it requires definite nominals to surface bare when their referents are contextually unique but not anaphoric: when *weakly definite*, in the sense of Schwarz 2009 (18a). The result is that bare nominals typically support both definite and indefinite readings even inside of absolutive PPS (18b).

(18) Bare Nominals: Definite and Indefinite Readings

```
a. Na-oro'-i i [DP pulo ]. 3ERG-sit-APPL 3ABS island 'He's on the island.'
```

b. Na-oro'-i i [PP lai' di pulo].
3ERG-sit-APPL 3ABS out P island
'He's out on the island/an island.'

When definite nominals are embedded in these absolutive PPS, however, the language allows di to be suppressed (19a). This shift forces a definite interpretation and is only ever licensed in the PPS built around arguments that would otherwise interact with T^0 . In the complements to lamba 'go,' then, it is impossible without -i (19b).

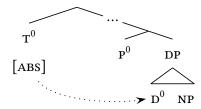
(19) Di-Suppression in Absolutive PPs

```
a. Na-lamba-i i [PP.ABS] tama __ pasar ].
3ERG-gO-APPL 3ABS into P market 'He went into the market.'
b. Lamba i [PP.NON-ABS] tama *(di) pasar ].
go 3ABS into P market
```

In the same context, di can also be lost before two more elements that seem to sit in D^0 . The first is the proprial article i, which surfaces before referential human names (20a). The second are demonstratives like de 'this and do 'that' (20b), which also play a role in the system of definiteness (Brodkin, To Appear): do is required above most types of explicitly anaphoric nominals (the *strong definites* of Schwarz 2009).

(20) Di-Suppression: Prenonominal Determiners

'He went into the market.'

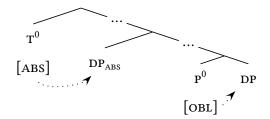

b. Na-oro'-i i [PP.ABS dio ____ do ka'dera o].

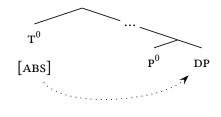
3ERG-sit-APPL 3ABS there P that chair there

'He sat there in that chair there.'

We thus arrive at a delicate interaction between the functional spine of the NP and T^0 : when PP structure is introduced around nominals that should otherwise trigger absolutive agreement, and when those nominals are bare weak definites or when they host prenominal articles or demonstratives, it is possible to suppress di. I propose that this shift turns on an interaction between T^0 and D^0 . On this view, the class of nominals that license suppression is defined by the presence of a single functional head that hosts the demonstratives, the proprial article, and a null weak definite article: D^0 . When P^0 surfaces above this head, I propose, it becomes possible to suppress di in the contexts that license interaction between these DP and the agreement probe in T^0 (which never targets bare NPS).

(21) Di-Suppression: D and T

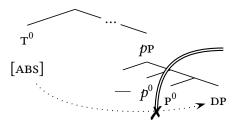


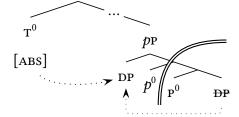

We thus arrive at a type of complementarity between P^0 and T^0 : taking suppression to trace a shift in the syntax, it would seem that something can be lost in the PP when its complement can be rescued by T^0 . This interaction can be understood neatly in terms of Case (Vergnaud, 1977). Following Van Riemsdijk 1990, I propose that the complements of P^0 are licensed by the lowest head in the extended PP: in Mandar, di. In the contexts of suppression, however, I propose that P^0 is filled by a second element that has no phonological form and no ability to license a complement DP. In the usual case, where these complements must receive Case in the PP, the language requires di (22a). But in contexts that license interaction with T^0 , we can see this second P^0 (22b).

(22) Case and the Suppression of Di

a. Regular Contexts: Di

b. Absolutive Contexts: P_{\emptyset}

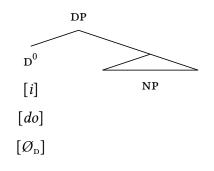


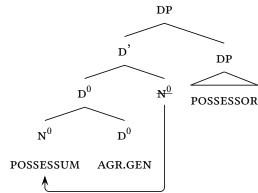

We can now push this analysis further with a turn to visibility in the PP. Since Van Riemsdijk 1978, it has been widely assumed that the heads of the clausal spine cannot reach into the PP: the complement of P^0 , for instance, should be inaccessible to heads like T^0 (23a). The classical evidence for this view lies with a fact of displacement: when complements to P^0 raise to positions outside the PP, they typically pass through an escape hatch at the edge of the extended PP. In Minimalist terms, this position fits neatly with the hypothesis that the extended PP forms a *phase* (Kayne, 1999, 2004; Abels, 2003, 2012; Bošković, 2004b), and on the view that the locality domains for movement are identical to those of AGREE (Chomsky 2000; *cf.* Bošković 2003, 2007; Bhatt 2005; Keine 2017), it delivers a second result: if the complement DPs in this system interact with T^0 , we should expect them to raise to SPEC, PP (23b).

(23) Seeing Into the PP

a. Phase-Based Locality

b. Raising to the Edge




It is thus a telling fact that there is clear evidence in Mandar for the movement in (23b). In the PPs that we have seen so far, the null P^0 has immediately preceded proprial articles, demonstratives, and, by hypothesis, the null weak definite D^0 (24a). But there is another class of PPs that show no linear adjacency between the exponents of P^0 and D^0 , and these are those built around nominals which raise into the head D^0 (24b). These are the nominals that are possessed, which host agreement with a possessor in a rightward SPEC,DP (Brodkin, To Appear).

(24) The Linear Order of D

a. Head-Initial Orders

b. Non-Initial Orders

When we put nominals of this second type in absolutive PPS, the facts of order reverse. Here as above, it is possible to suppress or retain di (25a). But when di is suppressed in this secondary context, the complement of P^0 loses the ability to remain in its usual position after the higher P^0 . In that context, instead, it is forced to surface to the left, yielding the order $DP-p^0$ (25b). I will refer to this shift as PREPOSITIONAL INVERSION and take it to place its targets in SPEC, pP.

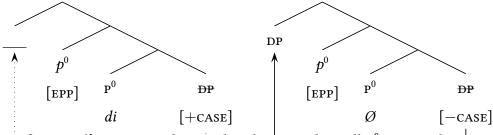
(25) Inversion in the PP

- a. Na-oro'-i i [PP ___ dyaya **di** [DP boyan-na iCicci']].

 3ERG-sit-APPL 3ABS up P house-3GEN NAME

 'He's up in Chichi's house.'
- b. Na-oro'-i i [pp [dp boyan-na iCicci'] dyaya \mathcal{O}_{P} :]. 3erg-sit-appl 3abs house-3gen name up 'He's up in Chichi's house.'

Prepositional inversion must also apply to names that lack the proprial article *i*. There, too, P^0-D^0 adjacency is broken by raising of N^0 to D^0 (Longobardi, 1994).

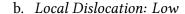

(26) Inversion: Forced without Prenominal D Na-oro'-i i [PP [DP Ma'asar] dyaya ØP ___]. 3ERG-sit-APPL 3ABS PLACE up 'He's up in Makassar.'

I argue that prepositional inversion reflects a syntactic shift that occurs systematically in the presence of the null P^0 . On this view, there is a movement-driving probe that always attempts to attract Caseless nominals to the edge of the extended PP: one

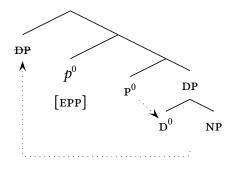
that falls on the highest head in that domain and probes no matter the content of P^0 . In the presence of di, this probe will always fail, yielding the rigid order p^0 - P^0 - P^0 - P^0 (27a). But in contexts of suppression, it finds the Caseless complement of the null P^0 and draws it to SPEC, PP (27b).

(27) The Syntax of Absolutive PPs

- a. Complements with Case: Low
- b. Complements without Case: High

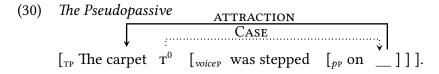

This step of movem**&**nt must apply overtly whenever the null P^0 is not adjacent to D^0 , and we will return to this pattern as we begin to study quantified nominals in Section 3. Whenever this P^0 is adjacent to D^0 , however, it must be covert. I propose that the origins of this restriction must lie in the morphology: when the null P^0 is linearized before D^0 , it must be concatenated with that head by a postsyntactic step of string-vacuous LOCAL DISLOCATION (Embick & Noyer, 2001). This process forces it to form a morphological constituent with proprial articles (28a), demonstratives (28b), and weak definite D^0 s (28), but not the possessive D^0 (28d) or the null article that surfaces with non-human names (28e).

This morphological step must occur at a derivational stage after movement has applied, and when it targets the heads of moved DPS, it creates a tension with the following shape. When the system of chain reduction weighs PPS with the shape in (29a), where the Caseless complement of PP has raised to SPEC, PP, it typically deletes the lower DP: a result forced by the general preference to spell out moved elements high (Bobaljik, 2002; Nunes, 2004). But in the structures that show local dislocation,


like (29b), the same pattern of deletion would also suppress P^0 , which forms a morphological constituent with the lower instance of D^0 . In this configuration, then, I propose that the usual pattern of spell-out is blocked—forcing the preservation of the lower DP and masking the regular step of movement to SPEC,pP.

(29) Spelling out Movement to SPEC, pp

a. Regular Condition: High



5.2.2 Visibility and the Pseudopassive

We thus emerge from the first arc of our investigation with a theory of visibility at the level of the PP: even though this domain is opaque to the external heads of the clausal spine, it is possible for absolutive agreement to target the complements of P^0 because they raise to SPEC, pP and show a need for Case that renders them visible to T^0 .


From this position, we can begin to see a connection from the system at hand to the English phenomenon in (30): one known as the pseudopassive (Hornstein & Weinberg, 1981; Åfarli, 1989; Law, 1998, 2006; Schueler, 2012; Drummond & Kush, 2015; McInnerney, 2022; Hewett, 2025). This is a construction most convincingly attested in English and two varieties of Canadian French (King & Roberge 1990; Roberge & Rosen 1999; King 2000; Therrien 2023), and it would seem to force the same kind of interaction between the complement of P^0 and T^0 .

Drawing this link into focus, we can leverage our interim results to reinforce a specific perspective on this second construction: one that turns on the same breakdown of Case and ensuing step of movement in the PP. The facts of Mandar, to begin,

fit neatly with the claim that pseudopassivization is licensed by a structural shift internal to the PP: it requires the presence of functional heads that fail to assign Case to the complement DP. (Van Riemsdijk, 1990; Rooryck, 1996; Abels, 2003, 2012; Ramchand & Svenonius, 2004; Truswell, 2009; McInnerney, 2022). In the same vein, they reinforce and extend the corresponding hypothesis that pseudopassivization requires movement to the edge of the extended PP (Van Riemsdijk, 1978). It is thus a satisfying fact that this stance aligns neatly with the facts of Lafontaine French, where Therrien 2023 notes that this process forces morphological augmentation of P⁰s like *dans* 'in.' This fact acquires its importance from the hypothesis that movement cannot proceed directly from the complement position of P⁰ to SPEC,PP (Abels, 2003, 2012): on that view, this augmentation creates enough distance for the complement DP to successfully raise to the edge of the extended PP (31).

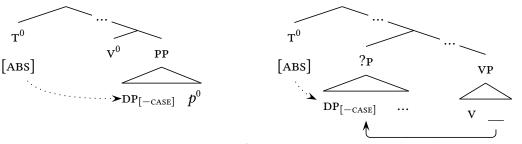
(31) Lafontaine French: Pseudopassivization \rightarrow Extra Structure in the PP

The real value of this connection, however, emerges from the way that it sharpens the question that will lead us ahead. The literature on the pseudopassive has articulated a second puzzle on the path up to T^0 : what is the external configuration that licenses interaction between that head and the PP?

From the perspective outlined above, we can leverage two patterns in English to make sense of this question. First, P-stranding is only possible from certain positions in English (Postal, 1972; Kayne, 1984; Bennis & Hoekstra, 1985), and there is good evidence to suggest that pseudopassivization can only be launched from PPs that sit low in the VP (Hornstein & Weinberg, 1981). On the view that adverbs are introduced at dedicated structural heights (Cinque, 1999), for instance, we can note the following split: the PPs that launch this operation can follow adjuncts of manner (32a), but not adjuncts of time (32b). If the order PP > adverbs requires extraposition of the PP, it would thus seem that PPs can launch the pseudopassive when extraposed to low positions in the VP but not when shifted out of that domain (Drummond & Kush, 2015).

(32) Pseudopassivization: Only from within the VP

This conclusion then lines up with a second effect to suggest that pseudopassivization must be mediated by a functional head in the extended VP. English has a middle voice (33a) that it is built around a set of nonactive functional heads in the VP (Alexiadou & Anagnostopoulou, 2004). On the analysis that we have built so far, it would seem that these heads must block the interaction between PPs and T^0 (33b): pseudopassivization cannot proceed from middle-voice VPs (Roberts, 1987; Fagan, 1988; Pesetsky, 1996; Postal, 2004), even though it should be possible in these environments to generate the right types of structurally deficient PP (though cf. the accounts, inapplicable to Mandar, which only allow Case in the PP to be suppressed through a relationship with the passive v^0 : Hornstein & Weinberg 1981; Law 1998, 2006; Hewett 2025).


(33) Pseudopassivization: Blocked in the Middle

These facts suggest that there is more to this process than direct interaction between T^0 and a lower PP (34a): pseudopassivization must be fed by an intermediate step mediated by the heads of the extended VP (34b), like reanalysis (Hornstein & Weinberg 1981; Radford 1981; van Riemsdijk & Williams 1986; Baker 1988) or movement to an A-position that feeds contact with T^0 (Drummond & Kush, 2015).

(34) The Path Toward T

a. Rejected: Direct Interaction

Drawing these results back up to the level of theory, we arrive at a broader perspective that fits naturally with the wider shape of the A-syntax and the theory of absolute locality. On the hypothesis that the extended VP defines a phase, to begin, it follows that the targets of the pseudopassive must be drawn to the edge in order to raise further to SPEC,TP (and on the claim that A-movement must pass through the edge, see Sauerland 2003). In the wake of the VP-internal subject hypothesis (Fukui & Speas, 1986; Koopman & Sportiche, 1988), in turn, it seems natural to imagine that these arguments are gradually raised to SPEC,TP by a series of interactions with the heads of the spine, passing through a string of A-positions that deliver the typical properties of subjects on the way. And on the understanding that the syntax of objecthood emerges gradually in much the same way (Johnson, 1991; Collins & Thráinsson, 1996; McCloskey, 2017b), it follows that they may well be led to differ from the nominal INTS selected by V⁰ by the derivational path that they follow through the VP. The result is a path to see past the classical objections to reanalysis (Baltin & Postal, 1996) and derive the shape of the pseudopassive in a theoretically integrated way.

We thus return to our study of Mandar with two lines of argumentation—one internal to English and one general to the theory—that the path toward interaction with T^0 must run through the spine of the extended VP. From this point, we can shift toward the next stage of our work with our sights set on the syntax of the voiceP— and more specifically, the nature of attraction to the edge of that domain.

5.3 Movement to the Edge

Our work begins from a general puzzle of VP-level locality: if phases are opaque to AGREE, how can T⁰ assign Case to the absolutive arguments that seem to stay within the *voice*P? The natural solution is presented in (35): the absolutive argument raises covertly to the edge of the *voice*P, as in many other verb-initial languages that show High Absolutive syntax (Aldridge, 2004; Coon *et al.*, 2014; Nomoto, 2013; Erlewine, 2018; Erlewine & Lim, 2023; Erlewine & Sommerlot, To Appear; Nie, 2020; Ting, 2023)). The task of this section is thus to understand how this step of movement interacts with regular PPs and then advance to the particular syntax of the suppression of *di*.

(35) The Covert Syntax of Subjecthood
$$\vdots \qquad \qquad \vdots \qquad \qquad \vdots \\ [TP] \quad T^0 \quad \begin{bmatrix} voice^p & DP_{INT} & voice^0 & \begin{bmatrix} v^p & DP_{EXT} & \begin{bmatrix} v_P & DP_{INT} & \end{bmatrix} & \end{bmatrix} \end{bmatrix} \end{bmatrix}$$

5.3.1 Passing Over Plain PPs

Our work begins from the way that the low subject position interacts with regular PPS. In ditransitives built around the $appl^0$ -ang, it is always possible to embed the GOAL in a regular PP. The result is the apparent DP-PP ditransitive in (36a): one that contrasts with the DP-DP ditransitive and one that I will term the Prepositional Dative Construction (PDC; in contrast to the Double-Object Construction; DOC). As these PP take the positions of absolutive DPS, moreover, they allow the suppression of di: a pattern we will return to in Section 3.3 (36b).

(36) The DP-PP Ditransitive

- a. U-be-ngang i [INT bunga] [GOAL.PP lao di kotta'-u].

 1ERG-give-APPL 3ABS flowers to P girlfriend-1GEN

 'I gave flowers to my girlfriend.'
- b. U-be-ngang i [INT bunga] [GOAL.PP kotta'-u lao Ø __]

 1ERG-send-APPL 3ABS flower girlfriend-1GEN to

 'I gave flowers to my girlfriend.'

In the DP-DP ditransitives where *voice*⁰ attracts the GOAL, we have seen that the binding behavior of the INT is tightly constrained: it cannot bind into the EXT (20b) or the GOAL (21b). In the DP-PP ditransitive, however, the pattern is reversed: if the GOAL is nested in a PP, the INT can bind into the EXT (37a) or the GOAL (37b).

(37) The DP-PP Ditransitive: Ditransitive INT > EXT + GOAL

- a. Mau na-yolo-ang [s] pallukis-na [s] pro [s] painting every [s] pallukis-na [s] painting every [s] to [s] pall-3GEN 'Though its, [s] painter showed [s] every [s] painting to her friends,'
- b. Mau na-yolo-ang [$_s$ pro] [$_o$ lukisang **nasang**] [$_D$ lao di pallukis-na pro], though 3erg-show-appl she painting every to p painter-3gen its 'Though she showed [-FIN] every $_i$ painting to its $_{i,j}$ painter,'

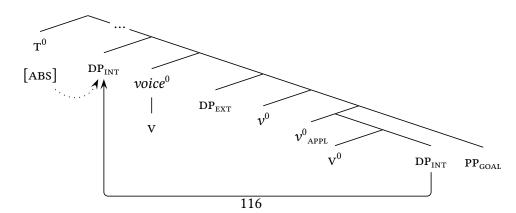
In tandem with this fact, the GOAL loses the ability to bind into the EXT.

(38) The DP-PP Ditransitive: GOAL < EXT

Mau na-yolo-ang [$_{\rm S}$ sola-na pro] [$_{\rm O}$ seni] [$_{\rm D}$ lao di pallukis **nasang**], though 3erg-show-appl friend-3gen her art to p painter every 'Though her $_{i,j}$ friend showed [$_{\rm FIN}$] art to every $_i$ painter','

Despite this fact, it is clear that the GOAL must originate above the INT within this PDC. This is a fact that can be read from the system of reconstruction, laid out in

Chapter Three. In the domain of variable binding, Mandar follows English in allowing A-movement to reconstruct. Just as the targets of raising can reconstruct beneath experiencers for variable binding in English, then, the arguments that raise to SPEC, *voiceP* can reconstruct beneath the DPs they cross for variable binding in Mandar. In regular ditransitives, then, variables in the GOAL can be bound by the EXT (39b).


- (39) Reconstruction for Variable Binding
 - a. His_i mother seems to every boy_i [____ to be a genius]. Lebeaux 1991, 231
 - b. Mau na-yolo-ang [s pallukis **nasang**] [o seni] [d sola-na pro]], though 3erg-show-appl painter every art friend-3gen her 'Though every i painter showed [-FIN] her i, i friends art,'

When the ditransitive GOAL is nested in a regular PP, it can bind into the INT in the same way (40a). This pattern seems to run parallel to a fact of English: in the English PDC, ditransitive GOALS embedded in PPS can bind reflexives in the higher INT (40b).

- (40) Prepositional Dative Construction: INTs Reconstruct Beneath GOALs
 - a. Mau na-yolo-ang [$_{s}$ iKaco'] [$_{o}$ seni-na pro] [$_{D}$ lao di pallukis **nasang**], though 3erg-show-appl Name art-3gen her to p painter every 'Though Kacho' showed [$_{FIN}$] her $_{i}$ art to every $_{i,j}$ painter,'
 - b. We gave [INT] a portrait of herself_i] [GOAL] to the dean]. McCloskey 2000, 44b

This fact suggests that this PDC starts from the same syntax as the DOC (following Chomsky 1975; Larson 1988, 2014; Ormazabal & Romero 2010, 2012, 2024; *cf.* Harley 2002; Bruening 2010a, 2018; Harley & Jung 2015; Harley & Miyagawa 2017): the GOAL originates above the INT in SPEC, *appl*P, but as it is nested in a PP, *voice*P is forced to skip it and attract the INT instead (41). The real import of this analysis, however, is the following: it suggests that it must be impossible to satisfy the EPP feature on *voice*⁰ by attracting a regular PP.

(41) Prepositional Dative Construction: voice⁰ Skips the PP GOAL

5.3.2 Inversion and the Low Subject Position

These results set up a new analytical tension in the transitive *voice*Ps in (42): when the INT is a regular PP, how does the syntax satisfy the EPP requirement of *voice*⁰?

(42) Riddles of the EPP

- a. Byasa i u-ola $[p_P]$ naung di Majene]. usually 3ABS 1ERG-go downward P PLACE 'Usually I go down to Majene.'
- b. Arere, mu-oro'-i bo-i $[p_P]$ diong di engeang favorit-u]? ugh 2ERG-sit-APPL again-3ABS down P spot favorite-1GEN 'Ugh, You're occupying down in my favorite spot again?'

At first blush, we might imagine that in these clauses the low subject position attracts the EXT, but this view runs against the facts of agreement: T^0 strictly takes the third-person form i. The real problem, however, emerges in the passive. As we have seen, Mandar has a v^0_{PASS} di- that replaces the ergative prefixes and forces the suppression of the EXT, and when the verbs above are passivized in this way, it remains possible for the INT to surface in a regular PP. In clauses of this type, it is clear that the EPP cannot be satisfied by raising of an EXT.

(43) Riddles of the EPP: Round Two

- a. Byasa i di-ola $[p_P]$ naung di Majene]. usually 3ABS PASS-go downward P PLACE LLTERALLY: 'Usually it is gone down to Majene.'
- b. Arere, di-oro'-i bo-i $[p_P]$ diong di engeang favorit-u]? ugh PASS-sit-APPL again-3ABS down P spot favorite-1GEN LLTERALLY: 'Ugh, it's occupied down in my favorite spot again?'

To understand the status of the EPP in these configurations, then, we can turn to the syntax of the predicates in (44): those that lack thematic arguments entirely. In the clauses built around these *voice*PS, T⁰ takes the same third-person form.

(44) Riddles of the EPP: Round Three

a. Urang i.rain 3ABS'It's raining.'

b. Minnassa i mua' anging i.clear 3ABS that wind 3ABS'It's clear that it's windy.'

In Chapter Three, I argued that these clauses show the syntax in (45a): the EPP feature on *voice*⁰ forces the insertion of a null expletive *pro*. This analysis provides a explanation for the pattern of third-person absolutive agreement, which tracks the features of this element, and it can also give us a handle on the clauses that host absolutive PPS. When these elements appear as the INTS of transitive verbs, I propose that the language shows the transitive expletive construction (Bobaljik & Jonas, 1996; Bobaljik & Thráinsson, 1998) in (45b); when they appear as the INTS of passives, we then have the impersonal passive (Perlmutter, 1978; Shibatani, 1985) in (45c).

(45) Proposal: Low Subject Expletives

a. Weather verbs:
$$\begin{bmatrix} TP & T^0 & VoiceP & Pro & Voice^0 & VP & VP \end{bmatrix}$$
b. Transitives: $\begin{bmatrix} TP & T^0 & VoiceP & Pro & Voice^0 & VP & DP_{ERG} & VP & PP \end{bmatrix}$
c. Passives: $\begin{bmatrix} TP & T^0 & VoiceP & Pro & Voice^0 & VP & DP_{ERG} & VP & PP \end{bmatrix}$

On this analysis, it is striking to note a second layer of symmetry between the clauses above: unlike the unaccusative and unergative verbs that introduce thematic arguments, weather verbs and their associates license the suppression of di in following locative PPs. As in the passive in (46a), these PPs can lose di and invert in the *voice*Ps projected around the impersonal predicates in (46b)-(46c).

(46) Subjectless Verbs: License Inversion

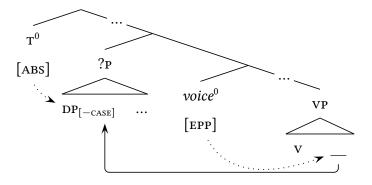
- a. Di-oro'-i i [$_{pP}$ engeang favorit-u **diong** \emptyset __]. PASS-sit-APPL 3ABS spot favorite-1GEN down 'Down in my favorite spot is occupied.'
- b. Urang i $[_{pP}$ Ma'asar **dyaya** Ø ___]. rain 3ABS PLACE up 'Up in Makassar is raining.'
- c. Maroa i [$_{pP}$ Ma'asar **dyaya** Ø ___]. crowded 3ABS PLACE up 'Up in Makassar is crowded.'

These facts provide us with an initial clue that there is a link from the suppression of *di* to the low subject position: this process is possible whenever there are no other elements that must move to *voiceP*. In the *voiceP*s that project from unaccusatives and unergatives, it is ruled out because the low subject position must attract their EXTS and INTS. But in the transitive, passive, and nonthematic *voiceP*s above, nothing else raises SPEC, *voiceP*—and in this context, it is possible for these PPs to invert.

Against this backdrop, we can note the following fact: when di is lost, the complements of P^0 gain privilege in the system of variable binding. In the transitive *voicePs* built around *engei* 'be in,' for instance, the INT cannot bind into the EXT from inside a regular PP (47a). But from inside a PP without di, it can bind into that DP (47b).

(47) Inversion: Reshapes Variable Binding

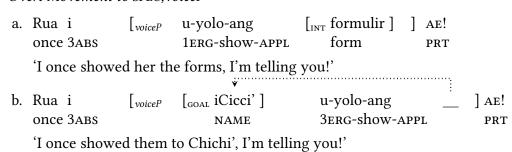
- a. Mau na-engei [$_{\text{EXT}}$ mara'dia-na pro] [$_{pp}$ **dyaya di** istana nasang], though 3ERG-be in king-3GEN its up in palace every 'Though its* $_{i,j}$ king occupied every $_i$ palace,'
- b. Mau na-engei [$_{\text{EXT}}$ mara'dia-na pro] [$_{pP}$ istana nasang **dyaya**], though 3ERG-be in architect-3GEN its palace every up 'Though its $_{i,i}$ king occupied every $_i$ palace,'


We see the same effect in the PDC, where the GOAL cannot bind into the EXT from within a regular PP. If di is lost, the GOAL regains the ability to bind into that DP.

(48) Inversion: Reshapes Variable Binding in the Ditransitive

Mau na-yolo-ang [$_{s}$ sola-na pro] [$_{o}$ seni] [$_{D}$ pallukis nasang **lao**], though 3erg-show-appl friend-3gen her art painter every to 'Though her $_{i,i}$ friend showed [$_{FIN}$] art to every $_{i}$ painter','

These effects reveal that the loss of di requires intermediate movement to SPEC, voiceP: in order for Caseless prepositional complements to interact with T^0 , they must be carried up to the low subject position by a regular step of A-movement to the edge of the phase. The result is a decisive parallel to the analysis we proposed for the pseudopassive: when di is suppressed, we must have movement to the edge of the voiceP.


(49) Interaction with T^0 : Intermediate Step to SPEC, voiceP

5.3.3 Attracting Special PPs

With this step in place, we can now lay out the final mystery of the system. As we have seen, there are a number of contexts in Mandar where movement to SPEC, *voiceP* is overt. In the clauses that host auxiliaries, for instance, there are several prosodic manipulations can force this effect, and a new member of this class is shown in (50). Mandar has a set of clause-final particles that carry heavy phrasal stress (50a), and when these surface immediately after the base position of the absolutive DP, a clash effect forces that DP to be pronounced in SPEC, *voiceP* (50b).

(50) Overt Movement to SPEC, voiceP

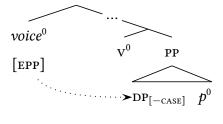
These patterns provide explicit linear evidence for our step of movement to SPEC, *voice*P: they position the absolutive DP below all auxiliaries and just above the verb (51).

