Two Steps to High Absolutive Syntax

Dan Brodkin

April 17 2021

1 Ergativity: Crash Course

There are many different ways to mark the external and internal arguments (EXT/INT).

• nominative-accusative: $\text{ext}_{\text{trans}} = \text{ext}_{\text{intrans}} = \text{int}_{\text{intrans}} \neq \text{int}_{\text{trans}}$

• Ergative-absolutive: $\mathbf{ext}_{\mathsf{trans}} \neq \mathsf{ext}_{\mathsf{intrans}} = \mathsf{int}_{\mathsf{intrans}} = \mathsf{int}_{\mathsf{trans}}$

Nominative languages tend to show the following properties:

- 1. The NOM argument \rightarrow triggers AGR on τ^0 .
- 2. The NOM argument \rightarrow binds into other arguments.

These patterns suggest (1):

(1) In NOM/ACC languages, the NOM argument moves to SPEC, TP.

Ergative languages, however, show a split

Bittner & Hale 1996a,b

- HIGH-ABSOLUTIVE languages:
 - 1. The ABS argument \rightarrow triggers AGR on T^0 .
 - 2. The ABS argument \rightarrow binds into other arguments.
 - 3. The ERG argument \rightarrow no \bar{A} -extraction.
- LOW-ABSOLUTIVE languages: none of the above.

These patterns suggest (2):

(2) In high-abs languages, the abs argument moves above the Erg.

Today's Question: What is the nature of this process?

The Roadmap:

- 1. Background: Two Approaches to High-Abs Syntax
- 2. The Empirical Terrain: High-Abs Syntax in Mandar (South Sulawesi)
- 3. The Key Claim: High-Abs Syntax arises through two distinct steps.

2 Previous Approaches to High-Abs Syntax

Background: key regions for High-Abs syntax	
1. Inuit: the whole family	Bittner 1994, Yuan 2018
2. Salish: the whole family	Davis 1991, Brown 2016
3. Mayan: K'ichean, Q'anjob'alan, Mamean	Tada 1993, Coon et al. 2014
4. Austronesian: the Philippines, w.Indonesia	Keenan 1972, Guilfoyle et al. 1992
Stable Conclusion: ABS > ERG	(The Hіgн-Aвs Hypothesis; 2)
• Scope: ABS > ERG	Inuit, Austronesian
• Binding: $ABS > ERG$	(Mayan?), Austronesian
• Agreement: ABS \to T 0	Inuit, Mayan, Salish, Austronesian
• Ā-Extraction: not for the ERG	Inuit, Mayan, Salish, Austronesian

Observation: everything is unclear beyond this point.

- $\bullet\,$ The position of the ABS: cannot be extrapolated from word order.
 - Ergative languages → vso or sov, not svo
 Mahajan 1994
 - Non-svo languages: word order \rightarrow reveals little about syntactic positions
- **Result**: very few empirical arguments for the precise position of the ABS.
- **Therefore**: no consensus on the *nature* or *destination* of its movement.

Two Previous Approaches:

- 1. High Inversion: abs \rightarrow spec,tp; "licensing movement" Campana 1992
- 2. Low Inversion: Abs \rightarrow spec, ν p; "object shift" Rackowski 2002

2.1 The High Inversion Analysis

The Fundamental Intuition: ABS = NOM

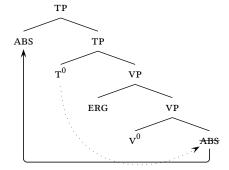
- 1. The ABS argument \rightarrow moves to a *subject position* to be licensed.
- 2. This process \rightarrow the ABS argument moves to SPEC,TP like a NOM.

The Summary:

(3) HIGH-ABS syntax arises from licensing movement of the ABS to SPEC, TP.

This model \rightarrow hegemonic through the 1990s.