(51) The Covert Syntax of Subjecthood: Made Overt

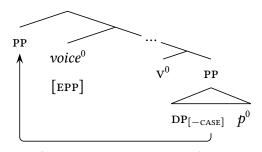
$$\begin{bmatrix} \vdots & & & & \\ & & & & \\ \end{bmatrix}_{\text{TP}} \quad T^0 \quad \begin{bmatrix} voice^p & DP_{\text{INT}} & voice^0 & \begin{bmatrix} vp & DP_{\text{EXT}} & \begin{bmatrix} vp & DP_{\text{INT}} & \end{bmatrix} \end{bmatrix} \end{bmatrix}$$

When we suppress di in the contexts where movement is overt, however, we see the following result: what moves to SPEC, *voiceP* is actually the entire PP.

(52) Overt Movement to SPEC, voiceP


a. Rua i [GOAL lao iCicci'] AE! 3ERG-show-APPL once 3ABS to NAME PRT 'I once showed them to Chichi', I'm telling you!' b. Rua i [GOAL sola-u | voiceP friend-1GEN to 3ERG-show-APPL once 3ABS PRT 'I once showed them to my friends, I'm telling you!'

These facts suggest that the DP complements in this system are raised to SPEC, *voice*P by a process that raises the full PP. As this step feeds binding and agreement with T⁰, however, it seems to be a regular A-movement that satisfies the *voice*P-level EPP.


We are thus forced to understand how the A-syntax might drive attraction of a PP. Starting with the fact of visibility, we can return to the presence of Caseless DPs in SPEC,pP: unlike the regular PPs that host di, these PPs host elements at their edges that must be visible to the A-syntax, since they must receive Case from T^0 . As a result, I propose that they are also visible to the EPP probe on $voice^0$ (53a). From this position, we can understand this step of movement as a regular case of PIED-PIPING (Ross, 1967; Bresnan, 1976; Webelhuth, 1992; Heck, 2009): a target for movement appears at the edge of some domain and the system of attraction draws up the containing XP (53b).

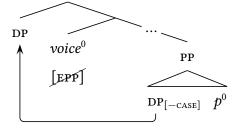
(53) *Pied-Piping in the A-Domain*

a. Establishing Visbiility

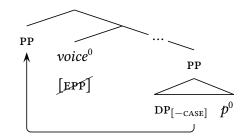
b. Pied-Piping the PP

The link to pied-piping yields a natural explanation for two key properties of this step: how the A-syntax triggers A-movement of PPs and why it only targets the PPs

that lack di. But this pattern of pied-piping differs in two ways from its counterparts in the \bar{A} -domain. First, it strictly targets the full PP, unlike the types of pied-piping that emerge under wh-movement and relativization and freely target constituents of varying size (54a)-(54b). In the same vein, it must be driven by the need to attract an element inside of the moved xP: the target of movement must be the Caseless DP in SPEC,pP, and its status as the target must flow from the rigidly-positioned feature [-CASE] on D⁰. It diverges in this respect from the patterns of pied-piping linked to FOCUS, which is often taken to involve attraction of an operator whose DP-internal position is relatively free (Horvath, 2007; Hedding, 2022; Branan & Erlewine, 2023), and this asymmetry suggests that it cannot be reduced to a type of regular attraction that simply targets a containing QP (Cable, 2010), as in (54c).


(54) Contrast: Pied-Piping in the Ā-Domain

- a. Reports [which] the government prescribes the height of the lettering on ___
- b. Reports [the height of the lettering on which] the government prescribes ___
- c. Separate phenomenon: $\begin{bmatrix} \mathbf{p} & \mathbf{q} & \mathbf{p} \\ \mathbf{q} & \mathbf{p} \end{bmatrix}$... $\begin{bmatrix} \mathbf{q} & \mathbf{q}^0 \\ \mathbf{q} & \mathbf{q} \end{bmatrix}$


To make sense of these asymmetries, I propose that this step of movement is forced by the need to attract the Caseless DP and forced to target the PP by a constraint on locality. At the derivational moment where $voice^0$ makes contact with the DP in SPEC,pP, more specifically, I assume that there are two paths to satisfy the EPP. Most obviously, that head could subextract the DP, yielding a step that must operate in pseudopassives which strand P⁰ (55a). As an alternative, however, it must also be possible to satisfy the EPP by attracting the PP, as its edge hosts an element of the category DP (55b).

(55) Two Paths to Satisfy the EPP

a. Subextracting the DP

b. *Pied-Piping the PP*

The path beyond this point must then be decided by two types of locality constraint. The first of these is the pressure for subextraction, which I take to have the

shape in (56a): a constraint that demands attraction of the smallest possible target in order to minimize the structural distance between the movement-driving head and the matching element in its landing site (Heck, 2009). The second, I propose, is a locality constraint with the opposite shape: one that demands attraction of the closest possible target that will satisfy the features of the movement-driving head. Formally, we can understand this second pressure to follow from Chomsky 1995's definition of the MINIMAL LINK CONDITION in (56b), which treats subextraction as a type of violation of the A-OVER-A condition (Chomsky 1973; Bresnan 1976; Hornstein 2009; on the link between these constraints, see Fukui 1997, 1999; Müller 1998, 2011; Vicente 2007). In the Mandar *voice*P, it is this second constraint that forces attraction of the PP.

- (56) Pied-Piping vs. Subextraction: Competing Constraints on Locality
 - a. Local Agree Heck 2009, p80 If a goal γ in Σ matches an active probe β , then no phrase boundary (xp) dominates γ but not β .
 - b. Minimal Link Condition Chomsky 1995, 311 K attracts α only if there is no β , β closer to K than α , such that K attracts α .

5.4 Category Restrictions at the Edge

We thus arrive at a delicate configuration that yields A-movement and pied-piping of a PP: if the usual lines of licensing break down in the PP, the highest head in that domain triggers movement to the edge, and a movement-driving head on the clausal spine can deliver a path toward licensing by a higher head, then a specific ranking of locality constraints can drive A-pied-piping of the PP. Given the depth and specificity of these preconditions, it is thus no surprise that this possibility has flown beneath the radar up to this point. But as it turns out, there is a final layer to this system which suggests that the traditional view is largely correct: in the general case, A-movement does not pied-pipe (Safir, 2019) or target PPS (Polinsky, 2016). This is one which turns on a connection to height—and reveals, in turn, that the rules of A-attraction must be derailed at the edge of the phrase.

5.4.1 A Restriction on Raising

Our work begins in the arena of raising. Mandar has a class of raising verbs, such as *mala* "be possible," *minnassa* "be clear," which select clauses that lack absolutive agreement. In the matrix clauses built around these verbs, T^0 agrees with the embedded absolutive DP (which is usually pronounced in the lower *voice*P).

(57) Raising Verbs in Mandar

Minnassa **i** [TP[-FIN] na-pomonge' iCicci']. clear 3ABS 3ERG-love NAME

'It's clear that he loves Chichi'.'

With a little footwork, we can see that these verbs force their embedded absolutive DPs to raise to the matrix SPEC, *voice*P. In the presence of auxiliaries, we have seen, the right prosody will force the absolutive DP to be realized above the verb (58a). But without auxiliaries, we see a different effect: the verb precedes the shifted DP (58b).

(58) Seeing the Path of Raising

- a. Minnassa i [TP[-FIN] rua [voicep iCicci' na-pomonge' iKaco']]] AE! clear 3ABS once NAME 3ERG-love NAME PRT

 'It's clear that Kacho' once loved Chichi', I'm telling you!'
- b. Minnassa i [TP[-FIN] na-pomonge [voiceP iCicci' iKaco' _]] AE! clear 3ABS 3ERG-love NAME NAME PRT

 'It's clear that Kacho' loves Chichi', I'm telling you!'

Brodkin 2025a takes this pattern to suggest the head-movement in (59): in clauses that lack auxiliaries, the verb raises out of the *voiceP*. The result is that it must precede SPEC, *voiceP* in this context if we force high spell-out of the absolutive DP.

(59) Verb Movement Beyond the VoiceP

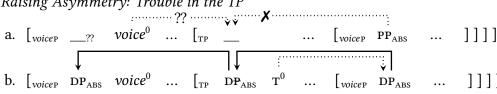
a.
$$\begin{bmatrix} FP & AUX & ... & \begin{bmatrix} VoiceP & DP_{ABS} & V & V_P & DP_{ERG} & V_P & V_P & DP_{ABS} \end{bmatrix} \end{bmatrix} \end{bmatrix}$$

b. $\begin{bmatrix} FP & V & ... & \begin{bmatrix} VoiceP & DP_{ABS} & V & V_P & DP_{ERG} & V_P & V_P & DP_{ABS} \end{bmatrix} \end{bmatrix} \end{bmatrix}$

This footwork gives us the tools to recreate a prosodic problem in the embedded *voiceP*. When the base position of the absolutive DP would be adjacent to a particle, the absolutive DP must be spelled out in SPEC, *voiceP* (60a). But when the verb raises, we

can create configurations where the particle will also be adjacent to SPEC, voiceP (60b). When we do so beneath verbs of raising, we see the shift in (60c): rather than surface in the embedded SPEC, voiceP, the absolutive DP is spelled out in the matrix SPEC, voiceP.

(60) Absolutive Movement Beyond the voiceP


All of this is useful for what it reveals about pied-piping of the PP. When raising verbs select clauses that host embedded absolutive PPS, we can see that those PPS seem to interact with the matrix T⁰ and raise to the embedded SPEC, voiceP (59a). It should thus come as a surprise that they cannot raise to the matrix SPEC, voiceP (59b).

(61)Raising: Trouble with Absolutive PPs

- [TP rua [voiceP [PP lao iCicci'] na-be-ngang __PP] AE! clear 3_{ABS} to name 3ERG-give-APPL PRT 'It's clear that he once gave it to Chichi', I'm telling you!'
- [voice P PP lao iCicci'] minnassa [TP na-be-ngang b. *Ndangi i not 3_{ABS} to NAME clear 3ERG-give-APPL INTENDED: 'It's not clear that he gave it to Chichi', I'm telling you!'

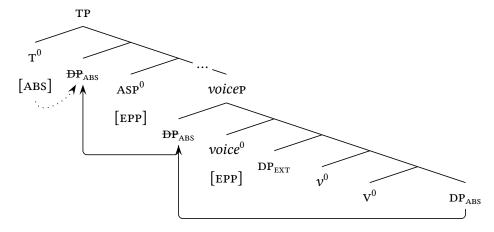
This fact suggests that something goes wrong in the space above the voicep: the absolutive PP cannot reach the launching site for attraction by the matrix $voice^0$ (62a). It contrasts in this respect with absolutive DPS, which we might then suspect to be drawn to the edge of the embedded clause by a head in the extended TP (62b).

Raising Asymmetry: Trouble in the TP

We can pin down the nature of this effect by leveraging the prenominal quantifiers that force highest-copy spell out for the phrases they head. When the absolutive DP hosts a quantifier of this type, as we have seen, it is never spelled out in its base position: in the non-finite clauses introduced by mau "though," for instance, it is pronounced in SPEC, voiceP (63a). This requirement holds without regard to the facts of prosody and it is equally unrelated to the facts of scope: quantified absolutives must be realized in this position even if they scope beneath other quantified DPS (63b).

Quantified Absolutives: Move Overtly (63)

- a. Mau rua [voiceP [INT inggannanna paccoro] na-saka ___], 3ERG-catch though once 'Though they once caught [-FIN] all the thieves,'
- γ...... b. Mau ndang [GOAL ing. lessang] minnassa [TP na-be-ngang ___ [o 3 loka] _], all monkey clear 3ERG-give-APPL 3 banana though not 'Though it's not clear that they gave all the monkeys 3 bananas,' (**√**3>ALL,**√**ALL>3)


As we have seen, a part of the utility of these ops lies in the fact that they reveal further A-movement into the middle field. This effect can be seen in most clearly in the non-finite clauses that host the aspectual enclitics, mo "already" and pa "yet," which sit in a head ASP⁰ just nelow T⁰ (Brodkin, 2022c). When we introduce these elements into the complements of mau and force those clauses to project up to the ASPP, we see the shift in (64): the absolutive QPS surface above the highest auxiliary.

(64)Quantified Absolutive Arguments: Move into the Middle Field

 $\left[_{ASPP}\right]_{INT}$ ing. sola-u all friend-1GEN DID ALREADY though 1ERG-see 'Though I already DID see [-FIN] all my friends,'

As we have seen, this second step of movement shows all the characteristic properties of A-attraction: it targets a single QP, strictly proceeds from SPEC, voiceP, and (like regular movement to SPEC, voiceP) does not interact at all with scope. In finite clauses, moreover, it occurs in the absence of mo/pa and positions these QPs to agree with T^0 . Its force is thus to suggest the clausal syntax in (65): one on which there is second and higher subject position, falling just below the TP, that raises the absolutive DP from the low subject position and positions it to interact with T^0 .

(65) The High Subject Position

We can now leverage the quantifiers to see what goes wrong in the system of raising. When absolutive QPs are nested in PPs, they raise in the regular way to SPEC, *voice*P in the non-finite clauses introduced by mau (66a). But when we introduce ASP⁰, we find the restriction in (66b): unlike $voice^0$, ASP⁰ cannot attract an absolutive PP.

(66) High Subject Position: Cannot Attract PPs

- a. Mau yari [voiceP [PP ing. sola-u lao] u-yolo-ang ___], though DID all friend-1GEN to 1ERG-show-APPL 'Though I once showed [—FIN] all my friends,'
- b. *Mau [PP ing. sola-u lao] yari mo [voiceP u-yolo-ang] though all friend-1GEN to DID already 1ERG-show-APPL INTENDED: 'Though I already DID show [-FIN] all my friends,'

5.4.2 Pied-Piping at the Edge

I take these results to suggest that there is a second layer to the A-syntax of pied-piping PPs: there is a categorial restriction on A-movement, obeyed in its usual way in the Mandar TP, that must be specifically relaxed around movement to the edge of the Mandar extended VP. This positional shift must have no external consequences on the ways that A-movement feeds the other systems of the syntax, as it triggers steps that feed binding and interaction with T⁰, and as a result, it must emerge firmly within the A-domain (rather than implicating mixed A-Ā attraction of the type proposed by Webelhuth 1989a and Van Urk 2015). We thus come to the end of our investigation with two tasks in hand: to understand why this effect should emerge and how exactly it interacts with the regular ASP-level EPP.

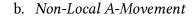
To understand why the restrictions on category might loosen at the edge of the *voice*P, I propose to draw a connection to a second shift that seems to operate in the same position. This is one that emerges in the domain of relative locality, surrounding the generalization that A-movement must target the closest DP. The standard theory holds that ATTRACT must always target the highest licit goal (Chomsky, 1993; Richards, 1997): A-probes cannot skip intervening DPS (67a). But there is clear evidence for this type of attraction in the Mandar *voice*P: the A-probe on *voice*⁰ must skip the EXT to target the absolutive DP (67b).

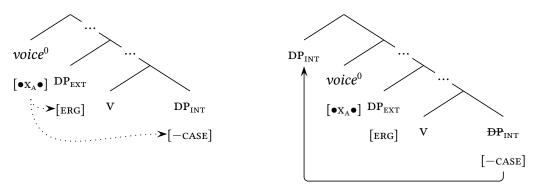
(67) Locality in A-Movement: The Puzzle
$$\vdots$$
 a. Classical view: $\begin{bmatrix} F^{D} & F^{$

This analysis follows a long tradition that takes the High Absolutive Configuration to turn on the logic of ACTIVITY: the absolutive INT can raise because the ergative EXT is licensed in the extended VP and thus rendered invisible to the higher A-syntax of the TP. (Bittner & Hale, 1996b,a; McGinnis, 1998; Woolford, 2006; Legate, 2008; Ershova, 2019). But despite its utility, a decisive consensus has now coalesced against the general existence of Activity (Nevins, 2005; Chomsky, 2020): many languages feature subject positions that attract arguments with dative or oblique Case (Zaenen *et al.*, 1985; Belletti & Rizzi, 1988; Sigurðsson, 1989; Franks, 1995), many ergative languages show subject positions that attract ergative DPS which receive Case in the *voice*P (Davison, 2004; Anand & Nevins, 2006; Legate, 2006), and many languages show patterns of hyperraising that target subjects which bear nominative Case (Alexiadou & Anagnostopoulou, 1999; Ferreira, 2004, 2009; Nunes, 2008; Zyman, 2017, 2023; Deal, 2017; Halpert, 2019; Fong, 2019).

These facts suggest a second tension in the domain of locality: in the general case, A-movement cannot skip Case-licensed DPS, but at the edge of the Mandar *voiceP*, it must. On the theory of CYCLIC SPELL-OUT, however, there is a natural way to explain this fact. Chomsky 2000 proposes that phase heads like *voice*⁰ must attract all the elements in their c-command domains that carry unchecked features before sending their complements to the interfaces. In the typical case, there are two types of elements that must be attracted in this way: regular DPS that receive Case in the middle field, like the nominative subject in (68a), and Ā-elements that raise into the CP-layer, like

the wh-phrase in (68b). The ensuing steps of movement, however, are quite distinct, and as a result, I will assume that they are driven by separate types of features: $[\bullet D \bullet]$ in the case of A-movement and $[\bullet x \bullet]$, formally the EDGE FEATURES of (Chomsky, 2008), in the case of Ā-movement.

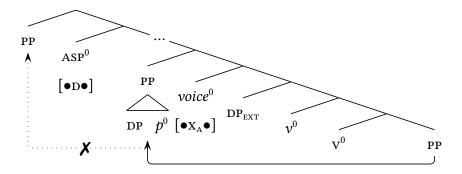

(68) Attraction to the Edge


a. A-Movement:
$$[\bullet D \bullet]$$
 $[voice^{0} \bullet D \bullet]$ $[voice^{0} \bullet D \bullet]$... $[voice^{0} \bullet D \bullet]$

In a High Absolutive system, however, neither possibility will suffice: the absolutive DP must raise to the edge, but it cannot be drawn past the ergative EXT by strictly local A-movement or set up to receive Case from T^0 by \bar{A} -attraction. As a result, I propose that the phase head must be endowed with a second type of edge feature in systems of this type: one that triggers non-local A attraction. I will denote this second type of feature $[\bullet X_A \bullet]$. At the derivational moment where it probes, it must skip the Case-marked EXT in SPEC, *voice*P (69a) and target the lower Caseless DP (69b)

(69) Absolutive Arguments: Rescued by A-Edge Features

a. Non-Local Inspection

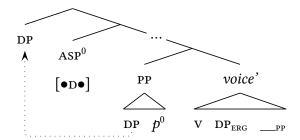


We thus arrive at a system that allows a second type of A-movement at the phase edge: one driven by the familiar class of edge features that rescue formally needy elements from inside the phase and one that leverages them to resolve a Case-theoretic tension that arises when the heads of the middle field must license the absolutive DP.

In the arena of locality, this framework is useful for the fact that it allows us to capture a pattern that recurs across High Absolutive systems: absolutive DPs have been argued to raise above the ergative DP at exactly the edge of the clause-internal phase in many systems of this type (in Austronesian: Rackowski 2002; Aldridge 2004;

Nomoto 2013, 2015; Erlewine 2018; Erlewine & Levin 2021; Nie 2020; Ting 2023; in Mayan: Coon *et al.* 2014; Royer 2023). But in the domain of pied-piping, it also has a secondary effect: it allows us to understand how the phase head might acquire the ability to trigger A-movement of a PP. Returning to the asymmetry between *voice*⁰ and ASP^0 , more specifically, I propose that the distribution of pied-piping follows directly from the distribution of $[\bullet x_A \bullet]$ and $[\bullet D\bullet]$. Pied-piping to SPEC, *voiceP*, like all steps of attraction and expletive insertion that revolve around that position, must be driven by $[\bullet x_A \bullet]$. Movement to SPEC, ASPP, however, must be driven by the more restrictive feature $[\bullet D\bullet]$: one that forces strict locality and one that demands the attraction of a DP. This is the reason that only *voice*⁰ can attract a PP (70).

(70) The Asymmetry in Category



We thus arrive at a final layer of conditioning to this effect: under the exact conditions that allow the A-syntax to access the complements of P⁰, we will only ever see pied-piping when the first point of contact with the clausal spine emerges at the very edge of the phase. In this context, the right ranking of locality constraints will force A-movement of a PP—and any alternative ranking, or any lower point of attraction, will force subextraction of a DP. It is one of these secondary differences that delivers the most salient difference between Mandar and English— in the latter language, the pseudopassive never pied-pipes the PP— and it is this final layer that typically masks the capacity of the A-syntax to attract PPs.

5.4.3 Preposition Stranding

We can now wrap up our investigation with a return to SPEC,ASPP. If everything we have said up to this point is correct, then we should expect ASP⁰ to behave much like the heads of the English VP: if it must bear [•D•], it should force subextraction to SPEC,ASPP when it encounters Caseless DPs at the edge of the extended PP.

(71) Prediction: Subextraction to SPEC, ASPP

If this analysis is correct, it would place Mandar in the narrow set of languages that allow A-movement out of the PP. Given the facts of raising, moreover, we are already positioned to argue for covert movement of this type: in the complements of raising verbs, we see di-suppression and inversion in the low absolutive PPs (72a). As this pattern requires interaction with the matrix T^0 , it stands to reason that these DPs must be set up to raise into the matrix clause by the embedded ASP 0 (72b).

(72) Raising: Covert Subextraction from the PP

a. Minnassa i [TP rua [voiceP [PP lao iCicci'] na-be-ngang __PP] AE! clear 3ABS once to NAME 3ERG-give-APPL PRT 'It's clear that he once gave it to Chichi', I'm telling you!'

b.
$$\begin{bmatrix} T^0 \end{bmatrix}_{ASP} \begin{bmatrix} ASP^0 \end{bmatrix}_{VoiceP} \begin{bmatrix} VoiceP \end{bmatrix} Voice^0 \begin{bmatrix} ASP \end{bmatrix} ASP^0 \begin{bmatrix} VoiceP \end{bmatrix}_{PP} DP p^0 \end{bmatrix} \dots \end{bmatrix}$$

It is thus a satisfying fact that the prepositions in this system have the right phonology for this pattern of subextraction to be overt. In the default case, the directional and locative prepositions show the typical behavior of functional heads (Selkirk, 1995; Itô & Mester, 2009): they are parsed as clitics, not prosodic words. This fact can be read from the language-internal diagnostics for the prosodic word and phonological phrase, two abstract phonological constituents on the universal prosodic hierarchy of Itô & Mester 2007, 2012. The PPs built around these heads show the prosody in (73):

they contain a single stress in the complement, marking the word (ω), and a single high tone at the right edge of the PP, marking the right edge of the phrase (ϕ).

(73) The Canonical Parse of Prepositions

$$\{\phi \ [\omega \] \}$$
 $\{\phi \ [\omega \] \}$ bémme^H i **sung** di pepattóang^H fall 3ABS out P window

'It fell out the window.'

When functional heads surface in this configuration, they are exempted from many types of prosodic requirement: they need not form ω s and do not even have to host feet. But functional projections like the PP are generally parsed into ϕ s (Selkirk, 2009, 2011), and when their heads are stranded by subextraction or complement ellipsis, this mapping persists (Itô & Mester, 2019). As a result, stranded functional heads are always forced to form ϕ s on their own, and many types of stranding are likely ruled out by the phonological requirements that emerge in that configuration. In Mandar, however, there are no problems of this type: the language allows complement ellipsis beneath all of these prepositions, and when this process strands p^0 s that are too small to form ϕ s, the phrasal phonology repairs them in several ways (Brodkin, 2025d): the p^0 sung "out," for instance, undergoes v?-epenthesis (74).

(74) Prepositions: Able to Form ϕ s

We should thus expect that raising to SPEC, ASPP will be able to strand these p^0 s, and this is indeed what we see. When we quantify absolutive PPs (75a) or force overt raising with regular DPs (75b), we see P-stranding in SPEC, voiceP.

(75) Absolutive PPs: Stranding in SPEC, voiceP

b. Ndang i [DP iCicci'] minnassa [TP na-be-ngang [voiceP [PP lao _] _]] AE! not 3ABS NAME clear 3ERG-give-APPL to PRT

'It's not clear that he gave it to Chichi', I'm telling you!'

5.5 Conclusion

We thus conclude our investigation with a cascading series of discoveries on subextraction from the Mandar PP. At the highest level, we have seen that this language allows nominals to escape that domain by raising through the specifiers of higher heads in the extended PP: a pattern which reinforces the classical view that the extended PP must form a phase (Van Riemsdijk, 1978) and one that fits neatly, in turn, with the understanding that movement to its edge must obey a constraint on Comp-to-Spec Antilocality (Abels, 2003, 2012). In the link to the pseudopassive, moreover, we have found that Mandar allows A-movement to proceed along this path in response to a structural shift in the PP: one that suggests the same internal breakdown in licensing that seems to underlie the pseudopassive in English (Van Riemsdijk, 1990; Rooryck, 1996; Ramchand & Svenonius, 2004). In the surface system of spell-out, at last, we have seen that this process is able to visibly strand prepositions in light of a fact of phonology: extraction from the PP does not need to be covert because the phonology provides a path for prosodically minimal p^0 s to form licit phonological phrases. These result establish Mandar in the class of languages that allow overt A-movement from PPs and clarify the conditions that allow this to occur.

Turning now to the higher shape of this system, our results point to a new perspective on the nature of A-attraction and its relationship to the category PP. To establish contact between the Caseless complement of P^0 and T^0 , we have seen that the language requires an intermediate step of movement to a relatively high position in the extended VP, along the lines proposed for the English pseudopassive by Drummond & Kush 2015. In Mandar, this step must target the entire PP—but it feeds both variable binding and Case-licensing and only targets the PPs whose edges host Caseless DPs. These facts suggest that it is possible for the A-syntax to pied-pipe PPs: a conclusion which suggests that pied-piping must exist (cf. Cable 2010) and must occur equally within the A-syntax (cf. Safir 2019), albeit under the exacting positional constraint that A-pied-piping emerge only at the edge of the phase.

With this much in place, we can now weigh the wider consequences of this final claim: that there is, in effect, a second type of A-attraction that emerges at the edge of the phase. I have argued that the A-syntax gains the ability to pied-pipe PPs at the phase edge because of a wider positional release from the requirement that A-movement target the closest DP. This position fits neatly with the facts of A-attraction

in Mandar, where the absolutive DP raises in a familiar way to that edge, but it may also give us a foothold on a separate pattern of A-attraction of PPS, and I will conclude by drawing a link to this final domain

Davies & Dubinsky 2001 establish that the highest subject position in English—like its analogue in Mandar—cannot attract PPS (and see also Stowell 1981). When PPS seem to take the subject position in copular clauses, then, they are encased in DPS (76a). This conclusion follows from a series of properties that fall to PPS in this position: for instance, they can license emphatic reflexives (76b), though regular PPS cannot (76c).

- (76) Puzzle Two: A-Positions Typically Inhospitable to PPs
 - a. $\left[_{TP} \left[_{DP} \left[_{PP} \text{ Under the bed} \right] \right] \right] \left[_{FP} \text{ is a good place to hide} \right] \right]$.
 - b. [DP] Under the bed and in the closet [DP] are **themselves** good places to hide.
 - c. Leslie hid [$_{PP}$ under the bed and in the closet (*themselves)].

Despite this fact, there is a context where the syntax of subjecthood seems to draw up true PPS, and this is one that emerges around LOCATIVE INVERSION. In clauses like (77a), the initial PP fails every test that would suggest encapsulation in a DP: it cannot license emphatic reflexives (77b), float quantifiers, or control PRO (Postal, 2004).

- (77) Locative Inversion: Movement of PPs
 - a. [PP Under that sofa] may have been lying two snakes.
 - b. *[DP Under that sofa] may **itself** have been lying two snakes.

Even so, there is very good evidence to suggest that these PPs are raised at some point by a step of A-movement that places them above the subject (the DP that agrees with T⁰). Culicover & Levine 2001 observe that locative inversion has the same effect on variable binding as regular A-movement: like raising across experiencer PPs (78a) and unlike topicalization (78b), it allows quantified targets to bind variables in elements they cross (78c).

(78) Locative Inversion: Binding Evidence for A-Movement

a.
$$[_{FP} \text{ Every}_i \text{ kid } \text{ } \text{F}^0_{\text{_[}_{PPP]}}]$$
 $[_{GP} \text{ seems } [_{PP} \text{ to his}_i \text{ mother }] [_{TP} _ \text{ to be a genius }]]].$

Postal 2004 and Bruening 2010b reject the A-movement analysis and propose instead that locative inversion involves high base-generation of these PPS in a topic position, with the syntax of subjecthood carrying up a type of null expletive. But it seems that we can dispatch with this view on the grounds of reconstruction: Bresnan 1977 notes that the PPS in this construction can undergo raising, as in (79a), and just like regular DPS, they can reconstruct for variable binding as they do (79b).

(79) Locative Inversion: Raising Evidence for A-Movement a. [CP Under the bed seemed [TP to live a monster of unimaginable strength __]]. b. Under his bed seemed to every kid to live a monster of unimaginable strength __.

The result is that the PPS in this construction must be raised above the subject by a process that feeds variable binding and further A-movement: one that seems an exact analogue to the special A-movement at the edge of the Mandar *voiceP*. For this reason, I propose that locative inversion does not involve a direct step of movement to SPEC,TP (*cf.* Collins 1996): rather, these PPS undergo this second type of A-movement to SPEC,*voiceP*. As they fail the tests for encasement in DPS, I propose that they fail to undergo A-movement to SPEC,TP: building on the link to topicalization (Bresnan 1994; Rizzi & Shlonsky 2006; Den Dikken 2006), rather, I take them to reach their high position via Ā-movement to a specifier in the extended CP. Setting aside the exact positions of the subject and verb, we thus arrive at the syntax in (80).

From here, we can understand locative inversion to show the same middle-field syntax as another construction that forces A-movement of an Ā-element to the edge of the *voice*P: subject wh-questions like (81), where wh-subjects must skip a regular A-position (McCloskey, 2000; Agbayani, 2000; Holmberg & Hróarsdóttir, 2003; Fitzpatrick, 2006; den Dikken & Griffiths, 2018; Messick, 2020; Bošković, 2024). Whatever lies beneath this effect, it may license skipping in contexts of locative inversion as well— and once understood, it may deliver a path to understand the raising in (79).

(81) Parallel: Subject WH-movement
$$[_{CP} [_{DP} \text{ Who }] [_{TP} _ [_{FP} \text{ left } [_{voiceP} _ [_{VP} _ ...]]?$$

Naturally, exciting mysteries remain. But on balance, it would seem, there is progress to be made by admitting the possibility for A-movement of the category PP.

Chapter 6

Subject Extraction, Anti-Agreement, and the Unfolding of the CP

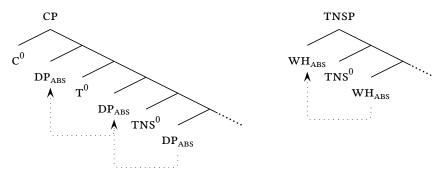
6.1 Introduction

The standard theory of clause structure holds that clauses are built around a threepart functional spine: the heads that make up the extended VP (Larson, 1988; Johnson, 1991; Kratzer, 1996) are dominated by a layer of heads that form the extended TP (Pollock, 1989; Jonas & Bobaljik, 1993; Bobaljik & Thráinsson, 1998), and that layer, in turn, falls beneath a higher series of heads that make up the extended CP (Branigan, 1996; Rizzi, 1997). The frameworks that adopt this view typically assign these layers consistent and distinct syntactic roles (Chomsky, 1995; Platzack, 1999a; Grohmann, 2003; Ramchand & Svenonius, 2014): the heads of the extended тр define the syntax of subjecthood and trigger A-movements, while those of the CP establish clausal force and trigger A-attraction (Chomsky, 1981, 2008; Rizzi, 1997). But the typical syntax of these domains is routinely disrupted, and the partition between them blurred, in the arena of subject extraction: when WH-subjects are poised to interact with the heads of these two domains, they often skip expected positions in the extended TP (Rizzi, 1982; Brandi & Cordin, 1989; Campos, 1997; McCloskey, 2000), often extracting from the VP (1a), and force the suppression of heads in the extended CP (Perlmutter, 1968; Bresnan, 1972; Chomsky & Lasnik, 1977), yielding comp-trace effects like (1b).

```
(1) Puzzles of Subject Extraction
a. [?P Who [TP __ [voiceP t left]]]?
b. [CP Who do you think [?P (*that) [voiceP t left]]]?
```

The goal of this chapter is thus to document and analyze an analogous interaction in the system of subject extraction in Mandar, where the absolutive DP typically raises through a series of subject positions on a path that leads it to interact with T^0 (2a). But when this DP is bound for interaction with C^0 —in contexts of WH-movement, focus-fronting, and relativization—this agreement disappears (2b), yielding an *Anti-Agreement Effect* (Ouhalla 1993; Finer 1997; Shlonsky 2014; Baier 2018).

(2) Mandar: Absolutive Anti-Agreement


- a. [TP Mu-ita i i'o do setang o]?
 2ERG-see 3ABS you that demon there
 'You saw that demon there?'
- b. [$_{\leq TP}$ Apa mu-ita __/*i t]]]? what 2ERG-see 3ABS 'What did you see?'

The standard perspectives link Anti-Agreement to two types of syntax: one on which subject extraction skips regular subject positions (Brandi & Cordin, 1989; Schneider-Zioga, 2007; Diercks, 2009; Erlewine, 2016) and another that takes it to pass through regular subject positions and trigger postsyntactic impoverishment (Ouhalla, 1993; Cheng, 2006; Baier, 2018). In Mandar, however, we will see that Anti-Agreement implicates a syntax that is distinct: the facts of quantifier stranding show that wh-subjects pass through their typical A-positions of the extended TP, but several further effects reveal that it suppresses a band of structure between the extended TP and extended CP (Shlonsky, 2014; Pesetsky, 2019): while regular clauses feature a TP and a CP (3a), these projections go unbuilt whenever wh-phrases raise into a specific A-position along the path the absolutive DP (3b).

(3) Subject Extraction: Suspended Structure-Building

a. Regular Clauses

b. Subject Extraction

To capture this effect in derivational terms, I will argue that certain steps of clausal structure-building must be driven by features that are introduced to the derivation at an early stage and deactivated when wн-phrases are drawn to specific A-positions along the spine. In Mandar, more specifically, I will argue that the heads T^0 and C^0 are canonically introduced into the derivation within complex heads that are bundled together with lower material in the extended TP (Rizzi, 1997), hosting strings of category features that will later unfold to yield functional projections along the spine (Giorgi & Pianesi, 1997; Shimada, 2007). In the usual case, the тр and ср are built through a cyclic process of head-movement and reprojection triggered by features of this type (Fanselow, 2004; Georgi & Müller, 2010; Martinović, 2015)—but when wн-subjects are drawn up into lower A-positions by earlier features on these heads, I propose that this process is suspended by a type of multitasking (Pesetsky & Torrego, 2001; Van Urk & Richards, 2015; Newman, 2024): one that parasitically checks the A-features associated with the CP when WH-subjects raise to A-positions in the extended TP. The result is an analysis that leverages head-bundling across the TP and CP to derivationally suspend structure-building when subjects are bound for the CP.

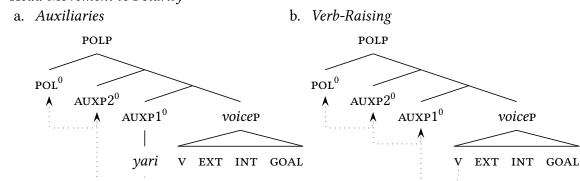
The remainder of this chapter is structured as follows. Section 2 provides background on Mandar, reviews the syntax of subjecthood, introduces the systems of whovement and Anti-Agreement, and introduces a pattern of wh-quantifier stranding to show that wh-subjects must extract from a regular subject position. Section 3 then shows that subject extraction forces the suppression of c⁰ and T⁰: when it proceeds from embedded clauses, it triggers a comp-trace effect and renders them transparent to various types of extraction that are blocked by T⁰. Section 4 then introduces the unfolding framework and develops a particular claim about the nature of subject extraction: the process that draws wh-subjects to their final positions in Mandar must be A-movement to a regular subject position, rather than Ā-movement to SPEC,CP. Section 5 then concludes by drawing a link to a classical puzzle on the relationship between wh-movement and raising in Austronesian.

6.2 Background

To build the empirical case of this chapter, it will be useful to refine and extend the theory of Mandar clause structure that we have developed up to this point. Our first task, then, will be to review a second series of facts, drawn from Brodkin 2025c, to

reveal that the absolutive DP moves through a more elaborate series of positions than we have seen so far—and from there, to build an analogous case that absolutive DPs continue to pass through these positions when bound for the Ā-domain.

6.2.1 Redux: Mandar Clausal Syntax


Our work begins at the upper edge of the extended TP. As we have seen, Mandar has a series of AUXILIARIES that spell out heads in the middle field, including the experiential *rua*, completive *yari*, habitual *byasa*, terminative *pura*, and the negator *ndang* (4a). Above the auxiliaries, we can now introduce one additional head: one that optionally attracts temporal adverbs from their usual position at the right edge of the *voiceP* (4b). I will identify this head as TENSE⁰ (abbreviated TNS) below.

(4) Heads above the VoiceP

[AUXP2 rua [AUXP1 yari [voiceP na-baca a. [POLP Ndang i 3_{ABS} ever DID 3ERG-read yesterday 'She never DID read it yesterday.' b. [TNSP Allo sattu i byasa [AUXP1 na-papia pura [voice 3ERG-make saturday usually done 'By Saturday she's usually done making it.'

Within this space, we have seen, there is also a pattern of head-movement that targets the verb whenever auxiliaries are not present. I take this process to involve head-movement to a position immediately beneath TNS⁰, identified here as POLARITY⁰ (abbreviated POL). This process targets the highest auxiliary that overtly appears (5a), and otherwise it draws up the verb (5b).

(5) *Head-Movement to Polarity*

We can now leverage the second prosodic manipulation introduced in Chapter Four to refine our understanding of how the absolutive DP moves through this space.

At the right edge of the intonational phrase, we have seen, there is a type of accent that falls on specific clause-final particles and several types of foci (6a). When this accent is placed after a position that should host the absolutive DP, it forces the absolutive DP to be spelled out in the next-highest position on its path. When placed at the right edge of a ditransitive *voice*P, for instance, it prevents the absolutive GOAL from following the INT in the final SPEC, applP. In this context, the GOAL must be spelled out in a higher position we can identify as an inner SPEC, vP (6b).

(6) Clash Effects: Absolutives Raise to SPEC, VP

- a. Byasa i na-alli-ang [$_{\nu P}$ iKaco' [$_{applP}$ bunga]] **diò**! usually 3ABS 3ERG-buy-APPL NAME flower THERE!'
- b. Byasa i na-alli-ang [vp iKaco' iCicci' [applp bunga]]] diò! usually 3ABS 3ERG-buy-APPL NAME NAME flower THERE 'Kacho' usually buys Chichi' flowers THERE!'

When we force the same type of accent to immediately follow this higher position, in turn, we can see a second step: the absolutive GOAL must be spelled out in SPEC, *voiceP*. In this context, it must surface just above the verb when it does not raise to POL⁰ (7a). When the verb does raise to POL⁰, in turn, it must surface after the v (7b).

(7) Clash Effects: Absolutives Raise to SPEC, voiceP

- a. Byasa i [voiceP iCicci' na-alli-ang [vP iKaco' _ pro_{INT} _]] diò! usually 3ABS NAME 3ERG-buy-APPL NAME there 'Kacho' usually buys them for Chichi' THERE!'
- b. [POLP Na-alli-ang i [voice iCicci' [vP iKaco' _ [appl P _]]]]àe!

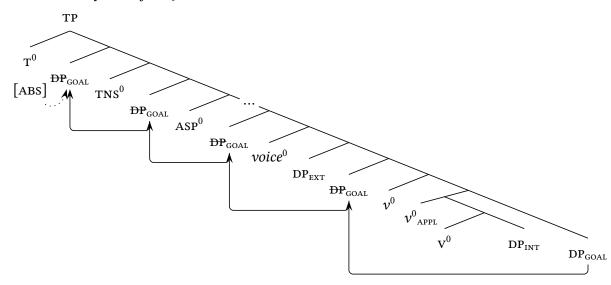
 3ERG-buy-APPL 3ABS NAME NAME PRI

'Kacho' bought some for Chichi', I'm telling you!'

When we force the same type of accent to fall immediately after SPEC, *voiceP*, at last, we see the step in (8): the absolutive GOAL is forced to surface above POL⁰ and beneath the temporal adverbs in SPEC, TNSP. This is the position that we have identified up to this point as SPEC, ASPP, and we will return to its syntax in Section 3.

(8) Clash Effects: Third Position for the Absolutive DP

a. [ASPP <u>iCicci'</u> [POLP na-alli-ang i [voiceP __ pro_{EXT} pro_{INT}]]] **àe**!


NAME 3ERG-buy-APPL 3ABS PRT

'He bought some for Chichi', I'm telling you!'

We can then see a final step of movement by introducing the prenominal quantifiers that force their complements to be realized in the highest positions they pass through. When quantifiers of this type select the absolutive DP, it must be spelled out above the fronted adverbs in SPEC, TNSP (9a), rather than any lower position (9b).

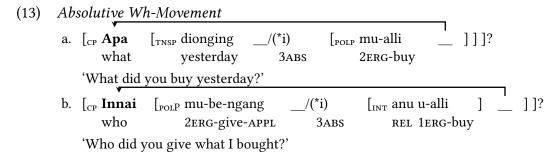
These facts suggest the revised clausal syntax in (10): when the verb is ditransitive and the absolutive DP is the GOAL, this argument undergoes a short step of object shift to an inner SPEC, VP, then raises to the low subject position of SPEC, VoiceP, then moves further to SPEC, ASPP before finally raising to SPEC, TNSP.

(10) Redux: The Syntax of Subjecthood

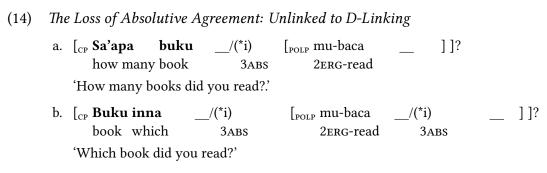
6.2.2 The Anti-Agreement Effect

From this position, we can turn to the syntax of subject extraction: the process that targets wh-phrases that should pass through the higher positions of the absolutive DP. The first step in this connection is to establish the rough syntax of wh-movement, which stands out in regional perspective in several respects. Like Indonesian and Malay (Cole & Hermon 1998, 2005; Cole *et al.* 2008), Mandar allows argument wh-questions to be formed around pseudoclefts in the typical Western Austronesian way (Potsdam, 2009): nominal wh-phrases can take a clause-initial position, function as nonverbal predicates of copular clauses, and be followed by headless relative subjects. Example (11a) shows a wh-pseudocleft of this type: it requries the wh-predicate to host absolutive agreement and forces the following subject to be headed by a demonstrative, on a par with the regular pseudoclefts built around predicate nominals (11b).

(11) Wh-Pseudoclefts: The Regional Pattern


- a. [PREDP Apa ri [DP do [REL.CLAUSE mu-alli _] o]]?
 what JUST.3ABS that 2ERG-buy there

 'What's that thing you bought there?'


Despite this fact, Mandar prohibits whi-in-situ: a property common to the languages of South Sulawesi (Friberg 1996; Finer 1997; Jukes 2006; Laskowske 2016) and one that sets them apart from the languages of Western Indonesia: (Saddy, 1991; Cole & Hermon, 1998; Cole *et al.*, 2005; Davies, 2000, 2003; Davies & Kurniawan, 2013; Sato, 2008, 2024; Crouch, 2009; Jeoung, 2018; Kim *et al.*, 2019; Middleton, 2024). The following examples illustrate this fact with the wh-adverb *pirang* "when:" this element cannot take the *voice*P-final position of regular adjuncts and must move past SPEC,TNSP to a left-peripheral position (12). For now, I will refer to this landing site as SPEC,CP.

(12)Wh-Movement [TNSP dionging _]]]? a. [CP Pirang o [POLP na-pelambi'i iKaco' when 2ABS yesterday 3erg-visit 'When did Kacho' visit you yesterday?'] **pirang**]]? b. [TNSP *Dionging o [POLP na-pelambi'i [voiceP iKaco' yesterday 2ABS 3ERG-visit NAME when INTENDED: 'When did Kacho' visit you yesterday?'

The same requirement forces wh-subjects to raise in a seemingly parallel way. When wh-phrases are generated in the position of the absolutive DP, they move to a similar position in the left periphery (13a). Unlike the predicates of wh-pseudoclefts, however, these wh-subjects are never followed by absolutive agreement—and the constituents that follow are never headed by demonstratives or relativizers like *anu*, the element which heads free relatives in a manner analogous to the Indonesian *yang*.

In the clauses that launch subject wh-movement, absolutive agreement disappears. It cannot surface after the initial wh-phrase (14a) and it cannot appear in any lower position, such as after the highest non-subject in the TNSP—establishing an asymmetry with the clauses where the initial element is a regular absolutive DP (8)-(9) (cf. Friberg 1996, p145 on the related language Konjo). This pattern, moreover, is not linked to the shape of the wh-phrase itself: agreement must be suppressed when raised wh-subjects are simple wh-words like apa "what" and also when they are D-linked, like x inna "which x" (14b).

These facts suggest that we are dealing with a particular type of *Anti-Agreement Effect* (Brandi & Cordin, 1989; Ouhalla, 1993): (absolutive) subject agreement is derailed when the (absolutive) which subject raises to the left periphery. This pattern is mirrored by a series of famous effects in nominative-accusative systems, including many Northern Italian languages (Brandi & Cordin, 1989), Celtic (Borsley & Stephens, 1989; Borsley & Kathol, 2000; Borsley *et al.*, 2007), Berber (Ouhalla, 1993, 2005; Ouali, 2006, 2008;

Shlonsky, 2014), and Bantu (Schneider-Zioga, 1995, 2007; Cheng, 2006; Henderson, 2006, 2013; Diercks, 2009). But it also has clear analogues in many ergative-absolutive systems that seem to show the same type of High Absolutive Syntax: for instance, Karitiâna (Tupian: Storto 1999) and many languages of Sulawesi (see especially Mead 1998; Kaufman 2008). The most important effect of this class, for our purposes, is the cognate pattern in Selayarese (Finer, 1994, 1997, 1998), a language that shows High Absolutive Syntax (Finer, 1999; Béjar, 1999) and an identical Anti-Agreement Effect: when absolutive subjects undergo extraction, they fail to trigger the usual pattern of third-person absolutive agreement in τ^0 (15).

(15) Absolutive Anti-Agreement: Selayarese

- a. [TP La-taro' i doe'=injo iBaso' ri lamari].
 3ERG-put 3ABS money=the NAME in cupboard
 'Baso' put the money in a cupboard.'
 Finer 1997, ex8a
- b. [CP **Apa** [TP la-taro' __/*i __ iBaso' ri lamari]]?
 what 3ERG-put 3ABS NAME in cupboard

 'What did Baso' put in a cupboard.'

 Finer 1997, ex9a

The initial profile of this Anti-Agreement effect suggests that it is linked to the network of syntactic disruptions that emerge under highest-argument extraction, rather than the range of secondary factors that might disrupt ϕ -agreement with goals of the feature [WH]. As it is unlinked to D-linking, for instance, it must be distinct from the parallel effects that emerge in Trentino and Fiorentino (Brandi & Cordin, 1989), which disappear when wh-subjects are D-linked (Suñer 1992; Georgi & Hein 2024; though see also Erlewine 2020). In the same vein, it also emerges across the systems of focusfronting and relativization— suggesting that it is distinct from the disruptions to ϕ agreement that are triggered by wн-phrases without wн-movement in languages like Abaza (O'Herin 1995, pace Baier 2018's analysis of Selayarese). The shape of subject relativization in Mandar is shown in example (16a): the relativized DP surfaces immediately before the relative clause, invariably without an intervening c^0 (the relativizer anu appears only in free relatives, unlike the Indonesian yang), and it systematically fails to trigger agreement on the embedded T^0 . The facts are the same when absolutive DPS undergo focus-fronting to an analogous landing site in the left periphery: in that context, too, they fail to agree with T^0 (16b).

- (16) The Loss of Absolutive Agreement: Linked to Subject Extraction

 - b. [CP **IKACO'** [POLP na-pittama __/(*i) [DP do setang o] __]].

 NAME 3ERG-seize 3ABS that demon there

 'That demon seized KACHO'.'

To capture this effect, then, we might imagine that it emerges from the same syntax that Brandi & Cordin 1989 propose to underlie its analogues in Trentino and Fiorentino: one on which WH-subjects extract from within the VP (17a), along the lines proposed by Rizzi 1982 (and see also Kenstowicz 1984; Burzio 1986; Campos 1997), rather than passing through the usual SPEC, ASPP and SPEC, TNSP (17b).

6.2.3 Tracing the Path of Subject Extraction

To test this hypothesis, we can turn to a convenient pattern of wh-quantifier float. Mandar has a quantifier *pira* that roughly corresponds to the English *all* and often follows wh-phrases in both fragments and the high position we have identified as SPEC,CP (18). The introduction of this element implies that the answer to the wh-phrase must be a plurality and demands an exhaustive "mention-all" answer (Groenendijk & Stokhof 1984; Beck & Rullmann 1999; Schulz & Van Rooij 2006), like the Indonesian collocation wh-*saja*.

(18) The Wh-Quantifier Pira

b. [CP Innai **pira** [TNSP dionging [POLP mu-carita-ngang rasia ___]]]? who all yesterday 2ERG-tell-APPL secret

'Who all did you tell the secret to yesterday?'

Unlike the English *all*, however, *pira* only ever appears in the presence of *apa* 'what,' *innai* 'who,' and *inna* 'which.' This quantifier cannot combine with other whphrases or with regular DPs, and as a result, the collocation *all*-x must be expressed with *inggannanna* (19a). The adverbial uses of the English *all*, in turn, are exclusively expressed by the use of *inggannanna* and the distributive adverb *sangnging* (19b).

(19) The Quantifier Pira: No Independent Uses

- a. Inggannanna [tau / sola-u / tallu-m-bua] (*tau pira...)
 all person friend-1GEN three-LINKER-fruits

 'All people, all my friends, all three fruits"
- b. Inggannanna monge' a, yari sangnging di-ala i tugas-u. all sick 1ABS, so DISTRIBUTIVE PASS-take 3ABS task-1GEN 'I'm all sick, so my tasks were all taken.'

I take these facts to show that *pira* is a head in the extended NP that lexically selects the three wh-phrases above (on lexical selection: Merchant 2019). On this view, it typically forms a surface constituent with its associate and comes to follow it as a result of wh-movement to the edge of the DP (see also Horrocks & Stavrou 1987; McCloskey 2000; Coon 2009; Ewing 2022; Doliana 2022 and Zyman 2022, fns. 3-4).

(20) Pira: Quantificational Head within the NP
$$\begin{bmatrix} OP & WH & pira_{O^0} \end{bmatrix}$$

When associated with WH-subjects, *pira* can be stranded in the exact set of positions that we should expect to host the absolutive DP. First, it can always surface immediately after the base position of its associate. When it quantifies the ditransitive GOAL, then, it can surface at the right edge of the VSOD string (21a), before adjuncts to the *voice*P. When it quantifies an absolutive EXT, in turn, it can precede the INT (21b).

(21) Pira: Stranding in Thematic Positions

- a. [CP Innai [POLP na-be-ngang iKaco' bunga _ **pira**] digena']]?
 who 3ERG-give-APPL NAME flower all earlier

 'Who all did Kacho' give flowers to earlier?'
- b. [CP Innai [POLP mam-be-ngang __ pira ande tau] diting]]?
 who Antip-give-Appl all food people there
 'Who all is giving people food over there?'

This type of stranding extends along the full path of the absolutive DP. When the absolutive argument is the GOAL, for instance, it raises to SPEC, VP and then to

SPEC, voiceP (10). When pira associates with an absolutive GOAL, it can be stranded in each of these positions: falling just above the INT (22a) or above verbs in voice⁰ (22b).

(22) Pira: Stranding in Intermediate Positions

- a. Innai byasa [voiceP na-be-ngang [vP iKaco' pira [applP bunga]]]] dini? who usually 3erg-give-APPL NAME all flower here 'Who all does Kacho' usually give flowers to here?'
- b. Innai byasa [$_{voiceP}$ __ **pira** na-be-ngang [$_{vP}$ iKaco' __ bunga __]] dini? who usually all 3erg-give-APPL NAME flower here 'Who all does Kacho' usually give flowers to here?'

It is also impossible for *pira* to take positions that cannot host the absolutive DP. As the absolutive DP raises to SPEC, *voice*P from an inner SPEC, *v*P, for instance, it cannot surface between the verb and the EXT when the verb remains in *voice*⁰ (7a). *Pira*, too, cannot appear between the EXT and an unraised v (23a). But when the verb raises, the pattern is reversed (23b)—corresponding to its shift with respect to SPEC, *voice*P.

(23) Pira: Only Strands Along the Path of the Associate

a. *Innai byasa [voiceP na-alli-ang [vP _ pira iKaco' _ [applP _]]] dio? who usually 3erg-buy-appl all name there INTENDED: 'Who (*all) does Kacho' usually buy them for there?'
b. Innai na-alli-ang [voiceP _ pira [vP iKaco' _ [applP _]]] dini? who 3erg-buy-appl all name there 'Who all does Kacho' usually buy them for here?'

The result is a case for WH-QUANTIFIER STRANDING (Sportiche, 1988; Shlonsky, 1991; Merchant, 1996; McCloskey, 2000; Bošković, 2004a; Henry, 2012; Zyman, 2018; Doliana, 2022): *pira* forms a constituent with the absolutive WH-phrase, raises with it along its path of movement, and can be realized in low positions along that chain. On this view, we can use its distribution to trace the path of extraction: as it can appear in SPEC, *VP* and SPEC, *VoiceP*, WH-subjects must pass through these positions too.¹

(24) Stranding Reveals the Path of Subject Extraction

¹The facts of prosody suggest a particular analysis of this effect. *Pira* always falls after the right edge of a maximal phonological phrase Itô & Mester 2007, 2012, 2013. It thus seems reasonable to assume that its position is established via scattered deletion (Fanselow & Ćavar, 2003): *pira* moves along the full path of WH-movement and one link along its chain is selected as the optimal position for spell-out.

Looking above the *voice*P, we can observe that it is impossible for *pira* to be stranded anywhere in the string of string of auxiliaries (25). This fact suggests that wh-subjects never pass through positions between SPEC, *voice*P and SPEC, ASPP.

- (25) Pira-Stranding: No Landing Sites Between SPEC, voiceP + SPEC, ASPP
 - a. Innai [POLP **ndang** [AUXP1 (*pira) **rua** [AUXP2 (*pira) **yari** [VoiceP __ lamba]]]]? who not all ever all DID go

 Intended: 'Who all never DID go?'
 - b. Innai [POLP byasa [AUXP1 (*pira) pura [voiceP ___ ma'jama] wattummu malai]]? who usually all done work when you return Intended: 'Who all is usually done working by the time you come home?'

In the subject wh-questions where temporal adverbs raise to SPEC, TNSP, however, *pira* can always be stranded in SPEC, ASPP. This pattern is licit no matter the base position of the absolutive DP: like all types of intermediate stranding, it can emerge under extraction of the transitive INT (26a), antipassive EXT (26b), and ditransitive GOAL.

- (26) Pira: Stranding in the Intermediate Subject Position
 - a. Innai $[T_{NSP}]$ diruambongi ___ pira $[T_{POLP}]$ byasa $[T_{voiceP}]$ ___ na-ita iKaco']]]? who in the past all usually 3erg-see NAME 'Who all did Kacho' usually see in the past?'
 - b. Innai [TNSP diwongi __ pira [POLP man-dundu [voiceP __ ballo']]]?
 who last night all ANTIP-drink palm wine
 'Who all was drinking palm wine last night?'

This fact shows that these wh-subjects do not extract directly from spec, *voice*P: rather, they must at least pass through spec, aspp. The result is that this Anti-Agreement Effect must emerge from some alternative path to subject extraction: one which requires wh-subjects to interact with the usual heads of the extended TP (Ouhalla 1993; Schneider-Zioga 1995; after Chomsky 1981; Pesetsky 1982; Rizzi 1982) or one that forces them to raise through spec, tnsp but evade interaction with T⁰ (Shlonsky 2014; Pesetsky 2019; see also McCloskey 2000; den Dikken & Griffiths 2018; Messick 2020).