• Key names: Bok-Bennema 1991, Campana 1992, Murasugi 1992, Guilfoyle, Hung, & Travis 1992, Bittner & Hale 1996a,b, Manning 1996, Baker 1997


The Intellectual Context:

- Emergent and coherent theory of 'two distinct subject positions': Koopman & Sportiche 1985, Fukui & Speas 1986 (*pre*-McCloskey 1997)
- Strict correlation between agreement (with T⁰) and movement (to SPEC,TP): Kayne 1989, Koopman 1987, Mahajan 1990, Kinyalolo 1992, Chomsky 1993
- Salient link from extraction restrictions to locality: Rizzi 1990, Shlonsky 1992

The High-Inversion Logic

Bok-Bennema 1991, Guilfoyle et al. 1992

- High-Abs languages: \rightarrow Abs argument licensed by \mathtt{T}^0 .
- The licensing process \rightarrow forces the ABS to move to spec,Tp.
- (4) The High Inversion Approach

2.2 The Low Inversion Analysis

The Fundamental Intuition: ABS \rightarrow object shift

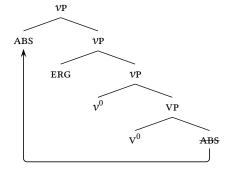
- 1. The ABS argument \rightarrow undergoes definiteness-related movement in the ν P.
- 2. This process \rightarrow places the ABS above the ERG like a shifted object.

The Summary:

(5) HIGH-ABS syntax arises from object shift of the ABS to SPEC, VP.

This model \rightarrow hegemonic from the early 2000s-present.

• Key names: Rackowski 2002, Aldridge 2004, Yuan 2018, Coon et al. 2021


The Intellectual Context:

- Novel awareness and theoretical scrutiny of the process of object shift: Koopman & Sportiche 1985, Diesing 1992, Bobaljik & Thrainsson 1996
- The emergence of influential models which assume that object shift places the object above the subject in English: Chomsky 1995, 2001, McCloskey 2001
- The novel possibility of multiple specifiers: Chomsky 1995, Richards 1998
- The formal dissociation of Move and Agree: Chomsky 1995, 2001

The Low-Inversion Logic

Rackowski 2002, Yuan 2018

- High-Abs languages: \rightarrow Abs argument undergoes object shift to spec, vp.
- The process of object shift o the ABS in a higher specifier of vP than the ERG.
- (6) The Low Inversion Approach

3 High Absolutive Syntax in Mandar

Mandar: Background Facts

- Austronesian language; South Sulawesi Subfamily
- 400,00 speakers; urban gen $z \rightarrow$ monolingual in Indonesian
- Data: from elicitation + Indonesian descriptive work
- Elicitation: two speakers from Polewali

2018-

Mandar Syntax

- · Default vso order
- No case-marking; pro-drop
- ERG-ABS agreement
 - ERG: prefix on the verb
 - ABS: enclitic in 2P

- (7) U-ita=o pro pro 1ERG-see=2ABS 'I see you.'
- (8) Na-ita=i [E iJohn] [A iMary]
 3ERG-see=3ABS
 'John saw Mary.'

The Voice System

- Verbs \rightarrow prefixal alternation
 - 1. Transitive \rightarrow erg-
 - 2. Antipassive $\rightarrow maN$ -
 - 3. Comitative $\rightarrow si$ -
- This alternation = *voice system*
- Voice \rightarrow determines the ABS argument
 - Transitive \rightarrow abs = int
 - antipassive \rightarrow abs = ext

- (9) Da **mu**-ala=i!

 DON'T! 2ERG-take=3ABS

 'Don't take it!' TRANS
- (10) **Maq**-ala=**aq** doiq
 ANT-take=1ABS money
 'I'm taking money.' ANT
- (11) **Si**-ala=**aq** sola iNina COM-take=1ABS with NAME 'I took up with Nina.' COM

The High-Abs System

- Mandar is a *High-Abs* language:
 - The ABS argument \rightarrow AGR on \mathtt{T}^0 ; binds into ERG; shows $\bar{A}\text{-privilege}$
- Key Claim: HIGH-ABS syntax arises in two steps.
 - 1. OBJECT SHIFT:

Definite INT moves from $VP \rightarrow SPEC, VP$

2. LICENSING MOVEMENT:

ABS argument \rightarrow SPEC,TP

3.1 High Absolutive Syntax

High-Abs Claim: the ABS moves to a position above all other arguments (2).

First Argument: High Agreement

- The ABS agreement probe sits above the ERG probe also: Mayan, Inuit
 - 1. LINEAR POSITION: ABS agreement in 2P; ERG agreement = verbal prefix
 - 2. DISTRIBUTION: ABS agreement absent in non-finite clauses; ERG remains.
 - 3. MORPHOLOGY: ABS agreement forms portmanteaux with ASP \rightarrow complex x^0
- **Result**: ABS agreement $\rightarrow T^0$

Béjar 1999, Brodkin 2021a,b

(12) ABS Agreement $\rightarrow 2P$

Indang=i mala u-pau. not=3ABS can 1ERG-say

'I can't say it.' F&J 2000: 240

- (13) $ABS \ Agreement \rightarrow not \ in \ NFCs$ Meload=i [NFC umande]
 - may.want=3ABS eat
 - 'He may want to eat.' S. 1987: 37

Second Argument: Extraction Asymmetries

- The ABS argument can undergo Ā-extraction; non-ABS arguments cannot.
 - Transitive: Int_{ABS} can extract; Ext_{ERG} cannot. Inuit, (HA) Mayan, Salish
 - COMITATIVE: EXT_{ABS} can extract; INT_{OBL} cannot. Austronesian
- **Result**: Abs argument > all other arguments Keenan 1972, Guilfoyle et al. 1992
 - The extraction constraint \rightarrow locality in the \bar{A} -domain Rizzi 1990
- (14) Transitive: INT_{ABS} extracts; EXT_{ERG} cannot
 - a. Iqo_{ABS} **u**-salili _ you 1ERG-miss

'I miss you.' M&S 1991: 157

- b. ${}^*Yau_{erg}$ **u**-salili=0 i 1erg-miss=2Abs
 - ('I miss you.') JT: 4.2, 295
- (15) Comitative: EXT_{ABS} extracts; INT_{OBL} cannot
 - a. Yau_{abs} **si**-issang iNina_{obl}! i com-know name

'I know Nina!' JT: 11.20, 55-82

b. *Innai_{obl} **si**-issang=0 who com-know=2b

('Who do you know?)

Third Argument: Condition C

- Classic view: an R-expression cannot be commanded by a coreferent pronoun.
 - ENGLISH: only the ACC can be a pronoun coindexed with the NOM
 - * John's, mother loves him; *His, mother loves John;
 - RESULT: the NOM asymmetrically c-commands the ACC
- MANDAR: the reversed pattern.
 - The INT \rightarrow **not** a pronoun coindexed with an R-expr in the EXT.
 - The EXT \rightarrow *can* be a pronoun coindexed with an R-expr in the INT.
- (16) Transitive: INT cannot be a pronoun coindexed with an R-expr in the EXT.
 - a. Na-ita=i $\left[\begin{array}{cc} ERG \end{array}\right]$ kindoq-na pro_i $\left[\begin{array}{cc} INT \end{array}\right]$ iNina $_i$ $\left[\begin{array}{cc} INT \end{array}\right]$ iNina $_i$ $\left[\begin{array}{cc} INT \end{array}\right]$

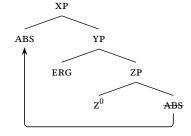
'Her mom saw Nina.'

JT: 1.19, 21

b. *Na-ita=i $\begin{bmatrix} EXT & E$

Fourth Argument: Variable Binding

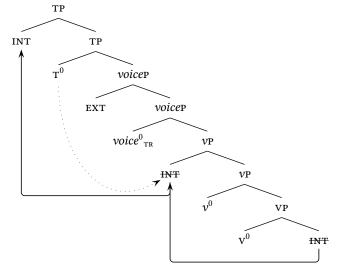
- The Classic view: variable binding requires c-command
 - ENGLISH: only the ACC can contain a variable bound by the NOM
 - * Every_i mother loves her_i kid; *Her_i mother loves every_i kid.
 - RESULT: the NOM asymmetrically c-commands the ACC
- MANDAR: the ABS argument systematically binds into the ERG.
 - The Quantifier: nasang 'every' \rightarrow floats to second-position
- (17) Transitive: quantified INT can bind a variable in the EXT.
 - a. Na-salili= \mathbf{nasang}_i =i $\begin{bmatrix} \text{EXT} & \text{kindoq-nna} & pro_i \end{bmatrix} \begin{bmatrix} \text{INT} & \text{sanaeke}_i \end{bmatrix}$ 3ERG-miss=every=3ABS mom-of her child 'Her_i mom missed every_i child.' JT: 11.23, 31
 - b. Na-allai= \mathbf{nasang}_i =i [$_{\mathrm{EXT}}$ guru- \mathbf{nna} pro_i] [$_{\mathrm{INT}}$ passikola $_i$] 3ERG-scold=every=3ABS teacher-of his student 'His $_i$ teacher scolded every $_i$ student.'