6.2.4 Interim Summary

These results allow us to recast the Anti-Agreement Effect as a circumscribed break-down that surrounds the heads c^0 and τ^0 . Rather than reflecting a much wider disruption across the middle field, such as the suspension of A-movement past SPEC, *voiceP*, I propose that it reflects the interaction in (27): when the absolutive DP reaches its usual

A-position of SPEC,TNSP, it canonically interacts with T^0 , but this type of interaction is suspended in the exact set of contexts where it seems to interact with c^0 .

On this analysis, our Anti-Agreement Effect begins to resemble a wider set of patterns that seem to implicate analogous restrictions on simultaneous interaction with T^0 and C^0 (Chomsky, 2008): for instance, the apparent ban on movement from SPEC,TP to SPEC,CP (Lasnik & Saito 1992; Erlewine 2016, 2020). The challenge that unfolds before us, then, is to work out an analysis of Anti-Agreement that is grounded in the derivational relationship between the heads of the TP and CP: one that explains why WH-subjects raise to the usual subject position and then fail to interact with T^0 when they are bound to interact with C^0 . To this end, we can move forward with the following questions in hand.

- (28) Guiding Questions of the Investigation
 - 1. What is the mechanism that derails the usual behavior of the head T^0 ?
 - 2. How can this mechanism be triggered by A-movement to SPEC, TNSP?
 - 3. Why does this interaction emerge at the specific level of SPEC, TNSP?

6.3 Subject Extraction and Clause Reduction

We thus embark on the second arc of our investigation with a question about the fate of T^0 . Many analyses of Anti-Agreement begin from a particular hypothesis about structural stability: in contexts of subject extraction, the head that hosts subject agreement continues to project (Ouhalla, 1993; Schneider-Zioga, 1995, 2000, 2007; Cheng, 2006; Diercks, 2009). This assumption, however, is frequently grounded in a particular fact of the morphology: in Trentino, Fioreninto, and many varieties of Bantu and Berber, subject extraction triggers the replacement of regular agreement with a type of morphological default, rather than its total loss. The task of this section, then, is to ask whether the opposing pattern in Mandar reflects anything more than a morphological

quirk: if subject extraction forces the total loss of agreement, might it also implicate the syntactic suppression of T^0 ?

6.3.1 The Structure of the Mandar CP

To tackle this question, we can turn to the link from subject extraction to clause reduction—and more specifically, a series of effects to suggest the derivational elimination of the heads τ^0 and c^0 . We can launch this arc from the syntax of long-distance extraction, which differs from that of short subject extraction in one key respect: it proceeds from clauses that should otherwise host overt elements in c^0 .

Mandar has a finite c^0 mua', derived from k < um > ua "ANTIPASSIVE-say" and cognate to the Selayarese ko (Finer, 1997), which surfaces beneath most embedding verbs. The typical pattern of embedding is shown in (29): the matrix verb is transitive, the matrix T^0 hosts third-person agreement, and mua' heads the embedded clause.

(29) The Complementizer Mua'

- a. U-issang i [CP **mua'** [TP pole bo i iCicci']].

 1ERG-know 3ABS that come again 3ABS NAME
 - 'I knew that Chichi' was coming again.'
- b. Tapi' ndang i na-pissangngi [CP mua' [TP pole to i iKaco']]. but not 3ABS 3ERG-announce that come also 3ABS NAME 'But she didn't announce that Kacho' was coming too.'

The embedded CPs headed by *mua*' show the usual functional structure of the TP: they host absolutive agreement, they can host auxiliaries and high adverbs in SPEC,TNSP (30a), and they show overt movement of absolutive OPs to SPEC,TNSP (30b).

(30) The Complementizer Mua': Embeds TPs

- b. Na-pepinnassai i [CP mua' [TP [TNSP ing. setang diwongi i latto']]]
 3ERG-explain 3ABS that all demon last night 3ABS appear
 'She explained that all the demons appeared last night.'

This c^0 is initially important for the fact that its distribution is tightly constrained. When complement clauses surface beneath transitive verbs, mua is typically required (31a). But the language has a second class of embedding verbs that surface in the antipassive voice, and beneath these verbs, it is typically possible to drop this c^0 (31b).

- (31) Starting Asymmetry: Transitive Verbs Require Overt C
 - a. U-irrangngi i [?p *(mua') malai i]. 1ERG-hear 3ABS that go home 3ABS 'I heard she was coming home.'
 - b. **Ma'**-ua a' [?P (mua') malai i].

 ANTIP-say 1ABS that go home 3ABS

 'I said she was coming home.'

This divide is linked to a specific difference in the external syntax of the complement clause. When complement clauses are selected by antipassive verbs, the matrix syntax of subjecthood singles out the antipassive ext: that argument agrees with T^0 and raises along the usual path of the absolutive DP. This fact is then matched by a restriction in the domain of Condition C: beneath antipassive verbs, complement clauses cannot contain R-expressions that corefer with an absolutive pronominal ext of the embedding verb (32). If these clausal complements remain in the VP, this restriction follows neatly from the fact that the absolutive ext of the embedding verb should c-command the embedded clause.

(32) Antipassive Clauses: Absolutive EXT > Embedded CP

- a. **Ma'**-ua i pro_{EXT} [?P ____ malai i kindo'-na iCicci' manini]. ANTIP-say 3ABS she (that) go home 3ABS mom-3GEN NAME later 'She_i said that Chichi's * $_{i,j}$ mom will go home later.'
- b. **Mang**-akui i *pro*_{EXT} [_{CP} mua' na-sayang o kotta'-na iCicci' diolo'].

 ANTIP-admit 3ABS she that 3ERG-love 2ABS boyfriend-3GEN NAME first

 'She_i admitted that Chichi's *_{i,i} boyfriend loved you first.'

In transitive contexts where absolutive agreement seems to target the embedded CP, this restriction disappears. The following examples illustrate: when clausal complements are introduced by transitive verbs like *irrangngi* "hear" and *pissangngi* "announce," the pronominal EXT of the embedding verb can corefer with any R-expression in the embedded clause: for instance, in the absolutive DP (33a) or the ergative DP (33b).

(33) Transitive Clauses: Ergative EXT < Embedded CP

- a. Na-irrangngi i pro_{EXT} [CP mua' malai i kindo'-na iCicci' manini]. 3ERG-hear 3ABS she that go home 3ABS mom-3GEN NAME later 'She_i heard that Chichi's_{i,j} mom will go home later.'
- b. Na-pissangngi i pro_{EXT} [CP mua' na-ita o kindo'-na iCicci' digena']. 3ERG-announce 3ABS she that 3ERG-see 2ABS mom-3GEN NAME earlier 'She $_i$ announced that Chichi's $_{i,j}$ mom saw you earlier.'

This contrast reveals that the A-syntax must raise these complement CPs in the contexts where they seem to trigger agreement with T⁰—raising them above the EXT to SPEC, *voice*P and likely farther to SPEC, ASPP and SPEC, TNSP. Setting aside the matter of whether these steps are contingent upon encasement in a covert DP (Rosenbaum 1965; McCloskey 1991; Davies & Dubinsky 2001; *cf.* Bošković 1995), the result is the syntax in (34): beneath transitive verbs but not their antipassive counterparts, complement CPS are sentential subjects.

(34) The External Syntax of Complement Clauses

```
a. Transitive: \begin{bmatrix} TP & CP_{ABS} & POLP & V_{TRANS} & VoiceP & DP_{ERG} & CP \end{bmatrix}]
b. Antipassive: \begin{bmatrix} TP & DP_{ABS} & POLP & V_{ANTIP} & V_{OiceP} & DP & CLAUSE_{OBL} \end{bmatrix}]
```

We thus arrive at a link from the possibility for movement to the visible presence of C^0 : when complement clauses raise along the path of the absolutive DP and interact with T^0 , they must overtly host mua. To capture this asymmetry, I propose that the systems of agreement and A-movement (or, alternatively, an encasing D^0) are sensitive to the presence of C^0 . On this view, we can understand the surface distribution of mua to follow from the fact that it is the only possible exponent of the finite C^0 : in other words, sentential subjects are forced to host mua because the Mandar lexicon lacks a null counterpart of this C^0 . The result is a systematic structural divide between the clauses that host mua and those that do not (and see Doherty 1993, 2000 on English): the clauses that host mua are CPS (35a) and the clauses that lack it are smaller (35b). For concreteness, I take them to be TPS.

(35) Complement Clauses: Differences in Structural Size

```
    a. Overt c: [CP mua' TP]
    b. Bare tp: [TP ____ ]
```

6.3.2 The Syntactic Suppression of C

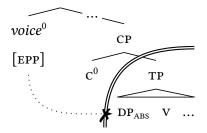
From here, we can establish an interaction between subject extraction and c^0 . The clauses that host mua are transparent to non-subject extraction. When adjunct wh-phrases are generated within them, then, they undergo long-distance wh-movement in a regular way: they trigger no Anti-Agreement and freely cross this c^0 (36).

Pirang i mu-irrangngi [CP mua' latto' i do setang o]? when 3ABS 2ERG-hear that appear 3ABS that demon there
'When did you hear that that demon there appeared?'
Embedded subject extraction, however, forces the surface suppression of c ⁰ . <i>Mua</i>
must disappear in all the embedded clauses that launch extraction of the absolutive
DP (37a), even though it is typically required in the clausal complements of transitive
verbs. This pattern is then matched by the loss of the embedded $\ensuremath{\mathtt{T}}^0$ (37b): in other
words, the Anti-Agreement Effect correlates with a Comp-Trace Effect. ²
(37) Long-Distance Subject Extraction: Suppression of C
a. Innai mu-irrangngi [?P u-ita dionging]? who 2ERG-hear (that) 1ERG-see yesterday
'Who did you hear that I saw yesterday?' b. Innai mu-sa'ding [?P na-pile/(*i) marondong]? who 2ERG-feel (that) 1ERG-see 3ABS yesterday 'Who do you feel that they'll pick tomorrow?'
The facts of quantifier stranding then reveal that the Comp-Trace Effect is linked
to extraction from the usual subject position. In contexts of long-distance extraction,
$\it pira$ can be stranded in every position on the path of the absolutive DP up to spec,tnsp.
(38) Long-Distance Subject Extraction: Evidence for Direct Movement
a. Innai mu-sa'ding [_ _{TNSP} marondong [_ _{ASPP} pira na-pile]]? who 2erg-feel tomorrow all 3erg-pick
'Who all do you feel that he'll choose tomorrow?'
² On the surface, the language allows wh-dependencies that appear to stretch into the subject positions of embedded clauses that host this c ⁰ (1). But in this context, the embedded clause never shows Anti-Agreement and <i>pira</i> cannot be stranded along the expected path of extraction in the <i>mua</i> '-CP. I take these facts to suggest that <i>mua</i> '-clauses are opaque to subject extraction (and see Finer 1997 for a parallel claim about <i>ko</i> -CPs in Selayarese): in this context, wh-phrases originate in the embedded spec,CP and bind resumptive pronouns lower in the CP (Borer 1981; McCloskey 1990; Asudeh 2004; Sichel 2014; Hewett 2023). (1) <i>Mua</i> '-Clauses: Opaque to Subject Extraction Innai na-irrangngi [CP mua' lamba i (*pira)]? who 3ERG-hear that go 3ABS all INTENDED: 'Who all did she see that did go?'

(36) Mua'-Clauses: Transparent to Adjunct Extraction

b. Innai mu-irrangngi dionging [TNSP ___ pira marondong na-pile]?
 who 2ERG-hear yesterday all tomorrow 3ERG-choose
 'Who all did you hear yesterday that he'll choose tomorrow?'

These effects are then matched by two further shifts to reveal that subject extraction derails the construction of the usual projection CP. When embedded clauses launch subject extraction, to begin, they cease to trigger third-person agreement on the matrix T^0 (39a): a fact which suggests that they are smaller than the clauses that host overt exponents of C^0 . This shift is then mirrored by a parallel realignment in the system of Condition C: beneath transitive verbs, the embedded clauses that launch subject extraction lose the ability to host R-expressions coindexed with a pronominal matrix EXT (39b): a fact which suggests that they cannot become sentential subjects and raise along the path of the absolutive DP.


- (39) Embedded Subject Extraction: Derails Construction of the Embedded CP
 - a. Innai mu-irrangngi __/*(i) diruambongi [?P _ na-sayang iKaco']? who 2ERG-hear 3ABS in the past 3ERG-love NAME 'Who did you hear in the past that Kacho' loved?'
 - b. Innai na-irrangngi pro_{EXT} [CP na-pelambi'i kindo'-na iCicci' digena']? who 3erg-hear she 3erg-visit mom-3gen name earlier 'Who did she, hear that Chichi's *i,i mom visited earlier?'

These facts reveal that there is a syntactic shift beneath the surface suppression of c^0 : this particular comp-trace effect reflects a syntactic loss of c^0 (Bošković 1994, 1996, 1997; Grimshaw 1997), rather than the introduction of a second c^0 that happens to be null and licenses subject extraction on a par with the French *qui* (Chomsky & Lasnik 1977; Kayne 1980; Pesetsky 1982; Bennis & Haegeman 1984; Rizzi 1990).

6.3.3 Interlude: Transparency Effects and τ⁰

From this position, we can begin to make a case for the corresponding suppression of T^0 . This is one that turns on a particular type of transparency effect, and to illustrate, we can begin from a second consequence of the loss of C^0 . When transitive verbs embed CPS, we have seen, the heads of the matrix VP cannot reach into the embedded TP: the matrix $voice^0$, for instance, must attract the CP and not the embedded absolutive DP. This type of opacity follows neatly from PHASE THEORY (Chomsky 2001; though cf. Halpert 2019): the head C^0 defines a cyclic domain of syntactic computation, and as a result, the material in its complement becomes inaccessible to all higher heads.

(40) Phase-Based Locality

In the clauses that lack c^0 , this restriction disappears: when mua' is suppressed, the embedded absolutive DP is accessible to the matrix v^0 . We can see this fact with a turn to a second class of transitive verbs that select complements without c^0 : sanga "think" and hara "hope." These verbs embed complements that project to the TP, hosting absolutive agreement and the positions identified as SPEC,ASPP and SPEC,TNSP.

(41) A Second Class of Embedding Verb

- a. **U-sanga** i [_{TP} ___ lamba i iCicci' marondong]. 1ERG-think 3ABS (*that) go 3ABS NAME tomorrow 'I think (*that) Chichi' will go tomorrow.'
- b. **Mu-sanga** i [TP [TNSP **dionging i** [ASPP iCicci' [POLP di-ita diò]]]]? 2ERG-think 3ABS yesterday 3ABS NAME PASS-see there 'Do you really think that yesterday Chichi' was seen THERE?'

In keeping with the fact that they lack c^0 , these clauses are transparent to the matrix T^0 : in the matrix clauses built around sanga and hara, T^0 agrees with the embedded absolutive DP (42a). It cannot show the rigid third-person agreement that emerges around sentential subjects, which ban this type of agreement (42b).

(42) Complement Clauses without Mua': Transparent to Agreement

- a. U-sanga o/*i [TP lamba o i'o marondong]. 1ERG-think 2ABS/3ABS go 2ABS you tomorrow 'I thought you were going tomorrow.'
- b. U-irrangngi i/*o [CP **mua'** lamba o i'o marondong].

 1ERG-hear 3ABS/2ABS that go 2ABS you tomorrow

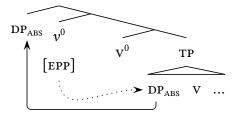
 'I heard that you were going tomorrow.'

This fact then correlates with evidence for raising of the absolutive DP. Unlike sentential subjects, the clausal complement of *sanga* and *hara*' remain in the VP, and we can see this fact in the system of Condition C: in the embedded clause, R-expressions

in constituents like the ergative DP cannot corefer with a pronominal matrix EXT (43a). This restriction is lifted, however, for the embedded absolutive DP (43b).

- (43) Complement Clauses without Mua': Binding Facts Suggest Raising
 - a. Na-sanga i pro_{ERG} [TP na-ita i kindo'-na iCicci' digena']. 3ERG-think 3ABS she 3ERG-see 3ABS mom-3GEN NAME earlier 'She_i thinks that Chichi's *_{i,i} mom saw it earlier.'
 - b. Na-sanga i pro_{ERG} [TP lamba i kindo'-na iCicci' digena']. 3ERG-think 3ABS she go 3ABS mom-3GEN NAME earlier 'She_i thinks that Chichi's_{i,i} mom left earlier.'

When we introduce quantifiers like *inggannanna* into these embedded absolutive DPs, moreover, we see the explicit raising in (44a): the embedded absolutive DP is forced to move to the matrix clause and cannot remain in the embedded clause (44b).


- (44) Complement Clauses without Mua': Visible Raising of Absolutive QPs
 - a. **Ing. sola-u** u-sanga i [?P mu-ita i __ marondong]. all friend-1GEN 1ERG-think 3ABS 2ERG-see 3ABS tomorrow 'I think you'll see all my friends tomorrow.'
 - b. *U-sanga i [?P ing. sola-u mu-ita i __ marondong].

 1ERG-think 3ABS all friend-1GEN 2ERG-see 3ABS tomorrow

 INTENDED: 'I think you'll see all my friends tomorrow.'

In the terminology of Ura 1994, the result is a type of hyperraising (for review: Zyman 2023; also Alexiadou & Anagnostopoulou 1999; Uchibori 2001; Ferreira 2000, 2004, 2009; Martins & Nunes 2005, 2009, 2010; Zeller 2006; Deal 2017; Halpert 2019; Lee & Yip 2024): sanga and hara select fully finite TPs and then force raising of the embedded absolutive DP. Setting aside the matter of ACTIVITY (Chomsky, 2001), we can understand this pattern along much the same lines as Zyman 2017 and Fong 2019 (and see Tanaka 2002; Şener 2008; Takeuchi 2010; Alboiu & Hill 2016; Bondarenko 2017; Wurmbrand 2019): the matrix v^0 can attract the embedded absolutive DP because it falls at the edge of the embedded TP (suggesting that the absolutive DP must then consistently raise past SPEC, TNSP to SPEC, TP).

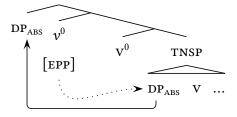
(45) Hyperraising: Absolutives Accessible at the Edge of the TP

Shifting one level down, we can extend the same analysis to a class of complements that seem to project no farther than the TNSP. Returning to the system of raising, we can observe that raising verbs embed complements which lack absolutive agreement (46a) but allow adverbs to raise to SPEC, TNSP (46b). I thus propose that these raising complements project up to TNSP.

(46) Raising Complements

- a. Dionging i mala [ASPP pole __/*i iCicci' marondong]. yesterday 3ABS possible come 3ABS NAME tomorrow 'Yesterday it was possible that Chichi' would come tomorrow.'
- b. Dionging i minnassa [ASPP marondong pole __/*i iCicci' __].
 yesterday 3ABS clear tomorrow come 3ABS NAME

 'Yesterday it was clear that tomorrow Chichi' would come.'


Like hyperraising complements, these raising complements are transparent to agreement: in clauses built around *minnassa*, the matrix T⁰ agrees with the embedded absolutive DP (47a). They also show all the usual evidence for raising: if the embedded absolutive DP is quantified, it must surface in the matrix SPEC,TNSP (47b).

(47) Raising Complements: Evidence for Raising

- a. Dionging **o**/***i minnassa** [ASPP pole *pro* marondong]. yesterday 2ABS/3ABS clear come you tomorrow 'Yesterday it was clear that you would come tomorrow.'
- b. **I'o mie' inggannanna** dionging o minnassa [ASPP pole ____]. you guys all yesterday 2ABS clear come 'Yesterday it was clear that all you guys would come.'

These facts suggest the analysis in (48): embedded absolutive DPs can raise out of these complements because they are drawn to the edge by attraction to SPEC, TNSP.

(48) Raising: Absolutives Accessible at the Edge of the TnsP

6.3.4 Subject Extraction Triggers the Loss of T⁰

We can now leverage this initial contrast between raising and hyperraising complements to identify a transparency effect linked to T^0 . This is one that emerges most clearly in the behavior of the adverb *bo* "again," an element that typically raises to the edge of the TNSP. In matrix clauses, this element follows the first element in the TNSP, on a par with the absolutive agreement enclitics that sit in T^0 (49a). It never takes the usual position of temporal adjuncts at the edge of the *voiceP* (49b).

(49) The Adverb Bo: Second-Position within the TnsP

```
a. [_TNSP Dionging bo a' [_POLP na-telpong iKaco' __ ] ]. yesterday again 1ABS 3ERG-call NAME
```

'Yesterday Kacho' called me again.'

INTENDED: 'Yesterday Kacho' called me again.'

We can see into the derivational behavior of this adverb with a turn to a second non-finite environment. Mandar has a class of reduced clauses that are selected by the c^0 mau "though." These clauses are able to host auxiliaries, but they lack absolutive agreement—suggesting that they typically only project to POLP (50).

(50) A Second Class of Non-Finite Clauses: Though-Complements

'Though never seen [-FIN] around here, he's allegedly dissertating.'

This second environment is useful for the way that it reveals the particular role of ASP^0 . Unlike the complements of control verbs, the non-finite clauses introduced by *mau* are able to host overt absolutive DPS (51a), suggesting that they provide an

exceptional source of structural Case to that DP. But they typically do not allow the absolutive DP to raise past SPEC, *voice*P: when the absolutive DP is quantified, for instance, it must surface beneath all auxiliaries (51b) and cannot raise to the position we have identified as SPEC, ASPP.

- (51) Though-Complements: No Higher Subject Positions
 - a. **Mau** [POLP na-ita [VoiceP iCicci' [VP iKaco' __]] diò], though 3ERG-see NAME NAME there 'Though Kacho' saw [-FIN] Chichi' THERE,'
 - b. Mau [POLP pura [voiceP ing. sola-u u-ellongngi]], though done all friend-1GEN 1ERG-call
 'Though I'm done calling [-FIN] all my friends,'

The situation changes, however, when we force these clauses to project up to the ASPP. Mandar has a pair of enclitics that introduce distinctions of outer aspect: *mo* "already" and *pa* "yet" (52a). These elements typically follow the highest element in the TNSP, on a par with the enclitics that mark absolutive agreement, and I take them to head the ASPP. When we introduce these elements into the non-finite clauses headed by *mau*, we begin to see a further step of raising for the absolutive DP: when it is quantified, for instance, it starts to raise past the auxiliaries to the position we have identified as SPEC, ASPP (52b).

- (52) Though Complements: The Role of Asp^0
 - a. Mau [ASPP [POLP pura **mo** [voiceP __ u-ellongngi]]], though done ALREADY 1ERG-call

 'Though I'm already done calling [-FIN] them,'
 - b. Mau [ASPP ing. sola-u [POLP pura mo [voiceP ___ u-ellongngi]]], though all friend-1GEN done ALREADY 1ERG-call
 'Though I'm already done calling [-FIN] all my friends,'

The introduction of ASP^0 triggers an analogous step of movement for the adverb bo. In the non-finite clauses that project to $POLP^0$, bo follows the verb (53a). In the presence of mo and pa, however, it raises to follow the highest overt auxiliary (53b).

- (53) The Adverb Bo: Movement to the edge of the AspP
 - a. Mau [polp yari [voice latto **bo** do setang o ___]], though DID appear AGAIN that demon there

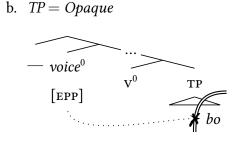
 'Though that demon there did appear [-FIN] again,'

When we front temporal adverbs to force out the TNSP, in turn, we see two further steps: absolutive QPS raise to SPEC,TNSP and *bo* raises to follow the adverbs.

(54) The Adverb Bo: Movement to the edge of the TnsP

'Though everyone did appear [-FIN] again last night,'

I thus propose that *bo* takes the path in (55): after entering the derivation as a typical (right-)adjunct to the *voiceP*, it is attracted to an outer SPEC, *voiceP*, then to an outer SPEC, ASPP, and finally to an intermediate SPEC, TNSP. Like absolutive agreement, I assume that it is positioned after the highest element beneath it in the postsyntax.


(55) The Syntax of Bo "Again":
$$\begin{bmatrix} \downarrow & \downarrow & \downarrow \\ I_{NSP} & bo & I_{ASP} & \underline{\qquad} & I_{voiceP} & \underline{\qquad} & \dots & \underline{\qquad} \end{bmatrix} \end{bmatrix}$$

From this position, we can leverage the behavior of this adverb to test for the presence of T⁰. In a clause that projected up to the level of the TNSP, we might expect to see the pattern of attraction in (56a): if *bo* raises to the edge of the SPEC,TNSP, it should be accessible to the matrix *voice*⁰ and should thus be able to climb into the matrix clause. In clauses that contain structure above the TNSP, however, we might expect to see the pattern reverse: if *bo* does not raise to the edge of the TP, for instance, this type of climbing should be blocked in the clauses that host the head T⁰ (56b), on a dynamic approach to phasehood which takes the highest head along the spine to define a phase (Takahashi, 2010; Bobaljik & Wurmbrand, 2005, 2013; Wurmbrand, 2017; Bošković, 2013, 2014, 2016; Harwood, 2015).

(56) Transparency for Again-Movement: Predictions

bo
$$voice^0$$
 V^0 TNSP [EPP] ho v

a. TnsP = Transparent

Within the regular system of clausal complementation, these predictions are borne out. When *bo* originates in the TSNP-sized complements of raising verbs, it is unable to remain low: rather, it must raise from the embedded SPEC, TNSP into the matrix clause.

(57) Raising Complements: Transparent for Bo

- a. Minnassa **bo** i [ASPP yari __ na-tumae]. clear again 3ABS DID 3ERG-propose 'It's clear that he did propose to her again.'
- b. *Minnassa i [ASPP yari **bo** na-tumae]. clear 3ABS DID again 3ERG-propose INTENDED: 'It's clear that he already did propose to her again.'

When *bo* originates in a hyperraising complement that forms a TP, in turn, the facts are reversed: this adverb must stay in the embedded TP and cannot raise out.

(58) Hyperraising Complements: Opaque for Bo

- a. U-sanga i $\left[_{TP} \left[_{POLP} \right. yari \, \textbf{bo} \right] \left[_{voiceP} \right] \, na-tumae \, \right] \, \right]$ lerg-think 3ABS DID again Already.3ABS 3Erg-propose 'I think he already did propose to her again.'
- b. *U-sanga **bo** i [TP [POLP yari ___ mi [VoiceP na-tumae]]]].

 1ERG-think again 3ABS DID ALREADY.3ABS 3ERG-propose

 INTENDED: 'I think he already did propose to her again.'

With this much in place, we can now turn to the way that *bo* interacts with wh-movement. In the default case, its behavior is undisturbed by non-subject extraction: when *bo* originates in a TP or CP that launches adjunct wh-movement, for instance, it is strictly trapped in its clause of origin and cannot raise out.

(59) Non-Subject Extraction: No Effect on Bo

- a. Pirang i mu-sanga [TP maindong **bo** i [VoiceP iKaco'] ___]? when 3ABS 2ERG-think escape 3ABS NAME

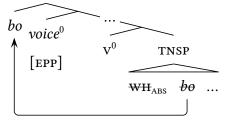
 'When do you think Kacho' escaped again?'
- b. Myapa i na-pissangngi [CP mua' maindong bo i]? how 3ABS 3ERG-announce that escape again 3ABS 'How did he announce that he would escape again?'

When *bo* originates in a clause that launches subject extraction, however, it is forced to escape: it must raise out and follow the highest element in the matrix TNSP.

(60) Subject Extraction: Jailbreak

- a. Innai [TNSP digena' **bo** mu-irrangngi [TNSP di-be-ngang ____ tilang]]? who just now again 2ERG-hear PASS-give-APPL ticket 'Who did you just hear was given a speeding ticket again?'
- b. *Innai [TNSP digena' mu-irrangngi [TNSP di-be-ngang **bo** tilang]]? who just now 2erg-hear pass-give-appl again ticket INTENDED: 'Who did you just hear was given a speeding ticket again?'

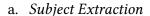
This effect is then mirrored in the behavior of many further elements that typically cluster after the first element in the TNSP. Unstressed pronouns and demonstratives, for instance, move along the same path as *bo* and remain within the TNSP when they originate in embedded TPS (61a). But when they originate in clauses that launch subject extraction, they raise to follow the first element in the matrix TNSP (61b).

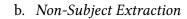

(61) Subject Extraction: More of the Jailbreak

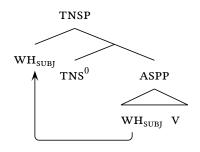
- a. Apana mu-sanga i [TP dionging i yau do u-be-ngang iCicci' o]? Why 2erg-think 3abs yesterday 3abs 1sg that 1erg-give-appl name prt 'Why do you think that yesterday I gave that to Chichi?'
- b. Innai [TNSP] digena' yau do mu-irrangngi [TNSP] u-be-ngang ____ o]]?
 who just now 1sG that 2ERG-hear 1ERG-give-APPL PRT

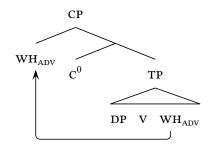
 'Who did you just hear that I gave that to?'

These facts establish a tight parallel between the clauses that launch subject extraction and those that launch raising: both are transparent for the attraction of bo and other second-position elements. This result suggests the pattern of reduction in (62): the clauses that launch subject extraction lack T^0 and only project to TNSP.


(62) Subject Extraction: Bundling Past the TP




This analytical step, in turn, allows us to draw out and sharpen the theoretical targets that our analysis of Anti-Agreement will have to meet. To begin, it establishes that subject extraction must force the syntactic suppression of the head that canonically hosts subject agreement—tracing both the morphological shape of this effect and the theoretical thrust of Shlonsky 2014 and Pesetsky 2019. Second, it suggests that this pattern of suppression must reach down to an A-position that hosts the


subject in the extended TP: the clauses that launch subject extraction must project exactly to the TNSP. In tandem with this result, at last, it suggests that the mechanism beneath subject extraction must be distinct from the regular Ā-movement that carries non-subject wh-phrases to SPEC,CP (Chung & McCloskey 1983; Chomsky 1986; see also Bošković 2024): rather, it would seem to be a type of A-movement that suspends structure-building above SPEC,TNSP.

(63) Subject Extraction = A-Movement to SPEC, TNSP

6.4 The Unfolding Framework

To capture this network of interactions in derivational terms, then, I propose that the heads that are suppressed in contexts of subject extraction in Mandar must be constructed within the derivation by a process that is derailed by A-movement of WHsubjects to SPEC, TNSP. Drawing from Rizzi 1997, more specifically, I propose that the Mandar T⁰ and C⁰ are canonically introduced to the derivation within a bundled head (Giorgi & Pianesi, 1997): one that hosts the featural content of c⁰, T⁰, and TNS⁰. Following Shimada 2007, I will argue, this head type of head is typically forced to UNFOLD through a cyclic process of excorporation and reprojection, yielding the independent sequence of heads TNS⁰-T⁰-C⁰. In the presence of WH-subjects, however, I will argue that this process is suspended by a derivational pressure for multitasking (Pesetsky & Torrego, 2001; Van Urk & Richards, 2015; Newman, 2024): one that leverages the WH-phrases drawn up by A-features to SPEC, TNSP in order to parasitically check the Ā-features that typically surface at the level of the CP. The result is an analysis that derives the suspension effect from the regular interaction of two component parts: a universal system of UNFOLDING and a language-particular pattern of head-bundling that cuts across the extended TP and CP.

6.4.1 Head-Bundling

The analysis begins from the framework of bundling developed by Giorgi & Pianesi 1997. To account for cross-linguistic variation in the shape of clausal spine, Giorgi & Pianesi 1997 propose a featural reformulation of the types of functional sequence put forward by Grimshaw 1991 and Cinque 1999. The central ingredients of this system are presented in (64): the heads along the clausal spine project from a sequence of features that are organized into a cross-linguistically universal order (64a), but they are packaged into bundled heads in a language-particular way, such that each feature can either head its own projection or bundle in the lexicon with any number of additional features that form a contiguous span along the hierarchy (64b).

- (64) Background: The Feature-Scattering Framework
 - a. The Universal Ordering Constraint Features are ordered so that given $F_1 > F_2$, the checking of F_1 precedes the checking of F_2 . Giorgi & Pianesi 1997, 14
 - b. The Feature-Scattering Principle: Each feature can head a projection [or, alternatively, bundled together with features adjacent along the universal hierarchy]. Giorgi & Pianesi 1997, 15

This framework provides a natural way to capture many types of cross-linguistic variation, and it has since been widely employed to capture such patterns in the extended CP (Manetta, 2011; Bennett *et al.*, 2012; Hsu, 2017, 2021). Rizzi 1997, for instance, proposes that this type of bundling lies behind the Comp-Trace Effect in English: in that language, he argues, subject extraction requires the emergence of a bundled c⁰ that hosts the features that typically define Force⁰ and Fin⁰ (65a). This pattern of bundling has two effects: it prevents the insertion of the canonical exponent of Fin⁰, thus forcing the presence of the null c⁰, but it renders the content of Force⁰ accessible to external selection, thus allowing these clauses to be embedded beneath verbs that select full CPs. Extending the same analysis to Mandar, then, we might posit the analogous pattern in (65b): subject extraction requires a bundled head that hosts the features that define TNS⁰, T⁰, and C⁰.

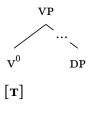
(65) Subject Extraction: Clause Reduction

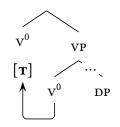
a. English: $\begin{bmatrix} FORCE/FINP & WH_{SUBJ} & FORCE/FIN^0 & TP & ... & V \end{bmatrix}$ b. Mandar: $\begin{bmatrix} C/T/TNSP & WH_{SUBJ} & C/T/TNS^0 & TASPP & ... & V \end{bmatrix}$

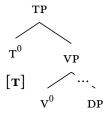
6.4.2 Derivational Structure-Building

To understand how this type of bundling might be derivationally forced by the Amovement of wh-subjects, we can begin with the mirror image of our effect: cases where the syntax seems to unfold complex heads in order to trigger wh-movement of non-subjects. The classical pattern of this type involves head-movement from T^0 to c⁰ (Emonds, 1976; Den Besten, 1983; Koopman, 1984), which is most familiar from the systems of non-subject wh-movement in English (Koopman, 1983; Pesetsky & Torrego, 2001) and French (Kayne 1983; Rizzi & Roberts 1989). To understand the proposed role of this step, we can begin from the way that it manifests in German and Dutch—where a major strand of work argues that non-subject attraction forces further structure-building at the level of the CP. Travis 1984 and Zwart 1997 propose that the clauses which satisfy the verb-second requirement by attracting subjects project up to the level of the TPS, while those that satisfy the v2 requirement by drawng up nonsubjects project up to the level of the CPS (see also Hoekstra & Marácz 1989; Branigan 1996; Fanselow 2002; Bošković 2024). To capture this asymmetry, I propose that the derivation forces the construction of the CP layer in order to attract non-subjects to the v2 position: put differently, non-subject attraction forces unfolding of a complex C/T^0 (see also Bennett *et al.* 2012; Martinović 2015; Erlewine 2016).

(66) Verb-Second: Structural Asymmetry


```
a. Subject v2 clauses:  \begin{bmatrix} TP & DP_{SUBJ} & V & ... \end{bmatrix}  b. Non-subject v2 clauses:  \begin{bmatrix} CP & XP_{NONSUBJ} & V & ... & TP & DP_{SUBJ} & ... \end{bmatrix}
```


This type of structure-building head-movement is typically held to be triggered by category features that are lexically specified to raise to the root and REPROJECT, in the tradition of Holmberg 1991 and Ackema *et al.* 1993 (see also Koeneman 2000; Bury 2003; Fanselow 2004; Surányi 2005; Shimada 2007; Georgi & Müller 2010; Martinović 2015; Erlewine 2018). Within a different derivational context, for instance, Ackema *et al.* 1993 and Fanselow 2004, 2009, for instance, propose that the same head-movement constructs the TP. Their account is sketched in (67): when verbs are merged, they discharge their selectional features, project the VP (67a), and then turn to a REPROJECTION FEATURE denoted here as [T]. This feature forces syntactic head-movement to the root (67b), in a step that resembles head-movement to a specifier position (Toyoshima, 2001; Matushansky, 2006; Harizanov, 2019), but it passes up its


label as well—making it the head of the new constituent built at the root. When this type of head-movement is triggered by $[\underline{\mathbf{T}}]$, it derivationally constructs a TP (67c).

(67) Head-Movement and Reprojection

- a. Starting Point
- b. Head-Movement
- c. Reprojection

Ackema *et al.* 1993 and Fanselow 2004, 2009 propose that this type of head-movement raises the entire content of \mathbf{v}^0 to \mathbf{T}^0 , ruling out any morphological separation between the heads that carry reprojection features and the reprojected heads that they create. This stance fits neatly with the lexicalist position that they adopt, but it stands at odds with the hypothesis that patterns of exponence can be rerouted by structure-building operations of this type (a stance implicit in both Rizzi 1997 and Giorgi & Pianesi 1997). To resolve this tension, then, I follow Shimada 2007 in taking this type of head-movement to implicate a cyclic process of excorporation and reprojection: one that raises successively smaller pieces of this bundled to the root to construct new heads that can be independently exponed. The core of this framework is sketched below: pushing the feature-scattering theory to its maximum extent, Shimada 2007, proposes that the entire clausal spine is gradually unfolded from a single bundle that hosts the features $[\mathbf{v}]$, $[\mathbf{v}]$, $[\mathbf{r}]$, and $[\mathbf{c}]$.

(68) Shimada: Bundling and Excorporation

Point

VP

V⁰

DP

[v]

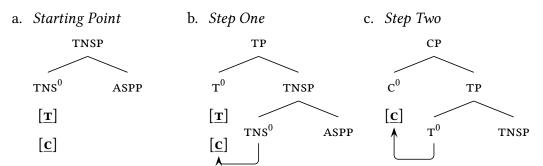
[T]

[**c**]

a. Starting

b. Step One

 $\begin{array}{ccc}
 & \text{TP} \\
 & \text{T}^0 & \text{VP} \\
 & \text{[T]} & \\
 & \text{[c]} & \text{|} &
\end{array}$


c. Step Two

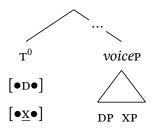
 $\begin{array}{ccc}
CP \\
C^0 & TP \\
[C] & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$

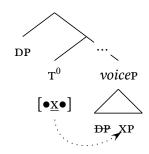
d. Step Three

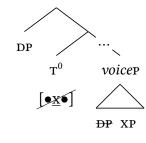
To derive the relationship between TNS^0 , T^0 , and C^0 , we can imagine that the same process of unfolding targets the bundled $TNS/T/C^0$. I assume that the Mandar lexicon contains independent heads that correspond to TNS^0 and T^0 , selected in the numerations that construct reduced complements that only project to the TNSP and TP. To build the finite clauses that project to the CP, however, I propose that the numeration invariably selects the bundle $TNS/T/C^0$. This is a head that hosts the reprojection features in (69a): [T], which forces unfolding to build the TP, and [C], which forces unfolding to build the CP. As these features are ordered extrinsically along the universal functional sequence of Giorgi & Pianesi 1997, they must be derivationally ordered in this head (in the sense of Heck & Müller 2007): once $TNS/T/C^0$ is merged as the sister to ASP^0 , [T] must force unfolding to build the TP (69b) and [C] must then trigger the same process to build the CP (69c).

(69) Mandar: Unfolding from Asp to C

To lay the groundwork for interaction between unfolding and attraction, I propose that these category features are interspersed with the derivational features that drive Move and Agree. In bundled heads like $TNS/T/C^0$, these features must be derivationally ordered in a language-particular and lexically determined way: the feature that attracts bo to an intermediate SPEC, TNSP must fall just after the feature that attracts temporal adverbs, while the feature that draws absolutive DPs to SPEC, TNSP must fall just before [$\underline{\mathbf{T}}$]. Denoting movement-driving features with bullets ([$\bullet x \bullet$]) and ϕ -agreement features with asterisks ([$*\phi*$]), after Heck & Müller 2007, we can thus summarize the content of this head as (70).

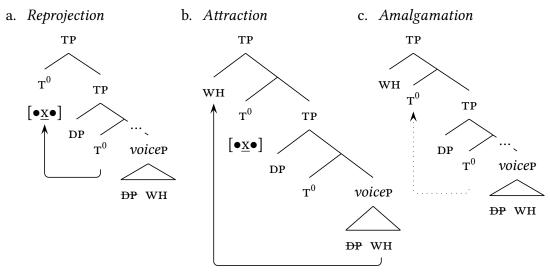

$$[\underline{\mathtt{TNS}}] > [\bullet \mathtt{ADV} \bullet] > [\bullet \mathtt{BO} \bullet] > [\bullet \mathtt{D} \bullet] > [\underline{\mathtt{T}}] > [*\phi *] > [\underline{\mathtt{C}}] > [\bullet \mathtt{WH} \bullet]$$


6.4.3 Reprojection and Suspension


We can now draw the central series of links from WH-movement to structure-building. To derive a V2 system where only subject-initial clauses project to the level of the TP, we can posit two ordered features on a bundled head T^0 (71a). The first of these is $[\bullet D \bullet]$, which should always attract the closest DP and thus draw the subject to SPEC,TP. The second feature must then be $[\bullet \underline{x} \bullet]$: one that attracts topics, foci, and WH-phrases and carries an additional trigger for unfolding (which must be able to attach to derivational features like $[\bullet \underline{x} \bullet]$ in the same way that it attaches to categorial features like $[\underline{c}]$, as a SECOND-ORDER feature (Adger & Svenonius, 2011)). Once the derivation reaches $[\bullet \underline{x} \bullet]$, this feature triggers a second round of probing beneath T^0 (71b). In the absence of a licit target for movement, it must then fail (in the sense of Preminger 2011): when it cannot force attraction, the derivation simply moves on to the remaining features on T^0 . If this head carries no further features that drive reprojection, unfolding will stop—and if no further heads are externally merged, the clause will be a TP (71c).

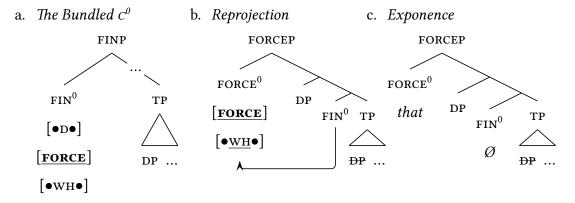
(71) Subject Movement: Suspends Structure-Building

- a. Two Features on T^0
- b. Probing for $[\bullet \underline{x} \bullet]$
- c. Deactivating $[\bullet \underline{x} \bullet]$



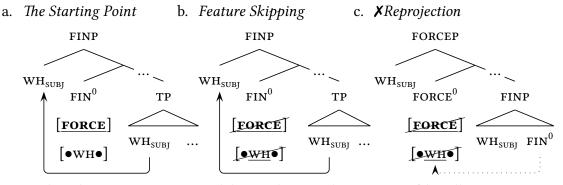
In the derivations that feature a lower WH-phrase, however, $[\bullet \underline{x} \bullet]$ forces the step of unfolding in (72a): one that allows $[\bullet \underline{x} \bullet]$ to excorporate, undergo head-movement, and reproject to attract the WH to the higher position in (72b). I will assume that this step constructs a higher instance of the category TP, as it is driven by $[\bullet \underline{x} \bullet]$ and not a category feature like $[\underline{c}]$. If it forces this higher position to host the typical exponent of T^0 , on a par with regular T^0 -to- T^0 0, it must then be followed by the step of morphological head-movement in (72c): one that operates in the postsyntax, after Harizanov & Gribanova 2019, in response to another second-order feature on $[\bullet x \bullet]$.

(72) Reprojection for Attraction


We can now turn to the cases where structure-building is suspended by the Amovement of WH-subjects. We can begin by deriving the analysis of English in Rizzi 1997: one on which regular embedded clauses host the heads FORCE⁰ and FIN⁰ (73a) but the clauses that launch subject extraction require bundling of the two (73b).

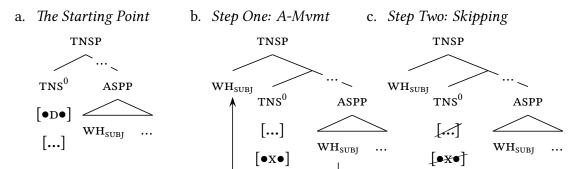
(73) Subject Extraction \rightarrow Less Structure

- b. Subject extraction: $[_{FORCE/FIN} __{WH} \emptyset_{FORCE^0/FIN^0} [_{TP} __{WH} ...]]]$


To capture this interaction, we can appeal to a derivational pressure for local economy (for an alternative that derives similar effects through transderivational comparison, see Martinović 2015, 2022). I propose that FIN⁰ and FORCE⁰ typically enter the derivation as a bundled head with three features in English: [•D•], [•WH•], and an intermediate category feature [FORCE] (74a). This bundle typically unfolds to yield the syntax in (74b): the subject is drawn to SPEC,FINP by a step of A-movement and [FORCE] reprojects to build the FORCEP. This step is unlinked to the feature [•WH•], and as a result, it occurs without regard to the presence of a lower WH-phrase. If [FORCE] lacks the lexical property that triggers amalgamation with FIN⁰ in the post-syntax, in turn, this step should allow the separate exponence of FIN⁰ and FORCE⁰, yielding the emergence of that (74c).

(74) Structure-Building via Reprojection

In the embedded clauses that host which subjects, however, unfolding must be derailed. The breakdown begins from a pattern of visibility: while the features on bundled heads are typically checked in a rigid order, I propose that they are all visible to the derivation when the bundled head sits at the root (mirroring the early Minimalist view that all features on a head can be accessed at once: Chomsky 1995; Longenbaugh 2019). In this configuration, we can force an interaction through the Free Rider Condition of Chomsky 1995: a pressure that forces a head to check as many features as possible once it begins to interact with a particular goal (see also Bruening 2001; Rezac 2013). When [•D•] attracts a which a particular goal to check the feature [•WH•], which is typically checked only after [Force] (75a). I thus propose that the system of economy forces the parasitic feature-checking in (75b): the derivation skips [Force] to immediately check [•WH•]. In this configuration, the Forcep is not built (75c).


(75) Subject Extraction: Feature-Skipping

I propose that the same interaction delivers the Mandar pattern of bundling to TNSP. The possibility for feature-skipping emerges in the clauses where absolutive

WH-phrases raise to SPEC,ASPP (76a), where they are poised to satisfy the feature [•D•] on the bundled head TNS/T/C⁰ (76a). When they check this second feature through A-movement to SPEC,TNSP, the derivation identifies the possibility for the step of multitasking in (76b): one that parasitically checks the later feature [•WH•] by skipping all of the features that canonically separate it from [•D•]. In this configuration, the Free Rider Condition demands the same result: the derivation must skip through the intervening features that build the TP, trigger absolutive agreement, and ultimately construct the CP (76c). As a consequence, the clauses that host WH-subjects will never project beyond the TNSP.

(76) Subject Extraction: Deep Suspension

The result is a framework that delivers these patterns of reduction in a flexible and theoretically integrated way: with the right type of bundling and distribution of features, the A-movement of WH-phrases can derail the construction of the canonical TP and CP. The pattern of bundling that we have posited for English triggers a fairly minor disruption at the level of the CP, preserving subject agreement in T⁰ but yielding a comp-trace effect that turns on the bundling of C⁰. The more extensive pattern that we have posited in Mandar, in turn, delivers a comp-trace effect and a type of Anti-Agreement that involves bundling deeper into the TP. The differences between these systems emerge squarely in the lexicon, where universally-ordered category features are bundled together, interspersed with derivational features, and selected as triggers for reprojection in a language-particular way. Within the derivation, however, these bundled heads are unfolded within a single system of feature-based economy: they undergo a cyclic process of head-movement and reprojection, driven by the distribution of reprojection features, that can be derailed when the triggers for A-movement attract targets that satisfy features from the Ā-domain.

6.5 Conclusion

Stepping back from the guys of the system, we can now take stock on the conceptual shifts that follow from the analytical and theoretical steps that we have taken up to this point. At the most basic level, our investigation has established three truths about Anti-Agreement: (*i*) some Anti-Agreement Effects do emerge from the special syntax of subject extraction, (*ii*) these effects need not implicate direct extraction from positions in the extended vp, and (*iii*) in the systems where wh-subjects undergo Amovement through the middle field, Anti-Agreement can emerge from a total syntactic suppression of agreeing heads like T⁰. These results run against the narrow thrust of Baier 2018, who attempts to consign all Anti-Agreement to the morphology, and they flesh out the wider typology of these effects in a useful way: establishing that Anti-Agreement can emerge along this specific derivational path and showing that it can still be linked to the syntax of subject extraction in the ergative systems where the highest argument is the absolutive DP.

Turning to the wider syntax of subject extraction, we can then lay out a series of results around the movement of the absolutive DP. Starting in the system of quantifier stranding, the selectional profile and linear distribution of the wh-quantifier *pira* establish a new argument that wh-movement can strand quantifiers along its path. The facts of stranding, in turn, reveal that the clauses which descriptively launch subject extraction require wh-subjects to raise through a regular subject position that falls just below the suppressed T⁰. The transparency effects in the systems of raising and hyperraising suggest that structure-building is suspended just as wh-subjects raise to this position, yielding an argument that the Anti-Agreement and comp-trace effects in this system involve the non-construction of the TP and CP. These results, at last, suggest that wh-subjects are positioned through A-movement to a regular subject position, rather than Ā-movement to spec, CP—providing us with the tools to explain why subject extraction in Mandar takes such a different shape.

Returning to the empirical terrain, at last, this theoretical step allows us to understand a final effect that we have set aside up to this point. When wh-subjects undergo long-distance extraction, they are usually carried through the higher clauses along their paths by a regular type of Ā-movement that proceeds through SPEC,CP, rather than the special process that targets wh-subjects alone (Pesetsky, 2019; Bošković, 2024). In the systems that show Anti-Agreement, this tendency is then matched by the

following fact: subject agreement is typically only derailed in the lowest clauses along the path (Ouhalla, 1993; Ouali, 2008). In Mandar, however, this is not so: when embedded wh-subjects undergo long-distance extraction, they trigger Anti-Agreement in every clause on the way (77).

(77) Long-Distance Wh-Dependencies: Successive-Cyclilc Anti-Agreement

- a. Innai mu-irrangngi __/(*i) [MODP marondong lamba __]?
 who 2ERG-hear 3ABS tomorrow go
 'Who did you hear is leaving tomorrow?'
- b. Innai mu-irrangngi __/(*i) [MODP na-sa'ding __/(*i) [MODP na-pile __]]? who 2ERG-hear 3ABS 3ERG-feel 3ABS 3ERG-pick 'Who did you hear he feels they'll pick?

This restriction then correlates in the usual way with the suppression of intermediate complementizers (78a) and the emergence of jailbreak effects (78b). These patterns, in turn, are matched by the usual realignment in the system of Condition C to suggest that these clauses fail to raise and only project to the MODP.

(78) Long-Distance Wh-Dependencies: Comp-Trace Effects + Jailbreaks

- a. Innai na-pissangngi [MODP (*mua') na-irrangngi [MODP marondong lamba]]? who 3ERG-announce that 3ERG-hear tomorrow go 'Who did they announce they heard would go tomorrow?'
- b. Innai mu-irrangngi bo [MODP na-sa'ding iCicci' [MODP na-tumae ____]]
 who 2ERG-hear again 3ERG-feel NAME 3ERG-propose
 'Who did you hear that Chichi' feels will propose to her again?'

In the clauses along this path, moreover the facts of *pira*-stranding reveal that the moved wh-phrase passes through every position of the absolutive DP: for instance, every intermediate SPEC, VP (79a) and SPEC, ASPP (79b).

(79) Long-Distance Wh-Dependencies: Raising through Absolutive Positions

- a. Innai mu-irrangngi [MODP na-sa'ding iKaco' **pira** dionging [MODP pole]]? who 2ERG-hear 3ERG-feel NAME all yesterday come 'Who all did you hear that Kacho' felt yesterday would come?'
- b. Innai mu-irrangngi [MODP dionging __ pira na-sa'ding iKaco' [MODP pole]]?
 who 2ERG-hear yesterday all 3ERG-feel NAME come
 'Who all did you hear that yesterday Kacho' felt would come?'

These facts suggest that WH-subjects are carried to the edges of their clauses of origin by a process that feeds raising through all the canonical A-positions of the absolutive DP. The step that positions them in the embedded SPEC,MODP, more specifically, must feed raising into a higher SPEC,VP—and from there, SPEC,VoiceP, SPEC,ASPP, and SPEC,MODP. The result is that cases of long-distance subject extraction in Mandar cannot involve an initial step of subject extraction and then successive-cyclic Āmovements through intermediate SPEC,CPS: rather, they must involve continuous Amovement up to the matrix SPEC,MODPP.

At a language-internal level, this final observation allows us to reinforce and extend the claim that wh-subjects are carried to their final landing sites by the A-syntax alone. In comparative perspective, however, it is significant for the way that it fits into a regional generalization: many Western Austronesian languages seem to require long-distance wh-subject extraction to implicate raising as well (Finer 2003; Keenan 2008; Gerassimova & Sells 2008; Davies & Kurniawan 2013). It may thus be that in those language, as in Mandar, subject wh-phrases are positioned by an A-movement that halts construction of the CP.

Chapter 7

Conclusion

Drawing together the various lines of this dissertation, we thus come to a series of cascading conclusions on the narrow nature of relative locality constraints and the wider status of the A-A-divide. Through Chapters Four and Five, I have argued for a positional dissociation between the component parts of the classical divide: the edge of the clause-internal phase, in Mandar, licenses a type of attraction that both reshapes patterns of binding and coreference and feeds the A-syntax but nevertheless avoids the requirement to target the closest DP: skipping regular DPs to preferentially target pronouns and quantified expressions (Chapter Four) and pied-piping PPs that host caseless DPS at their edge (Chapter Five). In Chapter Six, in turn, I argued that subject WHmovement can seemingly take on the profile of A-movement—descriptively targeting only the closest DP and feeding the higher A-syntax—by virtue of the fact that the usual triggers for A-attraction can be satisfied and defused by steps of A-movement in systems that show the right patterns of head-bundling across the extended TP and CP. The vision that emerges from these parts is one that strives to explain the challenging distribution of a particular constraint—the need for attraction to target the closest DP in a manner that preserves the wider integrity of the A-/Ā- divide. On this view, the descriptive requirement that "A-movement target the closest DP" is one that is properly linked to the movement-driving features most commonly recruited to drive A-attraction, rather than the A-syntax itself—licensing the emergence of non-local A-attraction under the particular derivational circumstances that may force it at the edge of the phase. The apparent emergence of analogous requirements in the A-domain, in turn, emerges from the fact that the relevant steps of movement actually ARE instances of A-attraction albeit ones that license the checking of features that would otherwise trigger Ā-attraction.

Against this backdrop, it is useful to weigh the results of this dissertation against an alternative theoretical path: one that would leverage the same body of facts to argue against the existence of the A-Ā divide. From this second perspective, the network of correlations outlined in this thesis-from the breakdown of locality constraints and category requirements around apparent steps of A-movement to the edge of the voiceP to the emergence of A-like properties in the apparent A-syntax of subject extraction could be taken to suggest that there are very few universal restrictions, if any at all, on the syntactic systems that link up the component parts of the traditional A-Ā-divide. From this perspective, more specifically, we might imagine that the language-internal distribution of the pressure to attract the closest DP might emerge from the languageparticular way in which the classical A- and A-properties are organized and combined: one which aligns traditional A-properties from certain domains (like the systems of binding, coreference, and feeding relationships in the A-syntax) with A-properties from others (like the positional capacity for selective attraction) in a relatively free way. The choice between these two possibilities, it seems to me, is an empirical affair: in the context of this dissertation, turning on the question of whether the Mandarinternal correlations sketched out above turn out to generalize and echo across other systems in a familiar and productive way. The task of deciding between the two, then, falls to the future body of work that pushes forward the theoretical vision above.

Bibliography

- Abels, Klaus. 2003. Successive cyclicity, anti-locality, and adposition stranding. University of Connecticut.
- Abels, Klaus. 2007. Towards a restrictive theory of (remnant) movement! *Pages 53–120 of*: van Craenenbroeck, Jeroen, & Rooryck, Johan (eds), *Linguistic variation yearbook 7*. Amsterdam: John Benjamins.
- Abels, Klaus. 2012. Phases: An essay on cyclicity in syntax. Vol. 543. Walter de Gruyter.
- Abramovitz, Rafael Meghani. 2021. *Topics in the grammar of Koryak*. Ph.D. thesis, Massachusetts Institute of Technology.
- Ackema, Peter, Neeleman, Ad, & Weerman, Fred. 1993. Deriving functional projections. *Page 3 of:* North East Linguistics Society, vol. 23.
- Adams, Karen L, & Manaster-Ramer, Alexis. 1988. Some questions of topic/focus choice in Tagalog. *Oceanic Linguistics*, **27**(1/2), 79–101.
- Adelaar, K Alexander. 1994. The classification of the Tamanic languages. *Pages 1–41 of:* Dutton, Tom, & Tryon, Darrel (eds), *Language contact and change in the Austronesian world.* Berlin: Mouton de Gruyter.
- Adger, David, & Svenonius, Peter. 2011. Features in minimalist syntax. *In:* Boeckx, Cedric (ed), *Oxford handbook of linguistic minimalism.* Oxford: Oxford University Press.
- Åfarli, Tor A. 1989. Passive in Norwegian and in English. Linguistic Inquiry, 101–108.
- Agbayani, Brian. 2000. Wh-subjects in English and the vacuous movement hypothesis. *Linguistic Inquiry*, **31**(4), 703–713.
- Alboiu, Gabriela, & Hill, Virginia. 2016. Evidentiality and Raising to Object as A'-Movement: A Romanian Case Study. *Syntax*, **19**(3), 256–285.
- Aldridge, Edith Catherine. 2004. *Ergativity and word order in Austronesian languages*. Ph.D. thesis, Cornell University.
- Alexiadou, Artemis, & Anagnostopoulou, Elena. 1997. Toward a uniform account of scrambling and clitic doubling. *Pages 143–161 of:* Werner, Abraham, & Van Gelderen, Elly (eds), *German: Syntactic Problems, Problematic Syntax?* Tübingen: Max Niemeyer.
- Alexiadou, Artemis, & Anagnostopoulou, Elena. 1999. Raising without infinitives and the nature of agreement. *Pages 15–25 of:* Bird, S., Carnie, A., & Haugen, J. (eds), *Proceedings of the 18th West Coast Conference on Formal Linguistics*. Somerville, MA: Cascadilla.

- Alexiadou, Artemis, & Anagnostopoulou, Elena. 2004. Voice morphology in the causative-inchoative alternation: Evidence for a non-unified structural analysis of unaccusatives. Oxford: Oxford University Press.
- Anagnostopoulou, Elena. 1999. On experiencers. *Pages 67–93 of*: Alexiadou, A., Horrocks, G., & Stavrou, M (eds), *Studies in Greek syntax*. Dordrecht: Kluwer.
- Anagnostopoulou, Elena. 2003. *The syntax of ditransitives: Evidence from clitics*. Berlin: Mouton de Gruyter.
- Anand, Pranav, & Nevins, Andrew. 2006. The locus of ergative case assignment: Evidence from scope. *Pages 3–25 of:* Johns, Alana, Massam, Diane, & Ndayiragije, Juvenal (eds), *Ergativity*. Dordrecht: Springer.
- Anderbeck, Karl. 2015. Portraits of language vitality in the languages of Indonesia.
- Anderson, Stephen R. 1976. On the notion of subject in ergative languages. *Pages 1–23 of:* Li, Charles N, & Thompson, Sandra A. (eds), *Subject and Topic*. New York: Academic Press.
- Angelopoulos, Nikos. 2019. Reconstructing clitic doubling. Glossa: a journal of general linguistics, 4(1).
- Asarina, Alevtina. 2011. Case in Uyghur and beyond. Ph.D. thesis, Massachusetts Institute of Technology.
- Asudeh, Arshia. 2004. Resumption as resource management. Stanford University.
- Ayano, Seiki. 2001. *The layered internal structure and the external syntax of PP.* Ph.D. thesis, Durham University.
- Baier, Nicholas B. 2018. Anti-agreement. Ph.D. thesis, University of California, Berkeley.
- Bailyn, John Frederick. 2003. Does Russian scrambling exist? Word order and scrambling, 156-176.
- Bailyn, John Frederick. 2004. Generalized inversion. Natural Language & Linguistic Theory, 22(1), 1-50.
- Baker, Mark C. 1988. *Incorporation: A theory of grammatical function changing*. Chicago: University of Chicago Press.
- Baltin, Mark, & Postal, Paul M. 1996. More on reanalysis hypotheses. Linguistic Inquiry, 127-145.
- Barbiers, Sjef. 2002. Remnant stranding and the theory of movement. *Pages 47–67 of:* Alexiadou, Artemis, & Anagnostopoulou, Elena (eds), *Dimensions of movement: From features to remnants*. Amsterdam: John Benjamins.
- Barðdal, Jóhanna. 1999. The dual nature of Icelandic psych-verbs. *Working papers in Scandinavian syntax*, **64**, 79–101.
- Barðdal, Jóhanna. 2001. The perplexity of Dat-Nom verbs in Icelandic. *Nordic Journal of Linguistics*, **24**(1), 47–70.
- Barker, Chris. 2012. Quantificational binding does not require c-command. *Linguistic inquiry*, **43**(4), 614–633.
- Beck, Sigrid, & Rullmann, Hotze. 1999. A flexible approach to exhaustivity in questions. *Natural Language Semantics*, 7(3), 249–298.

- Béjar, Susana. 1999. Agreement alternations and functional licensing in Selayarese. *Pages 51–61 of:* Smallwood, Carolyn, & Kitto, Catherine (eds), *Proceedings of Afla VI.* Toronto Working Papers in Linguistics, vol. 16. Toronto, Ontario: University of Toronto Department of Linguistics.
- Béjar, Susana, & Rezac, Milan. 2003. Person licensing and the derivation of PCC effects. Pages 49–62 of: Pérez-Leroux, Ana-Teresa, & Roberge, Yves (eds), Romance Linguistics: Theory and Acquisition. Selected papers from the 32nd Linguistic Symposium on Romance Languages (LSRL), Toronto, April 2002. Amsterdam: John Benjamins.
- Béjar, Susana, & Rezac, Milan. 2009. Cyclic agree. Linguistic inquiry, 40(1), 35-73.
- Belletti, Adriana, & Rizzi, Luigi. 1988. Psych-verbs and θ -theory. *Natural Language & Linguistic Theory*, 291–352.
- Bennett, William G, Akinlabi, Akinbiyi, & Connell, Bruce. 2012. Two subject asymmetries in Defaka focus constructions. *Pages 294–302 of:* Choi, Jaehoon, Hogue, Alan, Punske, Jeffrey, Tat, Deniz, Schertz, Jessamyn, & Trueman, Alex (eds), *Proceedings of the 29th West Coast Conference on Formal Linguistics*. Somerville, MA: Cascadilla Proceedings Project.
- Bennis, Hans, & Haegeman, Liliane. 1984. On the status of agreement and relative clauses in West Flemish. *Pages 33–55 of:* de Geest, Wim, & Putseys, Yvan (eds), *Sentential complementation*. Foris Dordrecht.
- Bennis, Hans, & Hoekstra, Teun. 1985. Gaps and parasitic gaps. the Linguistic Review, 4, 29-87.
- Bernstein, Judy B. 2008. Reformulating the determiner phrase analysis. *Language and Linguistics Compass*, **2**(6), 1246–1270.
- Bhatt, Rajesh. 2005. Long distance agreement in Hindi-Urdu. *Natural Language & Linguistic Theory*, **23**(4), 757–807.
- Bhatt, Rajesh, & Keine, Stefan. 2017. Long-distance agreement. *The Wiley Blackwell companion to syntax*, 4, 2291–2321.
- Bittner, Maria. 1987. On the semantics of the Greenlandic antipassive and related constructions. *International Journal of American Linguistics*, **53**(2), 194–231.
- Bittner, Maria. 1994. Case, scope, and binding. Dordrecht: Kluwer.
- Bittner, Maria, & Hale, Ken. 1996a. Ergativity: Toward a theory of a heterogeneous class. *Linguistic Inquiry*, **27**, 531–604.
- Bittner, Maria, & Hale, Ken. 1996b. The structural determination of case and agreement. *Linguistic inquiry*, **27**, 1–68.
- Blust, Robert. 2013. The Austronesian languages, 2nd Edition. Canberra: Pacific Linguistics.
- Blust, Robert. 2015. The case-markers of Proto-Austronesian. Oceanic Linguistics, 436-491.
- Bobaljik, Jonathan. 1993. On ergativity and ergative unergatives. *Pages 45–88 of:* hillips, Collin (ed), *Papers on case and agreement 2 (MIT working papers in linguistics 18).* Cambridge, MA: MIT Press.
- Bobaljik, Jonathan David. 2002. A-chains at the PF-interface: Copies and covert movement. *Natural Language & Linguistic Theory*, **20**(2), 197–267.

- Bobaljik, Jonathan David, & Jonas, Dianne. 1996. Subject positions and the roles of TP. *Linguistic inquiry*, 195–236.
- Bobaljik, Jonathan David, & Thráinsson, Höskuldur. 1998. Two heads aren't always better than one. *Syntax*, **1**(1), 37–71.
- Bobaljik, Jonathan David, & Wurmbrand, Susi. 2005. The domain of agreement. *Natural Language & Linguistic Theory*, **23**(4), 809–865.
- Bobaljik, Jonathan David, & Wurmbrand, Susi. 2013. Suspension across domains. *In:* Matushansky, Ora, & Marantz, Alec (eds), *Distributed Morphology Today: Morphemes for Morris Halle*. Cambridge, MA: MIT press.
- Bok-Bennema, Reineke. 1991. Case and agreement in Inuit. Dordrecht: Foris.
- Bondarenko, Tatiana. 2017. ECM in Buryat and the optionality of movement. Pages 31–42 of: Proceedings of the 12th Workshop on Altaic Formal Linguistics (WAFL 12). MIT Working Papers in Linguistics, vol. 83.
- Borer, Hagit. 1981. On the definition of variables. Journal of Linguistic Research, 1(3), 17-40.
- Borer, Hagit. 1984. Parametric syntax. Dordrecht: Foris.
- Borsley, Robert D, & Kathol, Andreas. 2000. Breton as a V2 language. Linguistics, 38, 665-710.
- Borsley, Robert D, & Stephens, Janig. 1989. Agreement and the position of subjects in Breton. *Natural Language & Linguistic Theory*, **7**(3), 407–427.
- Borsley, Robert D, Tallerman, Maggie, & Willis, David. 2007. *The syntax of Welsh*. Cambridge University Press.
- Bošković, Željko. 1994. Categorial status of null operator relatives and finite declarative complements. *Language Research*, **30**(2), 387–417.
- Bošković, Željko. 1995. Case properties of clauses and the Greed Principle. *Studia Linguistica*, **49**(1), 32–53.
- Bošković, Željko. 1996. Selection and the categorial status of infinitival complements. *Natural Language & Linguistic Theory*, **14**(2), 269–304.
- Bošković, Željko. 1997. The syntax of nonfinite complementation: An economy approach. MIT press.
- Bošković, Željko. 2002. A-movement and the EPP. Syntax, 5(3), 167–218.
- Bošković, Željko. 2003. Agree, phases, and intervention effects. Linguistic analysis, 33, 54-96.
- Bošković, Željko. 2004a. Be careful where you float your quantifiers. *Natural language & linguistic theory*, **22**(4), 681–742.
- Bošković, Željko. 2004b. Object shift and the clause/PP parallelism hypothesis. *Pages 101–114 of:* Schmeiser, B., Chand, V., Kelleher, A., & Rodriguez, A. (eds), *Proceedings of the 23rd West Coast Conference on Formal Linguistics*.
- Bošković, Željko. 2007. On the locality and motivation of Move and Agree: An even more minimal theory. *Linguistic inquiry*, **38**(4), 589–644.

- Bošković, Željko. 2013. Phases beyond Clauses¹. The nominal structure in Slavic and beyond, **116**, 75.
- Bošković, Željko. 2014. Now I'ma phase, now I'm not a phase: On the variability of phases with extraction and ellipsis. *Linguistic inquiry*, **45**(1), 27–89.
- Bošković, Željko. 2016. Getting really edgy: On the edge of the edge. Linguistic inquiry, 47(1), 1–33.
- Bošković, Željko. 2024. On wh and subject positions, the EPP, and contextuality of syntax. *The Linguistic Review*, **41**(1), 7–58.
- Branan, Kenyon, & Erlewine, Michael Yoshitaka. 2023. Anti-pied-piping. Language, 99(3), 603-653.
- Branan, Kenyon, & Erlewine, Michael Yoshitaka. 2024. Ā-probing for the closest DP. *Linguistic Inquiry*, **55**(2), 375–401.
- Brandi, Luciana, & Cordin, Patrizia. 1989. Two Italian dialects and the null subject parameter. *Pages* 111–142 of: Jaeggli, Osvaldo, & Safir, Ken (eds), *The null subject parameter*. Dordrecht: Kluwer.
- Branigan, Philip. 1996. Verb-second and the A-bar syntax of subjects. Studia Linguistica, 50(1), 50–79.
- Bresnan, Joan. 1972. *Theory of complementation in English syntax*. Ph.D. thesis, Massachusetts Institute of Technology.
- Bresnan, Joan. 1977. Variables in the theory of transformations. *Pages 157–196 of:* Culicover, Peter W, Wasow, Thomas, & Akmajian, Adrian (eds), *Formal syntax*. New York: Academic Press.
- Bresnan, Joan. 1994. Locative inversion and the architecture of universal grammar. Language, 72-131.
- Bresnan, Joan W. 1976. On the form and functioning of transformations. Linguistic Inquiry, 7(1), 3-40.
- Brodkin, Dan. 2021a. Agreement and Anti-Agreement in South Sulawesi. *In:* Farinella, Alessa, & Hill, Angelica (eds), *Proceedings of NELS 51*. Amherst, MA: University of Massachusetts Graduate Linguistics Students Association.
- Brodkin, Dan. 2021b. Second Position Clitics and Prosodic Recursion. *Page 12 of:* Bennett, Ryan, Bibbs, Richard, Brinkerhoff, Mykel Loren, Kaplan, Max J., Rich, Stephanie, Rysling, Amanda, Van Handel, Nicholas, & Wax Cavallaro, Maya (eds), *Supplemental Proceedings of the 2020 Annual Meeting on Phonology.* Washington, DC: Linguistic Society of America.
- Brodkin, Dan. 2022a. Perception Verb Complements in Mandar. *Pages 17–34 of:* Balachandran, Lalitha, & Duff, John (eds), *Syntax & Semantics at Santa Cruz*, vol. 5. Santa Cruz, CA: Linguistics Research Center, University of California, Santa Cruz.
- Brodkin, Dan. 2022b. *Two Steps to High Absolutive Syntax*. MA Thesis, University of California, Santa Cruz.
- Brodkin, Dan. 2022c. Two Steps to High Absolutive Syntax: Austronesian Voice and Agent Focus in Mandar. *Journal of East Asian Linguistics*, **31**, 1–52.
- Brodkin, Dan. 2025a. Chain Reduction at the Syntax-Prosody Interface. Manuscript.
- Brodkin, Dan. 2025b. The Prosody of the Extended VP. Natural Language and Linguistic Theory.
- Brodkin, Dan. 2025c. Subject Positions, High Absolutives, and Austronesian Voice. Manuscript.

- Brodkin, Dan. 2025d. Suppletion in Global Perspective. Linguistic Inquiry.
- Brodkin, Dan. 2025e. The Prosody of Paths. Manuscript.
- Brodkin, Dan. To Appear. Reinforcers, Rightward Movement, and Prosodic Greed. Linguistic Inquiry.
- Brodkin, Dan, & Royer, Justin. 2024. Explaining the Ban on Ergative Anaphors. Unpublished manuscript.
- Brown, Colin. 2016. Syntactic ergativity in Gitksan. *In: Proceedings of the 21st annual Workshop on the Constituency of Languages of the Americas (WSCLA 21). UQAM Montreal, QC.*
- Bruening, Benjamin. 2001. Syntax at the edge: Cross-clausal phenomena and the syntax of Passamaquoddy. Ph.D. thesis, Massachusetts Institute of Technology.
- Bruening, Benjamin. 2005. *The Algonquian inverse is syntactic: Binding in Passamaquoddy*. Manuscript, University of Delaware.
- Bruening, Benjamin. 2010a. Double object constructions disguised as prepositional datives. *Linguistic inquiry*, **41**(2), 287–305.
- Bruening, Benjamin. 2010b. Language-particular syntactic rules and constraints: English locative inversion and do-support. *Language*, **86**(1), 43–84.
- Bruening, Benjamin. 2014a. Defects of defective intervention. Linguistic Inquiry, 45(4), 707-719.
- Bruening, Benjamin. 2014b. Precede-and-command revisited. Language, 90(2), 342-388.
- Bruening, Benjamin. 2018. Double object constructions and prepositional dative constructions are distinct: A reply to Ormazabal and Romero 2012. *Linguistic Inquiry*, **49**(1), 123–150.
- Bury, Dirk. 2003. Phrase structure and derived heads. Ph.D. thesis, University College London.
- Burzio, Luigi. 1986. *Italian syntax: A government-binding approach*. Vol. 1. Springer Science & Business Media.
- Cable, Seth. 2010. *The grammar of Q: Q-particles, wh-movement, and pied-piping.* Oxford: Oxford University Press.
- Cable, Seth. 2012. The optionality of movement and EPP in Dholuo. *Natural Language & Linguistic Theory*, **30**, 651–697.
- Camacho, José. 2006. Do Subjects have a place in Spanish? *Pages 51–66 of:* Nishida, Chiyo, & Montreuil, Jean-Pierre (eds), *New perspectives on Romance linguistics: Vol. I: Morphology, syntax, semantics, and pragmatics. Selected papers from the 35th Linguistic Symposium on Romance Languages (LSRL), Austin, Texas, February 2005.* Amsterdam: John Benjamins.
- Campos, Héctor. 1997. On subject extraction and the antiagreement effect in Romance. *Linguistic inquiry*, 92–119.
- Cardinaletti, Anna. 2004. Toward a Cartography of Subject Positions. *Page 115 of*: Rizzi, Luigi (ed), *The Structure of CP and IP: The Cartography of Syntactic Structures Volume 2.* New York: Oxford University Press.
- Chang, Henry Y. 2011. Triadic encoding in Tsou. Language and Linguistics, 12(4), 799-843.

- Chen, Victoria. 2017. A Reexamination of the Philippine-Type Voice System and its Implications for Austronesian Primary-Level Subgrouping. Ph.D. thesis, University of Hawai'i at Mānoa.
- Cheng, LL. 2006. Decomposing Bantu Relatives. *Pages 197–215 of*: Davis, Christopher, Deal, Amy Rose, & Zabbal, Youri (eds), *Proceedings of NELS 36.* Amherst, MA: Graduate Linguistics Students Association, University of Massachusetts, Amherst.
- Chomsky, Noam. 1965. Aspects of the Theory of Syntax. Cambridge, MA: MIT press.
- Chomsky, Noam. 1973. Conditions on transformations. *Pages 232–286 of:* Anderson, Stephen, & Kiparsky, Paul (eds), *A Festschrift for Morris Halle*. New York: Holt, Rinehart, and Winston.
- Chomsky, Noam. 1975. The logical structure of linguistic theory. New York: Plenum Press. Written 1955.
- Chomsky, Noam. 1977. On Wh-Movement. *In:* Culicover, Peter W, Wasow, Thomas, & Akmajian, Adrian (eds), *Formal Syntax*. New York: Academic Press.
- Chomsky, Noam. 1981. Lectures on Government and Binding. Vol. 9. Dordrecht: Foris.
- Chomsky, Noam. 1986. Barriers. Cambridge, MA: MIT Press.
- Chomsky, Noam. 1993. A minimalist program for linguistic theory. *Pages 1–52 of:* Hale, K., & Keyser, S. J. (eds), *The View from Building 20.* Cambridge, MA: MIT Press.
- Chomsky, Noam. 1995. The Minimalist Program. Cambridge, MA: MIT press.
- Chomsky, Noam. 2000. Minimalist inquiries: The framework. *Pages 89–155 of:* Martin, R. E. A. (ed), *Step by step: Essays on minimalist syntax in honor of Howard Lasnik.* Cambridge, MA: MIT press.
- Chomsky, Noam. 2001. Derivation by phase. *Pages 1–52 of:* Kenstowicz, Michael (ed), *Ken Hale: A Life in Language*. Cambridge, MA: MIT Press.
- Chomsky, Noam. 2008. On Phases. *Pages 133–166 of:* Freiden, R., Otero, C.P., & Zubizaretta, M.L. (eds), *Foundational issues in linguistic theory: Essays in honor of Jean-Roger Vergnaud.* Cambridge, MA: MIT Press.
- Chomsky, Noam. 2020. Puzzles about phases. *Pages 163–168 of:* Franco, L., & Lorusso, P. (eds), *Linguistic variation: Structure and interpretation*. Berlin: De Gruyter Mouton.
- Chomsky, Noam, & Lasnik, Howard. 1977. Filters and control. Linguistic inquiry, 8(3), 425-504.
- Chung, Sandra, & McCloskey, James. 1983. On the interpretation of certain island facts in GPSG. *Linguistic Inquiry*, **14**(4), 704–713.
- Cinque, Guglielmo. 1999. *Adverbs and functional heads: A cross-linguistic perspective*. Oxford: Oxford University Press.
- Cinque, Guglielmo, & Rizzi, Luigi. 2010. *Mapping spatial PPs: The cartography of syntactic structures, volume 6.* Oxford: Oxford University Press.
- Cole, Peter, & Hermon, Gabriella. 1998. The typology of wh-movement, wh-questions in Malay. *Syntax*, **1**(3), 221–258.
- Cole, Peter, & Hermon, Gabriella. 2005. Subject and non-subject relativization in Indonesian. *Journal of East Asian Linguistics*, **14**(1), 59–88.

- Cole, Peter, Hermon, Gabriella, & Tjung, Yassir Nasanius. 2005. How irregular is WH in situ in Indonesian? *Studies in Language*, **29**(3), 553–581.
- Cole, Peter, Hermon, Gabriella, & Aman, Norhaida. 2008. Headless relative clauses and wh questions in Singapore Malay. *Page 201–212 of:* Uyechi, Linda Ann, & Wee, Lian-Hee (eds), *Reality, Exploration, and Discovery: Pattern interaction in language and life.* Stanford, CA: CSLI Publications.
- Collins, Chris. 1996. Local economy. Cambridge, MA: MIT Press.
- Collins, Chris. 2005. A smuggling approach to the passive in English. Syntax, 8(2), 81-120.
- Collins, Chris, & Thráinsson, Höskuldur. 1996. VP-internal structure and object shift in Icelandic. *Linguistic inquiry*, 391–444.
- Collins, Christopher, & Thráinsson, Höskuldur. 1993. Object shift in double object constructions and the theory of Case. *Pages 131–174 of:* Phillips, Collin (ed), *Papers on Case and Agreement II: MIT Working Papers in Linguistics 19.* Massachusetts Institute of Technology Department of Linguistics and Philosophy.
- Coon, Jessica. 2009. Interrogative possessors and the problem with pied-piping in Chol. *Linguistic Inquiry*, **40**(1), 165–175.
- Coon, Jessica, & Bale, Alan. 2014. The interaction of person and number in Mi'gmaq. *Nordlyd*, **40**, 85–101.
- Coon, Jessica, & Keine, Stefan. 2021. Feature gluttony. Linguistic inquiry, 52(4), 655–710.
- Coon, Jessica, Pedro, Pedro Mateo, & Preminger, Omer. 2014. The role of case in A-bar extraction asymmetries: Evidence from Mayan. *Linguistic Variation*, **14**(2), 179–242.
- Coon, Jessica, Baier, Nico, & Levin, Theodore. 2021. Mayan agent focus and the ergative extraction constraint: Facts and fictions revisited. *Language*, **97**(2), 269–332.
- Coopmans, Peter. 1989. Where stylistic and syntactic processes meet: Locative inversion in English. *Language*, 728–751.
- Crouch, Sophie Elizabeth. 2009. *Voice and verb morphology in Minangkabau, a language of West Sumatra, Indonesia.* Ph.D. thesis, The University of Western Australia.
- Culicover, Peter. 1991. Polarity, inversion, and focus in English. *Pages 46–68 of: Proceedings of ESCOL*, vol. 8. Department of Linguistics, The Ohio State University.
- Culicover, Peter W, & Levine, Robert D. 2001. Stylistic inversion in English: A reconsideration. *Natural Language & Linguistic Theory*, **19**(2), 283–310.
- Davies, William D. 2000. Against long movement in Madurese. *Page 33–48 of: Proceedings of AFLA*, vol. 7. Amsterdam: Vrije Universiteit Amsterdam, Department of Linguistics.
- Davies, William D. 2003. Extreme locality in Madurese wh-questions. Syntax, 6(3), 237–259.
- Davies, William D, & Dubinsky, Stanley. 2001. Functional architecture and the distribution of subject properties. *Pages 247–279 of:* Davies, William D, & Dubinsky, Stanley (eds), *Objects and other subjects: Grammatical functions, functional categories and configurationality.* Springer.

- Davies, William D, & Kurniawan, Eri. 2013. Movement and Locality in Sundanese Wh-Questions. *Syntax*, **16**(2), 111–147.
- Davison, Alice. 2004. Structural case, lexical case and the verbal projection. *Pages 199–225 of: Clause structure in South Asian languages*. Springer.
- De Guzman, Videa P. 1988. Ergative analysis for Philippine languages: An analysis. *Studies in Austronesian linguistics*, **76**, 323–346.
- Deal, Amy Rose. 2009. The origin and content of expletives: Evidence from "selection". *Syntax*, **12**(4), 285–323.
- Deal, Amy Rose. 2015. Interaction and satisfaction in φ -agreement. Pages 179–192 of: Proceedings of NELS, vol. 45.
- Deal, Amy Rose. 2017. Covert hyperraising to object. *Pages 257–270 of*: Lamont, A., & Tetzloff, K. (eds), *Proceedings of the 47th Annual Meeting of the North East Linguistic Society.* Amherst, MA: University of Massachusetts Graduate Linguistics Students Association.
- Den Besten, Hans. 1983. On the interaction of root transformations and lexical deletive rules. *Pages* 47–131 of: Abraham, Werner (ed), *On the formal syntax of the Westgermania*. Amsterdam: John Benjamins.
- Den Dikken, Marcel. 2006. Relators and linkers. Cambridge, MA: MIT press.
- den Dikken, Marcel, & Griffiths, James. 2018. *Ellipsis and spec-head agreement*. Ms. Hungarian Academy of the Sciences and Leiden University Centre for Linguistics.
- Diercks, Michael. 2009. Subject extraction and (so-called) anti-agreement effects in Lubukusu: A Criterial Freezing approach. *Pages 55–69 of: Proceedings from the Annual Meeting of the Chicago Linguistic Society, Volume 45.* Chicago: Chicago Linguistic Society.
- Diesing, Molly, & Jelinek, Eloise. 1995. Distributing arguments. *Natural language semantics*, **3**(2), 123–176.
- Dobrovie-Sorin, Carmen. 1994. The syntax of Romanian. Berlin: Mouton de Gruyter.
- Doherty, Cathal. 1993. *Clauses without that: the case for bare sentential complementation in English.* Ph.D. thesis, University of California, Santa Cruz.
- Doherty, Cathal. 2000. *Clauses without that: the case for bare sentential complementation in English.* Princeton: Garland Publishing.
- Doliana, Aaron. 2022. Wh quantifier float in German. Syntax, 25(3), 335–378.
- Drummond, Alex, & Kush, Dave. 2015. "Reanalysis" is Raising to Object. Syntax, 18(4), 425-463.
- Embick, David. 2010. Localism versus globalism in morphology and phonology. Cambridge, MA: MIT Press.
- Embick, David, & Noyer, Rolf. 2001. Movement operations after syntax. *Linguistic Inquiry*, **32**(4), 555–595.
- Emonds, Joseph E. 1976. A transformational approach to English syntax: Root, structure-preserving, and local transformations. New York: Academic Press.

- Erlewine, Michael Yoshitaka. 2016. Anti-locality and optimality in Kaqchikel Agent Focus. *Natural Language & Linguistic Theory*, **34**, 429–479.
- Erlewine, Michael Yoshitaka. 2018. Extraction and licensing in Toba Batak. Language, 94(3), 662-697.
- Erlewine, Michael Yoshitaka. 2020. Anti-locality and subject extraction. *Glossa: a journal of general linguistics*, **5**(1), 1–38.
- Erlewine, Michael Yoshitaka, & Levin, Theodore. 2021. Philippine clitic pronouns and the lower phase edge. *Linguistic Inquiry*, **52**(2), 408–425.
- Erlewine, Michael Yoshitaka, & Lim, Cheryl. 2023. Bikol clefts and topics and the Austronesian extraction restriction. *Natural Language & Linguistic Theory*, **41**(3), 911–960.
- Erlewine, Mitcho, & Sommerlot, Carly. To Appear. Voice and Extraction in Malayic. JEAL.
- Ershova, Ksenia Alexeyevna. 2019. *Syntactic ergativity in West Circassian*. Ph.D. thesis, The University of Chicago.
- Esser, S.J. 1938. Atlas van tropisch Nederland. Amsterdam: Nederlandsch Aardrijkskundig Genootschap.
- Ewing, Caleb. 2022. *Pied-Piping and Wh-Movement: A Syntactic Analysis and Comparison of Kaqchikel and K'iche'*. Ph.D. thesis, University of Florida.
- Fagan, Sarah MB. 1988. The English middle. Linguistic inquiry, 181-203.
- Fanselow, Gisbert. 2002. Quirky subjects and other specifiers. *Pages 227–250 of:* Kaufmann, Ingrid, & Stiebels, Barbara (eds), *More than words*. Berlin: Akademie Verlag.
- Fanselow, Gisbert. 2004. Münchhausen-style head movement and the analysis of verb second. *Pages 9–49 of:* Vogel, Ralf (ed), *Three papers on German verb movement*. Linguistics Department, University of Potsdam.
- Fanselow, Gisbert. 2009. Bootstrapping verb movement and the clausal architecture of German (and other languages). *Pages 85–118 of:* Alexiadou, Artemis (ed), *Advances in comparative Germanic syntax*. Amsterdam: John Benjamins.
- Fanselow, Gisbert, & Ćavar, Damir. 2003. Distributed deletion. *Pages 65–107 of: Theoretical approaches to universals*. John Benjamins Publishing Company.
- Ferreira, Marcelo. 2004. Hyperraising and null subjects in Brazilian Portuguese. *MIT Working Papers in Linguistics*, **47**, 57–85.
- Ferreira, Marcelo. 2009. Null subjects and finite control in Brazilian Portuguese. *Pages 17–49 of:* Nunes, Jairo (ed), *Minimalist essays on Brazilian Portuguese syntax*. Amsterdam: John Benjamins.
- Ferreira, Marcelo Barra. 2000. *Argumentos nulos em português brasileiro*. MA Thesis, Campinas, Brazil: Universidade Estadual de Campinas.
- Finer, Daniel. 1994. On the nature of two Ā-positions in Selayarese. *Pages 153–183 of:* Corver, Norbert, & van Riemsdijk, Henk (eds), *Studies on scrambling: Movement and non-movement approaches to free word-order phenomena.* Mouton de Gruyter.
- Finer, Daniel. 1997. Contrasting Ā-dependencies in Selayarese. *Natural Language & Linguistic Theory*, **15**(4), 677–728.

- Finer, Daniel. 1998. Sulawesi relatives, V-raising, and the CP-complement hypothesis. *Canadian Journal of Linguistics/Revue canadienne de linguistique*, **43**(3-4), 283–306.
- Finer, Daniel. 1999. Cyclic clitics in Selayarese. *Pages 137–159 of:* Smallwood, Carolyn, & Kitto, Catherine (eds), *Proceedings of AFLA VI.* Toronto Working Papers in Linguistics, vol. 16. Toronto, Ontario: University of Toronto Department of Linguistics.
- Finer, Daniel. 2003. Phases and movement in Selayarese. Pages 157-69 of: Proceedings of AFLA, vol. 8.
- Fitzpatrick, Justin Michael. 2006. *The syntactic and semantic roots of floating quantification*. Ph.D. thesis, Massachusetts Institute of Technology.
- Fong, Suzana. 2019. Proper movement through Spec-CP: An argument from hyperraising in Mongolian. *Glossa: a journal of general linguistics*, **4**(1).
- Fortin, Catherine R. 2007. Verb Phrase Ellipsis in Indonesian. WECOL 2007, 44.
- Fox, Danny. 1999. Reconstruction, binding theory, and the interpretation of chains. *Linguistic inquiry*, **30**(2), 157–196.
- Fox, Danny, & Nissenbaum, Jon. 2004. Condition A and scope reconstruction. *Linguistic Inquiry*, **35**(3), 475–485.
- Frank, Robert, Lee, Young-Suk, & Rambow, Owen. 1996. Scrambling, reconstruction and subject binding. *Rivista di grammatica generativa*, **21**(1), 67–106.
- Franks, Steven. 1995. Parameters of Slavic morphosyntax. Oxford: Oxford University Press.
- Friberg, Barbara. 1996. Konjo's peripatetic person markers. *Pacific Linguistics. Series A. Occasional Papers*, **84**, 137–171.
- Friberg, Barbara, & Jerniati. 2000. Mandar Conversations. Makassar: Balai Bahasa Sulawesi Selatan.
- Fukui, Naoki. 1997. Attract and the A-over-A Principle. UCI working papers in linguistics, 3, 51-67.
- Fukui, Naoki. 1999. An A-over-A perspective on locality. *Page 109–129 of:* Muraki, Masatake, & Iwamoto, Enoch (eds), *Linguistics: In search of the human mind—A festschrift for Kazuko Inoue*. Tokyo: Kaitakusha.
- Fukui, Naoki, & Speas, Margaret. 1986. Specifiers and projection. *MIT working papers in linguistics*, **8**(72–128).
- Georgi, Doreen. 2014. *Opaque interactions of Merge and Agree: On the nature and order of elementary operations.* Ph.D. thesis, Verlag nicht ermittelbar.
- Georgi, Doreen, & Hein, Johannes. 2024. Fiorentino antiagreement does not support a skipping derivation for subject extraction: Suñer 1992 revisited. *Page 149–178 of:* Fischer, Silke, Georgi, Doreen, Heck, Fabian, Hein, Johannes, Himmelreich, Anke, Murphy, Andrew, & Weisser, Philipp (eds), *Strict Cycling*. Leipzig: University of Leipzig Press.
- Georgi, Doreen, & Müller, Gereon. 2010. Noun-Phrase Structure by Reprojection. Syntax, 13(1), 1-36.
- Gerassimova, Veronica, & Sells, Peter. 2008. Long-distance dependencies in Tagalog: The case for raising. *Pages 190–198 of: Proceedings of the 26th west coast conference on formal linguistics*. Cascadilla Proceedings Project.

- Gerdts, Donna B. 1988. Antipassives and causatives in Ilokano: Evidence for an ergative analysis. *Pages 295–321 of:* McGinn, R. (ed), *Studies in Austronesian linguistics*. Athens: Ohio University Press.
- Giorgi, Alessandra, & Pianesi, Fabio. 1997. *Tense and aspect: From semantics to morphosyntax*. Oxford University Press.
- Gong, Zhiyu Mia. 2023. A/Ā-Operations at the Mongolian Clausal Periphery. *Journal of East Asian Linguistics*, **32**(4), 413–457.
- Goodall, Grant. 2001. The EPP in Spanish. *Page 193–223 of:* Davis, W., & Dubinsky, S. (eds), *Objects and other subjects*. Dordrecht: Kluwer.
- Grewendorf, Günther, & Sabel, Joachim. 1999. Scrambling in German and Japanese: Adjunction versus multiple specifiers. *Natural Language & Linguistic Theory*, **17**(1), 1–65.
- Grimes, Charles E, & Grimes, Barbara D. 1987. *Languages of South Sulawesi*. Canberra: Departmentaust of Linguistics, Research School of Pacific Studies, The Australian National University.
- Grimshaw, Jane. 1991. Extended Projection. MS; Brandeis University.
- Grimshaw, Jane. 1997. Projection, heads, and optimality. Linguistic inquiry, 373-422.
- Groat, Erich M. 1995. English expletives: A minimalist approach. Linguistic inquiry, 354-365.
- Groenendijk, Jeroen Antonius Gerardus, & Stokhof, Martin Johan Bastiaan. 1984. *Studies on the Semantics of Questions and the Pragmatics of Answers*. Ph.D. thesis, University of Amsterdam.
- Grohmann, Kleanthes. 2003. *Prolific Domains: On the Anti-Locality of Movement Dependencies*. Amsterdam: John Benjamins.
- Guilfoyle, Eithne, Hung, Henrietta, & Travis, Lisa. 1992. Spec of IP and Spec of VP: Two subjects in Austronesian languages. *Natural Language & Linguistic Theory*, **10**, 375–414.
- Gutiérrez-Bravo, Rodrigo. 2007. Prominence scales and unmarked word order in Spanish. *Natural Language & Linguistic Theory*, **25**(2), 235–271.
- Halle, Morris, & Marantz, Alec. 1993. Distributed morphology and the pieces of inflection. *Pages 111–176 of:* Hale, K., & Keyser, S. J. (eds), *The View from Building 20.* Cambridge, MA: MIT Press.
- Halpert, Claire. 2012. Argument licensing and agreement in Zulu. Ph.D. thesis, Massachusetts Institute of Technology.
- Halpert, Claire. 2019. Raising, unphased. Natural Language & Linguistic Theory, 37(1), 123-165.
- Hankamer, Jorge. 1979. Deletion in coordinate structures. Garland.
- Harizanov, Boris. 2014. Clitic doubling at the syntax-morphophonology interface: A-movement and morphological merger in Bulgarian. *Natural Language & Linguistic Theory*, **32**, 1033–1088.
- Harizanov, Boris. 2019. Head movement to specifier positions. *Glossa: a journal of general linguistics*, **4**(1).
- Harizanov, Boris, & Gribanova, Vera. 2019. Whither head movement? *Natural Language & Linguistic Theory*, **37**, 461–522.

- Harley, Heidi. 2002. Possession and the double object construction. *Linguistic variation yearbook*, **2**(1), 31–70.
- Harley, Heidi, & Jung, Hyun Kyoung. 2015. In support of the P have analysis of the double object construction. *Linguistic inquiry*, **46**(4), 703–730.
- Harley, Heidi, & Miyagawa, Shigeru. 2017. Syntax of ditransitives. *In: Oxford research encyclopedia of linguistics*. Oxford: Oxford University Press.
- Harley, Heidi, & Ritter, Elizabeth. 2002. Person and number in pronouns: A feature-geometric analysis. *Language*, 482–526.
- Harwood, William. 2015. Being progressive is just a phase: Celebrating the uniqueness of progressive aspect under a phase-based analysis. *Natural Language & Linguistic Theory*, **33**, 523–573.
- Hazout, Ilan. 2004. The syntax of existential constructions. Linguistic Inquiry, 35(3), 393-430.
- Heck, Fabian. 2009. On certain properties of pied-piping. Linguistic Inquiry, 40(1), 75-111.
- Heck, Fabian, & Müller, Gereon. 2007. Extremely local optimization. *Pages 170–183 of: Proceedings of WECOL*, vol. 26.
- Hedding, Andrew A. 2022. *How to move a focus: The syntax of alternative particles.* Ph.D. thesis, University of California, Santa Cruz.
- Hedding, Andrew A. 2024. Rethinking Best Match Using Movement. *Pages 156–165 of: 39th West Coast Conference on Formal Linguistics*. Cascadilla Proceedings Project.
- Henderson, Brent. 2013. Agreement and person in anti-agreement. *Natural Language & Linguistic Theory*, **31**, 453–481.
- Henderson, Brent Mykel. 2006. *The syntax and typology of Bantu relative clauses*. Ph.D. thesis, University of Illinois at Urbana-Champaign.
- Henry, Alison. 2012. Phase edges, quantifier float and the nature of (micro-) variation. *Iberia: An International Journal of Theoretical Linguistics*, **4**(2), 23–39.
- Hewett, Matthew. 2025. The (lack of) Case for A-Movement. Unpublished ms.
- Hewett, Matthew Russell. 2023. *Types of resumptive Ā-dependencies*. Ph.D. thesis, The University of Chicago.
- Hoekstra, Jarich, & Marácz, László. 1989. Some implications of I-to-C-movement in Frisian. *Working Papers in Scandinavian Syntax*, **44**, 75–88.
- Holmberg, Anders. 1991. Head Scrambling. Paper, presented at the 1991 GLOW Colloquium. Leiden.
- Holmberg, Anders, & Hróarsdóttir, Thorbjörg. 2003. Agreement and movement in Icelandic raising constructions. *Lingua*, **113**(10), 997–1019.
- Holmberg, Anders, Sheehan, Michelle, & Van der Wal, Jenneke. 2019. Movement from the double object construction is not fully symmetrical. *Linguistic Inquiry*, **50**(4), 677–722.
- Hornstein, Norbert. 2009. *A theory of syntax: Minimal operations and universal grammar.* Cambridge: Cambridge University Press.

- Hornstein, Norbert, & Weinberg, Amy. 1981. Case theory and preposition stranding. *Linguistic Inquiry*, **12**(1), 55–91.
- Horrocks, Geoffrey, & Stavrou, Melita. 1987. Bounding theory and Greek syntax: Evidence for whmovement in NP. *Journal of linguistics*, **23**(1), 79–108.
- Horvath, Julia. 2007. Separating "focus movement" from focus. *Pages 108–145 of:* Karimi, S., Samiian, V., & Wilkins, W. K. (eds), *Phrasal and clausal architecture: Syntactic derivation and interpretation. In honor of Joseph E. Emonds.* Amsterdam: John Benjamins.
- Hsieh, Henrison. 2020. *Beyond Nominative: A Broader View of A'-Dependencies in Tagalog*. Ph.D. thesis, McGill University (Canada).
- Hsu, Brian. 2017. Verb second and its deviations: An argument for feature scattering in the left periphery. *Glossa: a journal of general linguistics*, **2**(1).
- Hsu, Brian. 2021. Coalescence: A unification of bundling operations in syntax. *Linguistic Inquiry*, **52**(1), 39–87.
- Itô, Junko, & Mester, Armin. 2007. Prosodic adjunction in Japanese compounds. *Pages 97–111 of:* Miyamoto, Y., & Ochi, M. (eds), *Formal Approaches to Japanese Linguistics*. Cambridge, MA: MIT Working Papers in Linguistics.
- Itô, Junko, & Mester, Armin. 2009. The extended prosodic word. *Pages 135–194 of:* Grijzenhout, Janet, & Kabak, Barış (eds), *Phonological domains: Universals and deviations.* Berlin: Mouton de Gruyter.
- Itô, Junko, & Mester, Armin. 2012. Recursive prosodic phrasing in Japanese. *Page 280–303 of*: Borowsky, Toni, Kawahara, Shigeto, Shinya, Takahito, & Sugahara, Mariko (eds), *Prosody matters: Essays in honor of Elisabeth Selkirk*. London: Equinox.
- Itô, Junko, & Mester, Armin. 2013. Prosodic subcategories in Japanese. Lingua, 124, 20-40.
- Itô, Junko, & Mester, Armin. 2019. Match as Syntax-Prosody MAX/DEP: Prosodic Enclisis in English. *English linguistics*, **36**(1), 1–28.
- Jackendoff, Ray. 1996. The architecture of the linguistic-spatial interface. *Pages 1–30 of:* Bloom, P., Peterson, M.A., Nadel, L., & Garrett, M.F. (eds), *Language and Space*. Cambridge, MA: MIT Press.
- Jackendoff, Ray S. 1990. Semantic structures. Vol. 18. MIT press.
- Jeoung, Helen N. 2018. *Optional elements in Indonesian morphosyntax*. Ph.D. thesis, University of Pennsylvania.
- Johnson, Kyle. 1991. Object positions. Natural Language & Linguistic Theory, 9(4), 577-636.
- Johnson, Kyle. 2009. Gapping is not (VP-) ellipsis. Linguistic inquiry, 40(2), 289–328.
- Jonas, Dianne, & Bobaljik, Jonathan David. 1993. Specs for subjects: The role of TP in Icelandic. *MIT working papers in linguistics*, **18**, 59–98.
- Jukes, Anthony. 2006. *Makassarese (basa Mangkasara'): A description of an Austronesian language of South Sulawesi*. Ph.D. thesis, The University of Melbourne.
- Kalin, Laura, & Van Urk, Coppe. 2015. Aspect splits without ergativity: Agreement asymmetries in Neo-Aramaic. *Natural language & Linguistic theory*, **33**, 659–702.

- Kaufman, Daniel. 2008. South Sulawesi pronominal clitics: Form, function and position. *Studies in Philippine languages and cultures*, **17**, 13–65.
- Kayne, Richard. 1984. Connectedness and binary branching. Dordrecht: Foris.
- Kayne, Richard S. 1980. Extensions of binding and case-marking. Linguistic Inquiry, 11(1), 75–96.
- Kayne, Richard S. 1983. Chains, categories external to S, and French complex inversion. *Natural Language & Linguistic Theory*, 107–139.
- Kayne, Richard S. 1999. Prepositional complementizers as attractors. *Probus*, 11, 39-73.
- Kayne, Richard S. 2004. Prepositions as probes. *Pages 192–212 of:* Belletti, A. (ed), *Structures and beyond: The cartography of syntactic structures*, vol. 3. New York: Oxford University Press.
- Keenan, Edward L. 1972. Relative clause formation in Malagasy. *The Chicago which hunt*, **169**(89), 348–371.
- Keenan, Edward L. 1976. Towards a Universal Definition of "Subject". *Pages 303–333 of:* Li, Charles N, & Thompson, Sandra A. (eds), *Subject and Topic*. New York: Academic Press.
- Keenan, Edward L. 2008. Voice and relativization without movement in Malagasy. *Natural Language & Linguistic Theory*, **26**, 467–497.
- Keine, Stefan. 2017. Agreement and vP phases. *Pages 177–185 of:* LaCara, Nicholas, Moulton, Keir, & Tessier, Anne-Michelle (eds), *A schrift to fest Kyle Johnson*, vol. 1. Amherst, MA: Linguistics Open Access Publications.
- Keine, Stefan. 2020. Probes and their horizons. MIT Press.
- Keine, Stefan, & Bhatt, Rajesh. 2025. Crossover asymmetries. Syntactic Theory and Research, 1(1).
- Kenstowicz, Michael. 1984. The null subject parameter in modern Arabic dialects. *Pages 207–219 of:* Jones, Charles, & Sells, Peter (eds), *Proceedings of NELS 14.* Amherst, MA: Graduate Linguistics Student Association.
- Kim, Jooyoung, Cole, Peter, Hermon, Gabriella, & Sumartini, Pande Made. 2019. Balinese and other Whin-situ languages. *Pages 31–41 of:* Pearson, Matt (ed), *Papers from the Austronesian Formal Linguistics Association 24.*
- King, Ruth. 2000. The lexical basis of grammatical borrowing: A Case Study of Prince Edward Island French. Amsterdam: John Benjamins.
- King, Ruth, & Roberge, Yves. 1990. Preposition stranding in Prince Edward Island French. *Probus*, **3**, 351–369.
- Kitahara, Hisatsugu. 1997. *Elementary operations and optimal derivations*. Ph.D. thesis, Massachusetts Institute of Technology.
- Ko, Heejeong. 2014. *Edges in syntax: Scrambling and cyclic linearization*. Vol. 50. Oxford: Oxford University Press.
- Kobayashi, Filipe Hisao. 2020. *Proper interleaving of A-& A'-movement: A Brazilian Portuguese case study.* Manuscript. Available at https://lingbuzz.net/lingbuzz/005609.

Koeneman, Olaf. 2000. *The flexible nature of verb movement*. Ph.D. thesis, Netherlands Graduate School of Linguistics.

Koopman, Hilda. 1983. ECP effects in main clauses. Linguistic Inquiry, 14(2), 346-350.

Koopman, Hilda. 2010. On dutch allemaal and west ulster english all. *Pages 267–276 of:* Zwart, Jan-Wouter, & de Vries, Mark (eds), *Structure preserved: Studies in syntax for Jan Koster*. Amsterdam: John Benjamins.

Koopman, Hilda, & Sportiche, Dominique. 1988. Subjects. Unpublished manuscript.

Koopman, Hilda Judith. 1984. The syntax of verbs: From verb movement rules in the Kru languages to Universal Grammar. Dordrecht: Foris.

Kracht, Marcus. 2002. On the semantics of locatives. Linguistics and philosophy, 25(2), 157-232.

Kracht, Marcus. 2008. The fine structure of spatial expressions. *Pages 35–62 of:* Asbury, A., Dotlačil, J., Gehrke, B., & Nouwen, R. (eds), *Syntax and semantics of spatial P.* Amsterdam: John Benjamins.

Kramer, Ruth. 2014. Clitic doubling or object agreement: The view from Amharic. *Natural Language & Linguistic Theory*, **32**, 593–634.

Kratzer, Angelika. 1996. Severing the external argument from its verb. *Pages 109–137 of:* Rooryck, Johan, & Zaring, Laurie (eds), *Phrase structure and the lexicon*. Dordrecht: Kluwer.

Kroeger, Paul. 1993. *Phrase structure and grammatical relations in Tagalog*. Ph.D. thesis, Stanford University.

Laka, Itziar. 1993. Unergatives that assign ergative, unaccusatives that assign accusative. *Pages 149–172 of:* Bobaljik, Jonathan, & Phillips, Collin (eds), *Papers on case and agreement 1 (MIT working papers in linguistics 18).* Cambridge, MA: MIT Press.

Landau, Idan. 2009. The locative syntax of experiencers. MIT press.

Larson, Richard K. 1988. On the double object construction. Linguistic inquiry, 19(3), 335-391.

Larson, Richard K. 2014. On shell structure. New York: Routledge.

Laskowske, Douglas. 2016. Voice in Bugis: an RRG perspective. MA Thesis, University of North Dakota.

Lasnik, Howard. 1992. Case and expletives: Notes toward a parametric account. *Linguistic inquiry*, **23**(3), 381–405.

Lasnik, Howard. 1995. Case and expletives revisited: On Greed and other human failings. *Linguistic Inquiry*, 615–633.

Lasnik, Howard. 1999a. Chains of arguments. *Pages 189–215 of:* Epstein, S., & Hornstein, N. (eds), *Working Minimalism.* Cambridge, MA: MIT Press.

Lasnik, Howard. 1999b. Minimalist Analysis. Oxford: Blackwell.

Lasnik, Howard, & Saito, Mamoru. 1992. Move alpha: Conditions on its application and output. Cambridge, MA: MIT press.

- Law, Paul. 1998. A unified analysis of P-stranding in Romance and Germanic. *Pages 219–234 of:* Tamanji, Pius, & Kusumoto, Kiyomi (eds), *Proceedings of the North Eastern Linguistic Society 28*, vol. 28. Amherst, MA: University of Massachusetts Graduate Linguistics Students Association.
- Law, Paul. 2006. Preposition stranding. The Blackwell companion to syntax, 631-684.
- Lebeaux, David. 1991. Relative clauses, licensing, and the nature of the derivation. *Pages 209–239 of: Perspectives on phrase structure: Heads and licensing.* Brill.
- Lee, Tommy Tsz-Ming, & Yip, Ka-Fai. 2024. Hyperraising, evidentiality, and phase deactivation. *Natural Language & Linguistic Theory*, 1–52.
- Legate, Julie Anne. 2006. Split absolutive. *Pages 143–171 of*: Johns, Alana, Massam, Diane, & Ndayiragije, Juvenal (eds), *Ergativity*. Dordrecht: Springer.
- Legate, Julie Anne. 2008. Morphological and abstract case. Linguistic inquiry, 39(1), 55-101.
- Legate, Julie Anne. 2014. Voice and v: Lessons from Acehnese. Vol. 69. MIT Press.
- Levin, Juliette, & Massam, Diane. 1985. Surface ergativity: Case/theta relations reexamined. *In:* Berman, S. (ed), *Proceedings of the 45th Meeting of the North East Linguistic Society (NELS 15)*, vol. 15.
- Liao, Hsiu-chuan. 2004. *Transitivity and ergativity in Formosan and Philippine languages*. Ph.D. thesis, University of Hawai'i at Manoa.
- Longenbaugh, Nicholas. 2019. *On expletives and the agreement-movement correlation.* Ph.D. thesis, Massachusetts Institute of Technology.
- Longobardi, Giuseppe. 1994. Reference and proper names: A theory of N-movement in syntax and logical form. *Linguistic inquiry*, 609–665.
- Mahajan, Anoop Kumar. 1989. *The A/A-bar distinction and movement theory*. Ph.D. thesis, Massachusetts Institute of Technology.
- Manetta, Emily. 2011. *Peripheries in Kashmiri and Hindi-Urdu: The Syntax of Discourse-Driven Movement*. Philadelphia: John Benjamins.
- Manning, Christopher D. 1996. *Ergativity: Argument structure and grammatical relations*. Ph.D. thesis, Stanford University.
- Marantz, Alec. 2013. Locality Domains for Contextual Allomorphy across the. *Pages 95–116 of:* Matushansky, Ora, & Marantz, Alec (eds), *Distributed Morphology Today: Morphemes for Morris Halle.* Cambridge, MA: MIT press.
- Martinović, Martina. 2015. Feature geometry and head-splitting: Evidence from the morphosyntax of the Wolof clausal periphery. Ph.D. thesis, The University of Chicago.
- Martinović, Martina. 2022. Feature geometry and head splitting in the Wolof clausal periphery. *Linguistic Inquiry*, **54**(1), 79–116.
- Martins, AM, & Nunes, Jairo. 2009. Syntactic change as chain reaction: the emergence of hyper-raising. *Pages 144–157 of:* Crisma, P., & Longobardi, G. (eds), *Historical Syntax and Linguistic Theory*. Oxford: Oxford University Press.

- Martins, Ana Maria, & Nunes, Jairo. 2005. Raising issues in Brazilian and European Portuguese. *Journal of Portuguese Linguistics*, **4**(2).
- Martins, Ana Maria, & Nunes, Jairo. 2010. Apparent hyper-raising in Brazilian Portuguese: Agreement with topics across a finite CP. *Pages 143–163 of:* Panagiotidis, E.P. (ed), *The complementizer phase: Subjects and operators*. Oxford: Oxford University Press.
- Massam, Diane. 2001. Pseudo noun incorporation in Niuean. *Natural Language & Linguistic Theory*, **19**(1), 153–197.
- Masullo, Pascual J. 1992. Quirky datives in Spanish and the non-nominative subject parameter. *In:* Kathol, Andrea, & Beckmann, Jill (eds), *Proceedings of 4th Meeting of SCIL; MIT Working Papers in Linguistics 16.* MIT Press Cambridge, MA.
- Matti, David F. 1994. Mamasa pronoun sets. Studies in Sulawesi Linguistics, 3, 65-89.
- Matushansky, Ora. 2006. Head movement in linguistic theory. Linguistic inquiry, 37(1), 69-109.
- May, Robert. 1979. Must COMP-to-COMP movement be stipulated? Linguistic Inquiry, 10(4), 719-725.
- McCloskey, James. 1990. Resumptive pronouns, Ā-binding, and levels of representations in Irish. *Page* 199–248 of: Hendrick, Randall (ed), *The Syntax of the Modern Celtic Languages*. New York: Academic Press.
- McCloskey, James. 1991. There, it, and agreement. Linguistic inquiry, 22(3), 563-567.
- McCloskey, James. 2000. Quantifier float and wh-movement in an Irish English. *Linguistic Inquiry*, **31**(1), 57–84.
- McCloskey, James. 2017a. Ellipsis, polarity, and the cartography of verb-initial orders in Irish. *Pages 99–151 of:* Aboh, Enoch, Haeberli, Eric, Puskás, Genoveva, & Schøonenberger, Manuela (eds), *Elements of comparative syntax: Theory and description*. Berlin: De Gruyter.
- McCloskey, Jim. 1997. Subjecthood and subject positions. *Pages 197–235 of:* Haegeman, Lillian (ed), *Elements of grammar: Handbook in generative syntax.* Dordrecht: Kluwer.
- McCloskey, Jim. 2017b. Object positions (in Irish). *Pages 255–270 of:* LaCara, Nicholas, Moulton, Keir, & Tessier, Anne-Michelle (eds), *A schrift to fest Kyle Johnson*. Amherst, MA: Linguistics Open Access Publications.
- McGinnis, Martha. 1998. Locality in A-movement. Ph.D. thesis, Massachusetts Institute of Technology.
- McInnerney, Andrew. 2022. *The argument/adjunct distinction and the structure of prepositional phrases*. Ph.D. thesis, University of Michigan.
- Mead, David E. 1998. Proto-Bungku-Tolaki: Reconstruction of its phonology and aspects of its morphosyntax. Ph.D. thesis, Rice University.
- Merchant, Jason. 1996. Object scrambling and quantifier float in German. *Pages 179–194 of: Proceedings of NELS*, vol. 26. Amherst, MA: University of Massachusetts Graduate Linguistics Students Association.
- Merchant, Jason. 2013. Voice and ellipsis. Linguistic Inquiry, 44(1), 77–108.

- Merchant, Jason. 2015. How much context is enough? Two cases of span-conditioned stem allomorphy. *Linguistic Inquiry*, **46**(2), 273–303.
- Merchant, Jason. 2019. Roots don't select, categorial heads do: Lexical-selection of PPs may vary by category. *The Linguistic Review*, **36**(3), 325–341.
- Messick, Troy. 2020. The derivation of highest subject questions and the nature of the EPP. *Glossa: a journal of general linguistics*, **5**(1).
- Middleton, John. 2024. Reassessing pseudosluicing in Austronesian. Syntax.
- Mills, Roger F. 1975. *Proto South Sulawesi and Proto Austronesian Phonology*. Ph.D. thesis, University of Michigan.
- Miyagawa, Shigeru. 1997. Against optional scrambling. Linguistic inquiry, 1-25.
- Miyagawa, Shigeru. 2001. The EPP, scrambling, and wh-in-situ. *Current Studies in Linguistics Series*, **36**, 293–338.
- Müller, Gereon. 1998. Incomplete category fronting. Dordrecht: Springer.
- Müller, Gereon. 2011. Constraints on displacement: A Phase-Based Approach. Amsterdam: John Benjamins.
- Müller, Gereon, & Sternefeld, Wolfgang. 1993. Improper movement and unambiguous binding. *Linguistic inquiry*, **24**(3), 461–507.
- Müller, Gereon, & Sternefeld, Wolfgang. 1996. Ā-chain formation and economy of derivation. *Linguistic Inquiry*, 480–511.
- Muthalib, Abdul, & Sangi, M Zain. 1991. *Puisi Kalindaqdaq Mandar*. Jakarta: Pusat Pembinaan dan Pengembangan Bahasa, Departemen Pendidikan dan Kebudayaan.
- Nevins, Andrew. 2005. Derivations without the activity condition. *Pages 287–310 of:* McGinnis, Martha, & Richards, Norvin (eds), *Perspectives on Phases, MIT Working Papers in Linguistics 49.* Cambridge, MA: MIT Press.
- Nevins, Andrew. 2011. Multiple agree with clitics: Person complementarity vs. omnivorous number. *Natural Language & Linguistic Theory*, **29**, 939–971.
- Newman, Elise. 2024. The order of operations and A/ $\bar{\rm A}$ interactions. *Natural Language & Linguistic Theory*, **42**(4), 1623–1676.
- Nie, Yining. 2020. Licensing arguments. Ph.D. thesis, New York University.
- Nissenbaum, Jonathan W. 2000. *Investigations of covert phrase movement*. Ph.D. thesis, Massachusetts Institute of Technology.
- Nomoto, Hiroki. 2013. On the optionality of grammatical markers: A case study of voice marking in Malay/Indonesian. *NUSA*, **54**, 121–143.
- Nomoto, Hiroki. 2015. Person restriction on passive agents in Malay and givenness. *Pages 83–101 of: Proceedings of the second international workshop on information structure of Austronesian languages.*

- Nunes, Jairo. 2004. Linearization of chains and sideward movement. MIT press.
- Nunes, Jairo. 2008. Inherent case as a licensing condition for A-movement: The case of hyper-raising constructions in Brazilian Portuguese. *Journal of Portuguese Linguistics*, 7(2).
- Ormazabal, Javier, & Romero, Juan. 2010. The derivation of dative alternations. *Pages 203–232 of:* Duguine, Maria, Huidobro, Susana, & Madariaga, Nerea (eds), *Argument structure and syntactic relations: A cross-linguistic perspective*. Amsterdam: John Benjamins.
- Ormazabal, Javier, & Romero, Juan. 2012. PPs without disguises: Reply to Bruening. *Linguistic inquiry*, **43**(3), 455–474.
- Ormazabal, Javier, & Romero, Juan. 2024. In the beginning was a to-phrase. *Linguistic Inquiry*, 1–30.
- Ouali, Hamid. 2006. *Unifying agreement relations: A Minimalist analysis of Berber.* Ph.D. thesis, University of Michigan.
- Ouali, Hamid. 2008. On C-to-T φ -feature transfer: The nature of Agreement and Anti-Agreement in Berber. *Pages 159–180 of:* D'Alessandro, R., Hrafnbjargarson, G.H., & Fischer, S. (eds), *Agreement restrictions*. Mouton de Gruyter Berlin.
- Ouhalla, Jamal. 1993. Subject-extraction, negation and the antiagreement effect. *Natural Language & Linguistic Theory*, **11**(3), 477–518.
- Ouhalla, Jamal. 2005. Agreement features, agreement and antiagreement. *Natural Language & Linguistic Theory*, **23**(3), 655–686.
- Oxford, Will. 2019. Inverse marking and Multiple Agree in Algonquin: Complementarity and variability. *Natural Language & Linguistic Theory*, **37**, 955–996.
- Oxford, William Robert. 2014. *Microparameters of agreement: A diachronic perspective on Algonquian verb inflection.* Ph.D. thesis, University of Toronto (Canada).
- O'Herin, Brian. 1995. Case and agreement in Abaza. Ph.D. thesis, University of California, Santa Cruz.
- Paul, Ileana. 2004. NP versus DP reflexives: Evidence from Malagasy. Oceanic Linguistics, 43, 32-48.
- Paul, Ileana, & Travis, Lisa. 2006. Ergativity in Austronesian languages. *Pages 315–335 of*: Johns, Alana, Massam, Diane, & Ndayiragije, Juvenal (eds), *Ergativity*. Dordrecht: Springer.
- Paul, Ileana M. 2000. Malagasy clause structure. Ph.D. thesis, McGill University Montreal, Canada.
- Payne, Thomas E. 1982. Role and reference related subject properties and ergativity in Yup'ik Eskimo and Tagalog. Studies in Language. International Journal sponsored by the Foundation "Foundations of Language", 6(1), 75–106.
- Pearson, Matthew. 2005. The Malagasy subject/topic as an Ā-element. *Natural Language & Linguistic Theory*, **23**(2), 381–457.
- Pelenkahu, RA, Muthalib, Abdul, & Sangi, M Zain. 1983. *Struktur Bahasa Mandar*. Jakarta: Pusat Pembinaan dan Pengembangan Bahasa, Departemen Pendidikan dan Kebudayaan.
- Perlmutter, David M. 1968. *Deep and surface structure constraints in syntax*. Ph.D. thesis, Massachusetts Institute of Technology.

- Perlmutter, David M. 1978. Impersonal passives and the unaccusative hypothesis. *Pages 157–190 of: Proceedings of the Fourth Annual meeting of the Berkeley Linguistics Society.*
- Pesetsky, David. 1982. Complementizer-trace phenomena and the nominative island condition. *The linguistic review*, **1**(3), 297–344.
- Pesetsky, David. 2019. *Exfoliation: Towards a derivational theory of clause size*. Unpublished Manuscript; Massachusetts Institute of Technology.
- Pesetsky, David, & Torrego, Esther. 2001. T-to-C movement: Causes and consequences. *Current Studies in Linguistics Series*, **36**, 355–426.
- Pesetsky, David Michael. 1996. Zero syntax: Experiencers and cascades. Cambridge, MA: MIT press.
- Platzack, Christer. 1999a. Multiple Interfaces. *In:* Nikanne, U., & van der Zee, E. (eds), *Conceptual structure and its interfaces with other modules of representation*. Oxford: Oxford University Press.
- Platzack, Christer. 1999b. The subject of Icelandic psych-verbs: A minimalistic account. *Working papers in Scandinavian syntax*, **64**, 103–115.
- Polinsky, Maria. 2016. Deconstructing ergativity: Two types of ergative languages and their features. Oxford University Press.
- Pollock, Jean-Yves. 1989. Verb movement, universal grammar, and the structure of IP. *Linguistic inquiry*, **20**(3), 365–424.
- Postal, Paul. 1971. Cross-over phenomena. New York: Holt, Rinehart, and Winston.
- Postal, Paul M. 1972. On some rules that are not successive cyclic. Linguistic Inquiry, 3(2), 211-222.
- Postal, Paul M. 2004. Skeptical linguistic essays. Oxford: Oxford University Press.
- Potsdam, Eric. 2009. Austronesian verb-initial languages and wh-question strategies. *Natural Language & Linguistic Theory*, **27**, 737–771.
- Potsdam, Eric, & Polinsky, Maria. 2012. Backward raising. Syntax, 15(1), 75–108.
- Preminger, Omer. 2011. Agreement as a fallible operation. Ph.D. thesis, Massachusetts Institute of Technology.
- Pylkkänen, Liina. 2008. Introducing arguments. Vol. 49. MIT press.
- Rackowski, Andrea. 2002. *The structure of Tagalog: Specificity, voice, and the distribution of arguments.* Ph.D. thesis, Massachusetts Institute of Technology.
- Rackowski, Andrea, & Richards, Norvin. 2005. Phase edge and extraction: A Tagalog case study. *Linguistic Inquiry*, **36**(4), 565–599.
- Radford, Andrew. 1981. Transformational syntax. Cambridge: Cambridge University Press.
- Ramchand, Gillian, & Svenonius, Peter. 2004. Prepositions and external argument demotion. *Pages 93–99 of:* Solstad, T., Lyngfelt, B., & Krave, M. F (eds), *Demoting the agent: Passive and other voice-related phenomena.* Oslo: University of Oslo.

Ramchand, Gillian, & Svenonius, Peter. 2014. Deriving the functional hierarchy. *Language sciences*, **46**, 152–174.

Ramchand, Gillian Catriona. 2008. Verb meaning and the lexicon. Cambridge University Press.

Raposo, Eduardo. 1987. Case theory and Infl-to-Comp: The inflected infinitive in European Portuguese. *Linguistic inquiry*, **18**(1), 85–109.

Rauh, Gisa. 1993. On the grammar of lexical and non-lexical prepositions in English. *Zelinskiy-Wibbelt* (eds.), 99–150.

Reid, Lawrence A, & Liao, Hsiu-chuan. 2004. A brief syntactic typology of Philippine languages. *Language and Linguistics Compass*, **5**(2), 433–90.

Reinhart, Tanya. 1983. Coreference and bound anaphora: A restatement of the anaphora questions. *Linguistics and Philosophy*, **6**(1), 47–88.

Rezac, Milan. 2003. The fine structure of cyclic Agree. Syntax, 6(2), 156-182.

Rezac, Milan. 2004. Elements of cyclic syntax: Agree and Merge. Ph.D. thesis, University of Toronto.

Řezáč, Milan. 2008. Phi-agree and theta-related case. Phi theory: Phi-features across modules and interfaces, 83–130.

Rezac, Milan. 2010. Phi-features and the modular architecture of language. Dordrecht: Springer.

Rezac, Milan. 2013. Case and licensing: Evidence from ECM+ DOC. Linguistic inquiry, 44(2), 299-319.

Richards, Norvin. 2000. Another look at Tagalog subjects. *Pages 105–116 of*: Paul, I., Philipps, V., & Travis, L. (eds), *Formal issues in Austronesian linguistics*. Springer.

Richards, Norvin. 2013. Lardil "case stacking" and the timing of case assignment. Syntax, 16(1), 42-76.

Richards, Norvin Waldemar. 1997. What moves where when in which languages? Ph.D. thesis, Massachusetts Institute of Technology.

Rivero, María Luisa. 2004. Spanish quirky subjects, person restrictions, and the Person-Case Constraint. *Linguistic Inquiry*, **35**(3), 494–502.

Rizzi, Luigi. 1982. Issues in Italian syntax. Dordrecht: Foris.

Rizzi, Luigi. 1990. Relativized minimality. Cambridge, MA: MIT Press.

Rizzi, Luigi. 1997. The fine structure of the left periphery. *Pages 281–337 of: Elements of grammar*. Springer.

Rizzi, Luigi, & Roberts, Ian. 1989. Complex inversion in French. *Diachronic and Comparative Syntax*, 296–324.

Rizzi, Luigi, & Shlonsky, Ur. 2006. Satisfying the subject criterion by a non subject: English locative inversion and heavy NP shift. *Pages 341–360 of:* Frascarelli, Maria (ed), *Phases of interpretation*. Berlin: Mouton de Gruyter.

Roberge, Yves, & Rosen, Nicole. 1999. Preposition Stranding and que-deletion in Varieties of North American French. *Linguistica atlantica*, **21**, 153–168.

- Roberts, Ian. 1987. The representation of implicit and dethematized subjects. Dordrecht: Foris.
- Rooryck, Johan. 1996. Prepositions and minimalist case-marking. *Pages 226–256 of:* Thráinsson, Höskuldur, Epstein, Samuel, & Peter, Steve (eds), *Studies in Comparative Germanic Syntax, Volume II.* Dordrecht: Kluwer.
- Rosenbaum, Peter Steven. 1965. *The grammar of English predicate complement constructions.* Cambridge, MA: MIT Press.
- Ross, John Robert. 1967. *Constraints on variables in syntax.* Ph.D. thesis, Massachusetts Institute of Technology.
- Ross, Malcolm. 1995. Some current issues in Austronesian linguistics. *Comparative Austronesian dictionary*, **1**, 45–120.
- Ross, Malcolm. 2006. Reconstructing the case-marking and personal pronoun systems of Proto Austronesian. Streams converging into an ocean: Festschrift in honor of Professor Paul Jen-kuei Li on his 70th birthday, 5, 521–563.
- Royer, Justin. 2023. Binding and Anticataphora in Mayan. Linguistic Inquiry, 1-64.
- Sabbagh, Joseph. 2014. Word order and prosodic-structure constraints in Tagalog. Syntax, 17(1), 40-89.
- Saddy, Douglas. 1991. Wh-scope mechanisms in Bahasa Indonesia. *Pages 183–218 of:* Cheng, Lisa, & Demirdash, Hamida (eds), *More Papers on Wh-Movement*, vol. 15. Cambrdige, MA: MIT Press.
- Safir, Ken. 1993. Perception, selection, and structural economy. *Natural Language Semantics*, **2**(1), 47–70.
- Safir, Ken. 2019. The A/Ā distinction as an epiphenomenon. Linguistic Inquiry, 50(2), 285-336.
- Saito, Mamoru. 1992. Long distance scrambling in Japanese. Journal of East Asian Linguistics, 1, 69-118.
- Sato, Yosuke. 2008. Minimalist interfaces: Selected issues in Indonesian and Javanese. The University of Arizona.
- Sato, Yosuke. 2024. Partial Wh-Movement in Indonesian, Criterial Freezing, and Sub-Extraction. *Canadian Journal of Linguistics/Revue canadienne de linguistique*, **69**(1), 63–89.
- Sauerland, Uli. 2003. Intermediate adjunction with A-movement. Linguistic Inquiry, 308-314.
- Schachter, Paul. 1976. The subject in Philippine languages: Topic, actor, actor-topic, or none of the above. *Page 518 of:* Li, Charles N, & Thompson, Sandra A. (eds), *Subject and Topic*, vol. 491. New York: Academic Press.
- Schneider-Zioga, Patricia. 1995. Specifier/head agreement in Kinande. *Cahiers linguistiques d'Ottawa*, **23**, 67–93.
- Schneider-Zioga, Patricia. 2000. Anti-agreement and the fine structure of the left periphery. *University of California Irvine working papers in linguistics*, **6**, 94–114.
- Schneider-Zioga, Patricia. 2007. Anti-agreement, anti-locality and minimality. The syntax of dislocated subjects. *Natural Language & Linguistic Theory*, **25**, 403–446.

- Schueler, David. 2012. A Minimalist Theory of the Pseudopassive. *Pages 161–174 of:* Galeano, Christina, Görgülü, Emrah, & Presnyakova, Irina (eds), *Proceedings of the 40th Western Conference on Linguistics*. Burnaby, BC: Simon Fraser University.
- Schulz, Katrin, & Van Rooij, Robert. 2006. Pragmatic meaning and non-monotonic reasoning: The case of exhaustive interpretation. *Linguistics and philosophy*, **29**, 205–250.
- Schwarz, Florian. 2009. Two types of definites in natural language. Ph.D. thesis, University of Massachusetts, Amherst.
- Selkirk, Elisabeth. 1995. The prosodic structure of function words. *Pages 439–469 of:* Beckman, Jill, Dickey, Laura Walsh, & Urbanczyk, Suzanne (eds), *Papers in Optimality Theory*. University of Massachusetts Occasional Papers in Linguistics, vol. 18. Amherst, MA: University of Massachusetts Graduate Linguistics Students Association.
- Selkirk, Elisabeth. 2009. On clause and intonational phrase in Japanese: The syntactic grounding of prosodic constituent structure. *Gengo Kenkyu*, **136**, 35–74.
- Selkirk, Elisabeth. 2011. The syntax-phonology interface. *The handbook of phonological theory*, **2**, 435–483.
- Şener, Serkan. 2008. Non-canonical case licensing is canonical: Accusative subjects of CPs in Turkish. Manuscript; Storss, CT: University of Connecticut.
- Sheehan, Michelle. 2016. Subjects, null subjects, and expletives. *Pages 329–362 of:* Fischer, S, & Gabriel, S (eds), *Manuals of Romance Linguistics: Grammatical Interfaces*, vol. 10. Berlin: Mouton de Gruyter.
- Shibatani, Masayoshi. 1985. Passives and related constructions: A prototype analysis. *Language*, 821–848.
- Shimada, Junri. 2007. *Head movement, binding theory, and phrase structure.* Unpublished generals paper.
- Shlonsky, Ur. 1991. Quantifiers as functional heads: A study of quantifier float in Hebrew. *Lingua*, **84**(2-3), 159–180.
- Shlonsky, Ur. 2000. Subject positions and copular constructions. *Pages 325–347 of:* Bennis, H., Everaert, M., & Reuland, E. (eds), *Interface strategies*. Amsterdam: Royal Netherlands Academy of Arts and Sciences.
- Shlonsky, Ur. 2014. Subject positions, subject extraction, EPP, and the Subject Criterion. *Pages 58–86 of:* Aboh, Enoch Oladé, Guasti, Maria Teresa, & Roberts, Ian (eds), *Locality*. Oxford University Press Oxford.
- Sichel, Ivy. 2014. Resumptive pronouns and competition. Linguistic inquiry, 45(4), 655-693.
- Sigurðsson, Halldór Ármann. 1989. *Verbal syntax and case in Icelandic*. Ph.D. thesis, University of Lund.
- Sigurðsson, Halldór Ármann, & Holmberg, Anders. 2008. Icelandic dative intervention: Person and number are separate probes. *Agreement restrictions*, 251–280.
- Sikki, Muhammad, Muthalib, Abdul, Mulya, Abdul Kadir, & Haddade, Muhammad Naim. 1987. *Kata Tugas Bahasa Mandar*. Jakarta: Pusat Pembinaan dan Pengembangan Bahasa, Departemen Pendidikan dan Kebudayaan.

- Smith, Alexander D. 2017. The Western Malayo-Polynesian problem. Oceanic Linguistics, 435-490.
- Sportiche, Dominique. 1988. A theory of floating quantifiers and its corollaries for constituent structure. *Linguistic inquiry*, **19**(3), 425–449.
- Storto, Luciana. 1999. *Aspects of a Karitiana grammar*. Ph.D. thesis, Massachusetts Institute of Technology.
- Stowell, Timothy Angus. 1981. *Origins of phrase structure*. Ph.D. thesis, Massachusetts Institute of Technology.
- Strømme, Kari K. 1994. Person marking in the Mamuju language. *Studies in Sulawesi Linguistics*, 3, 91–113.
- Suñer, Margarita. 1988. The role of agreement in clitic-doubled constructions. *Natural Language & Linguistic Theory*, **6**, 391–434.
- Suñer, Margarita. 1992. Subject clitics in the Northern Italian vernaculars and the matching hypothesis. *Natural Language & Linguistic Theory*, **10**(4), 641–672.
- Suñer, Margarita. 2003. The lexical preverbal subject in a Romance null subject language: where are thou? Pages 341–358 of: Núñez-Cedeño, Rafael, López, Luis, & Cameron, Richard (eds), A Romance Perspective on Language Knowledge and Use: Selected papers from the 31st Linguistic Symposium on Romance Languages (LSRL), Chicago, 19–22 April 2001. Amsterdam: John Benjamins.
- Surányi, Balázs. 2005. Head movement and reprojection. *Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae. Sectio Linguistica. ELTE Tomus*, **26**, 313–342.
- Svenonius, Peter. 2006. The emergence of axial parts. *Nordlyd*, **33**, 49–77.
- Svenonius, Peter. 2008. Adpositions, particles and the arguments they introduce. *Pages 63–103 of: Argument structure.* Amsterdam: John Benjamins.
- Svenonius, Peter. 2010. Spatial p in English. *Pages 127–160 of:* Cinque, Guglielmo, & Rizzi, Luigi (eds), *Mapping spatial PPs: The cartography of syntactic structures, volume 6.* Oxford: Oxford University Press.
- Svenonius, Peter (Editor). 2002. Subjects, Expletives, and the EPP. Oxford/New York: Oxford University Press.
- Tada, Hiroaki. 1993. A/A-bar partition in derivation. Ph.D. thesis, Massachusetts Institute of Technology.
- Takahashi, Masahiko. 2010. Case, phases, and nominative/accusative conversion in Japanese. *Journal of East Asian Linguistics*, **19**, 319–355.
- Takano, Yuji. 1998. Object shift and scrambling. Natural language & linguistic theory, 16, 817-889.
- Takeuchi, Hajime. 2010. Exceptional case marking in Japanese and optional feature transmission. *Nan- zan Linguistics*, **6**, 101–128.
- Tanaka, Hidekazu. 2002. Raising to object out of CP. Linguistic Inquiry, 33(4), 637-652.
- Therrien, Ray. 2023. *Anti-locality and preposition stranding in a variety of Ontario French*. Ph.D. thesis, Université d'Ottawa/University of Ottawa.

- Ting, Connie. 2022. N-bonding as a morphological ornament in Malagasy. *In:* Clark, Tallis, Dussere, Jacob, & Ting, Connie (eds), *Proceedings of the Twenty-Eighth Meeting of the Austronesian Formal Linguistics Association (AFLA).* University of Western Ontario.
- Ting, Connie. 2023. Malagasy N-bonding: A licensing approach. *Glossa: a journal of general linguistics*, **8**(1).
- Toyoshima, Takashi. 2001. Head-to-Spec movement. *Pages 115–136 of:* Alexandrova, Galina M., & Arnaudova, Olga (eds), *The minimalist parameter*. Amsterdam; John Benjamins.
- Travis, Lisa deMena. 1984. *Parameters and effects of word order variation*. Ph.D. thesis, Massachusetts Institute of Technology.
- Truswell, Robert. 2009. Preposition stranding, passivisation, and extraction from adjuncts in Germanic. *Linguistic variation yearbook*, **8**, 131–178.
- Uchibori, Asako. 2001. Raising out of CP and C-T relations. *Pages 145–162 of:* Cuervo, M.C., Harbour, D., Hiraiwa, K., & Ishihara, S. (eds), *Proceedings of FAJL 3: Formal Approaches to Japanese Linguistics*. Cambridge, MA: MIT Working Papers in Linguistics.
- Ura, Hiroyuki. 1994. Varieties of raising and the feature-based bare phrase structure theory. *MIT Occasional Papers in Linguistics*, 7.
- Valkama, Kari. 1995a. Person marking in Duri. Studies in Sulawesi linguistics, 4, 47-95.
- Valkama, Susanne. 1995b. Notes on Duri transitivity. *Studies in Sulawesi Linguistics part IV: NUSA*, **37**, 2–45.
- van Koppen, Marjo. 2005. *One probe-two goals: Aspects of agreement in Dutch dialects.* Ph.D. thesis, Leiden University.
- Van Riemsdijk, Henk. 1978. A case study in syntactic markedness: The binding nature of prepositional phrases. Dordrecht: Foris.
- Van Riemsdijk, Henk. 1990. Functional prepositions. *Pages 229–241 of:* Pinkster, Harm, & Genee, Inge (eds), *Unity in diversity: Papers presented to Simon C. Dik on his 50th birthday.* Dordrecht: Foris.
- van Riemsdijk, Henk C, & Williams, Edwin. 1986. *Introduction to the Theory of Grammar*. Cambridge, MA: MIT Press.
- Van Urk, Coppe. 2015. *A uniform syntax for phrasal movement: A case study of Dinka Bor.* Ph.D. thesis, Massachusetts Institute of Technology, Department of Linguistics and Philosophy.
- Van Urk, Coppe. 2018. Pronoun copying in Dinka Bor and the copy theory of movement. *Natural Language & Linguistic Theory*, **36**, 937–990.
- Van Urk, Coppe, & Richards, Norvin. 2015. Two components of long-distance extraction: Successive cyclicity in Dinka. *Linguistic Inquiry*, **46**(1), 113–155.
- Van Valin Jr, Robert D. 1981. Grammatical relations in ergative languages. *Studies in Language. International Journal sponsored by the Foundation "Foundations of Language"*, **5**(3), 361–394.
- Vanden Wyngaerd, Guido. 1989. Object shift as an A-movement rule. *MIT working papers in linguistics*, **11**, 256–271.

- Vergnaud, Jean-Roger. 1977. Letter to Noam Chomsky and Howard Lasnik on "Filters and Control". Pages 3–15 of: Freidin, Robert, Otero, Carlos P., & Zubizaretta, Maria Luisa Zubizarreta (eds), Foundational Issues in Linguistic Theory. Essays in Honor of Jean-Roger Vergnaud. Cambridge, MA: MIT Press.
- Vicente, Luis. 2007. The syntax of heads and phrases. Ph.D. thesis, Leiden University.
- Watanabe, Akira. 1993. *Agr-based case theory and its interaction with the A-bar system.* Ph.D. thesis, Massachusetts Institute of Technology.
- Webelhuth, Gert. 1989a. *Syntactic Saturation Phenomena and the Modern Germanic Languages*. Ph.D. thesis, University of Massachusetts, Amherst.
- Webelhuth, Gert. 1989b. *Syntactic saturation phenomena and the modern Germanic languages.* Ph.D. thesis, University of Massachusetts Amherst.
- Webelhuth, Gert. 1992. *Principles and parameters of syntactic saturation*. Oxford: Oxford University Press.
- Wiltschko, Martina. 2006. On 'Ergativity' in Halkomelem Salish. *Pages 197–227 of:* Johns, Alana, Massam, Diane, & Ndayiragije, Juvenal (eds), *Ergativity: Emerging Issues*. Dordrecht: Springer.
- Woolford, Ellen. 2006. Lexical case, inherent case, and argument structure. *Linguistic inquiry*, **37**(1), 111–130.
- Wurmbrand, Susi. 2017. Stripping and topless complements. Linguistic inquiry, 48(2), 341-366.
- Wurmbrand, Susi. 2019. Cross-clausal A-dependencies. *Pages 585–604 of: Proceedings of the fifty-fourth annual meeting of the chicago linguistic society*. Chicago Linguistic Society Chicago.
- Zaenen, Annie, Maling, Joan, & Thráinsson, Höskuldur. 1985. Case and grammatical functions: The Icelandic passive. *Natural Language & Linguistic Theory*, **3**(4), 441–483.
- Zeller, Jochen. 2006. Raising out of finite CP in Nguni: The case of fanele. *Southern African linguistics and applied language studies*, **24**(3), 255–275.
- Zobel, Erik, *et al.* 2002. The position of Chamorro and Palauan in the Austronesian family tree: Evidence from verb morphosyntax. *The history and typology of western Austronesian voice systems*, 405–34.
- Zwart, C Jan-Wouter. 1997. Morphosyntax of verb movement: A minimalist approach to to the syntax of Dutch. Vol. 39. Dordrecht: Kluwer.
- Zyman, Erik. 2017. P'urhepecha hyperraising to object: An argument for purely altruistic movement. *Page Paper 53 of:* Farrell, P. (ed), *Proceedings of the Linguistic Society of America*, vol. 2. Washington, DC: Linguistic Society of America.
- Zyman, Erik. 2018. Quantifier float as stranding: Evidence from Janitzio P'urhepecha. *Natural Language & Linguistic Theory*, **36**, 991–1034.
- Zyman, Erik. 2022. Phase-Constrained Obligatory Late Adjunction. Syntax, 25(1), 84-121.
- Zyman, Erik. 2023. Raising out of finite clauses (hyperraising). Annual Review of Linguistics, 9(1), 29-48.