Further Note: Variable Binding \rightarrow c-command

• **Objection**: variable-binding need not require c-command Barker 2012

- Response: this tracks something systematic here.
 - Ditransitives: INT does not trigger ABS agreement.
 - This context: the INT cannot bind into the EXT.
 - Generalization: only the ABS argument can bind into the ERG.
- (18) Ditransitive: INT \neq ABS
 - a. Na-bengan=aq $[I_{INT}]$ barras $[I_{GOAL}]$ pro_{ABS} $[I_{GOAL}]$ and I_{INT} barras I_{GOAL} pro_{ABS} I_{INT} in the gave me rice'
- (19) Ditransitive: quantified INT cannot bind into the EXT.
 - a. Na-pasissang= \mathbf{nasang}_i =aq [$_{\mathrm{EXT}}$ kindoq-na pro] [$_{\mathrm{INT}}$ $\mathbf{sanaeke}$]. 3ERG-introduce=every=1ABS mom-of her child 'Her* $_{i,j}$ mom showed me every $_i$ child.' JT: 3.11, 100
 - b. Na-kiringang= \mathbf{nasang}_i =aq [$_{\text{EXT}}$ panulis-na pro] [$_{\text{INT}}$ **buku**]. 3ERG-send.to=every=1ABS author-of it book 'Its* $_{i,j}$ author sent me every $_i$ book.' JT: 4.17, 58

3.2 Interim Summary

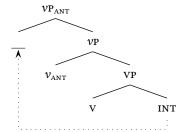

- Claim: Mandar shows High-Abs syntax.
 - The ABS argument ightarrow a position above all other arguments in the clause.
 - Parallel: the other languages of the Philippines & Western Indonesia Keenan 1972, Chung 1976, Guilfoyle et al. 1992, Aldridge 2004, Hsieh 2020
- The Key Question: how does this come about?
- (20) Mandar: High Absolutive Schema

JT: 3.11, 90

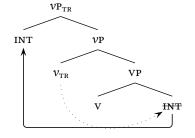
4 The Two-Step Model

- The Fundamental Claim: HIGH-ABS syntax arises in two steps.
 - 1. Object shift: Definite int moves from $VP \rightarrow SPEC, VP$
 - 2. LICENSING MOVEMENT: ABS argument \rightarrow SPEC, TP
- **Object Shift** \rightarrow **NOT** above the EXT.
 - Definiteness effect: Mandar requires definite arguments to leave the VP.
 - * High-Inversion models \rightarrow fail to recognize this step.
 - Surface evidence: restrictions on incorporation \rightarrow vp-external position
 - **But**: arguments which undergo object shift $alone \rightarrow beneath$ the EXT.
 - Low-Inversion models → assume the opposite conclusion.
 (pace: Rackowski 2002, Aldridge 2004, Yuan 2018, Coon et al. 2020)
- Licensing Movement \rightarrow ABS to SPEC,TP.
 - Claim: ABS arguments move to a high position for licensing ABS = NOM
 - Evidence: the link between ABS agreement, binding, and Ā-extraction.
- (21) The Two-Step Model: an Illustration

4.1 The Definiteness Effect


- The Mandar voice system shows a definiteness effect:
 - When the INT is indefinite, the **antipassive** voice must be used.
 - When the INT is definite, the **transitive** voice must be used.
- The same pattern: holds generally across South Sulawesi + the region
 - Bloomfield 1917, Adams & Manaster-Ramer 1988, Friberg 1996, Jukes 2006
- (22) The Definiteness Effect
 - a. **Me**-ala=i **bau** wattu diqo.

 ANT-get=3B fish time that


 'He got fish then. P1983:153
- b. Na-ande diqo bau=0.

 3A-eat that fish=there

 'He ate the fish.' P1983:159
- Surface parallel: object shift + scrambling
 - TRANSITIVE: required when INT = definite; forces INT to move.
 - Result: connection between the definiteness of the INT and its position.
- Standard Analysis: the definiteness effect ightarrow Object Shift Rackowski 2002
 - Positional constraint: definite arguments → not in the vp Diesing 1992
 - The transitive v^0 : allows the INT to leave the VP.
 - The antipassive ν^0 : forces the INT to remain in the VP.
 - **Result**: definite INT \rightarrow the transitive v^0
- (23) Antipassive: No Movement

(24) Transitive: Movement

4.2 Pseudo-Incorporation and Object Shift

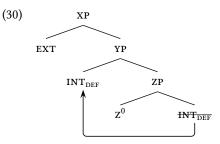
- · Common assumption: object shift does not exist without licensing movement.
 - Low-Inversion: "the arguments which undergo object shift \rightarrow high."
 - Result: "no such thing as object shift without Absolutive Inversion."
- Mandar: object shift can be seen without licensing movement.
 - INFORMALLY: there is a process which targets only VP-internal material.
 - Some arguments: cannot do this, **but** do not c-command the ext
 - **Result**: arguments that have left the VP can stay beneath the EXT.
 - → **Object Shift** \neq the process which yields ABS > ERG.
- The relevant diagnostic: "pseudo-incorporation"

Massam 2001

- Narrowly-focused vp-internal material \rightarrow prosodic word with the verb.
- Surface signature: v + incorporand > 2P encltics
- (25) Pseudo-Incorporation
 - a. Matindo=aq di ranjang.sleep=1B at bed'I sleep in a bed.' JT: 3.25, 32
- b. Matindo di ranjang=aq.sleep at bed=1B'I sleep in a BED.' M&S'91:136
- This process \rightarrow VP-adjuncts; not TP-ones.
- (26) Pseudo-Incorporation: VP-adjuncts only
 - a. Massikola dini=i.
 ANT-school here=3B
 'They study HERE.' F&J'00:02
- b. *Mam-eang san-jang=aq.

 ANT-fish one-hour=1B

 ('I fished for 1H.') T: 11.20, 3
- Moreover: antipassive INT; *transitive EXT
- (27) Pseudo-Incorporation: Antipassive int
 - a. Maq-baluq balenga=i.ANT-sell pan=3B'He's selling PANS.' NH: 6.18
- b. *Na-ande **posa**=i!
 3A-eat cat=3B
 ('A CAT ate it!') JT: 3.25, 89


4.3 Ditransitives and Object Shift

- Recap: the ditransitive construction \rightarrow INT \neq the absolutive.
- Nevertheless: this context \rightarrow the INT can be definite.
 - $-\rightarrow$ By hypothesis: the INT undergoes object shift out of the VP
- **Confirmation**: the ditransitive INT cannot be pseudo-incorporated.
- (28) Ditransitive: INT \neq ABS
 - a. Na-bengan=aq hapena.
 3erg-give=1ABS his.phone.

'He gave me his phone' JT:3.5,27-8

- b. *U-bengan hapeu=i. 1ERG-give my.phone=3ABS ('I gave him MY PHONE)
- This context \rightarrow a testing-ground for the Low-Inversion hypothesis.
 - The ditransitive INT is definite but does not trigger ABS agreement.
 - If ABS agreement is not relevant to the high position of the INT,
 - THEN a definite but non-absolutive INT should undergo object shift, and
 - Prediction: it should wind up in a position above the EXT.
- Mandar: this prediction is false.
 - The ditransitive INT does not c-command the EXT for any metric above.
 - Example: when quantified, it cannot bind into the EXT.
- (29) Ditransitive: quantified INT cannot bind into the EXT.
 - a. Na-pasissang=**nasang**_i=aq [EXT kindoq-na pro] [INT **sanaeke**]. 3ERG-introduce=every=1ABS mom-of her child 'Her*_{ii} mom showed me every_i child.' JT: 3.11, 100

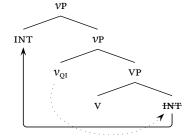
Result: object shift \rightarrow a position beneath the EXT

5 Licensing Movement and Low Absolutives

- The Two-Step Model \rightarrow three predictions:
 - 1. Object Shift \rightarrow NOT above the EXT

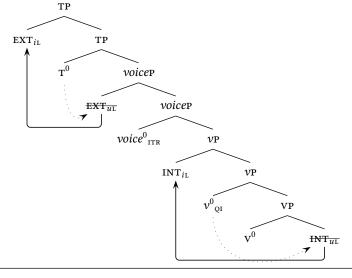
ditransitives \rightarrow yes

- 2. The INT to its high position \rightarrow only if it interacts with T^0 .
- 3. When the INT does not interact with $T^0 \rightarrow$ it is licensed low.
- The Quirky Intransitive Construction: provides evidence for 2-3.
- Many High-Abs languages show the following pattern:
 - When the INT cannot interact with T^0 ,
 - The INT triggers agreement with v^0 , and
 - The INT remains within the ν_P .
- The resultant construction: three properties.
 - 1. The verb \rightarrow 'intransitive' morphology ("EXT \rightarrow ABS")
 - 2. The ABS agreement \rightarrow the INT
 - 3. $v^0 \rightarrow \text{contains a special morpheme.}$
- This construction \rightarrow most famous as the Mayan 'Agent Focus'
- Nevertheless: clear analogues across Austronesian.
- (31) Mandar: The Quirky Intransitive
 - a. Meloq=aq [NFC man-dundu=i]. want=1B QI-drink=3B


'I want to drink it.'

JT: 4.2, 329

b. Apa mam-bokkoq=aq? what QI-bite=1B 'What bit me?'


IT: 1.19.78

(32) Quirky Intransitive: Agreement on v^0 ; Object Shift:

5.1 The Quirky Intransitive Schema

- This construction \rightarrow the classical signs of object shift.
 - The INT can be definite; cannot undergo incorporation.
- Nevertheless: the INT clearly remains beneath the EXT.
 - The ext can undergo Ā-extraction; cannot be bound by the int.
- **Result**: the INT undergoes Object Shift but not Licensing Movement.
- (33) The Quirky Intransitive Construction: Object Shift; No Licensing Movement

- The agreement schema \rightarrow the INT is licensed by v^0 .
 - The INT \rightarrow verb-adjacent ABS agreement *cf. AGR in T* 0 .
 - Moreover: this AGR \rightarrow *only* in the context of a special v^0 .
- This pattern \rightarrow Licensing Movement called off *iff* the INT is licensed beneath T^0 .
- (34) Quirky Intransitive: INT \rightarrow AGR on v^0 ; requires the prefix maN
 - a. Innai indang mala man-dundu=i? who NEG can QI-drink=3B

'Who can't drink it?'

JT: 4.2, 262

b. *Meloq=band=i [NFC **si**-sara=**o**]? want=really=3B COM-split=2B

(*Does she want to divorce you?')

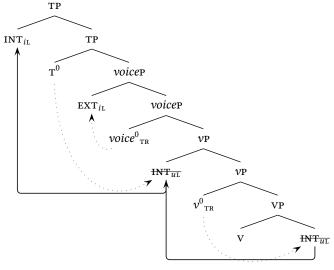
JT: 11.20, 79

6 Conclusions

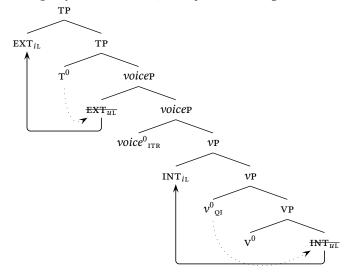
- High-Abs Syntax arises through two distinct steps:
 - 1. Object shift: Definite int moves from $VP \rightarrow SPEC, VP$
 - 2. Licensing movement: Abs argument o spec, tp
- Previous Approaches: fail to capture the facts.
 - High-Inv \rightarrow fails to recognize the relevance of object shift.
 - Low-Inv \rightarrow incorrect predictions with ditransitives; quirky intransitives
- Mandar: clear evidence that the two steps come apart.
 - Definite int + no agr with $T^0 \rightarrow$ beneath the ext.
 - This pattern \rightarrow forces a theory where ABS > ERG is linked to T^0 .
- **Observation**: this model \rightarrow potential to generalize.
- The Quirky Intransitive \rightarrow robust attestation in High-Abs languages.
 - Three key ingredients:
 - 1. The verb \rightarrow 'intransitive' morphology ("ext \rightarrow ABS")
 - 2. The ABS agreement \rightarrow the INT
 - 3. $v^0 \rightarrow \text{contains a special morpheme.}$
 - The distribution:
 - * The High-Abs Mayan languages: 'Agent Focus' Smith-Stark 1978
 - $_{\ast}~$ The South Sulawesi languages + relatives: exactly like Mandar.
 - $_*$ The languages of the Philippines \rightarrow parallels with case-marking.
 - * Other High-Abs languages: to be determined.
- (35) Chuj (Q'anjob'alan; Mayan): The Quirky Intransitive Construction
 - a. Ix=**ach** ko-chel-a' PFV=2B 1A-hug-TR

'We hugged you.'

Coon 2018:9


b. Mach ix=ach mak'-an-i? who pfv=2b hit-qi-itr

'Who hit you?'


Hou 2013:13

7 Appendix: Two Trees

(36) The Transitive: Object Shift; Licensing Movement

(37) The Quirky Intransitive: Object Shift; No Licensing Movement

