Phonological Displacement in Mandar

Dan Brodkin
Sharing Research Results - Universitas Katolik Indonesia Atma Jaya

8/10/22
Background
Background

- I am a Ph.D Student at the University of California, Santa Cruz.
Background

- I am a Ph.D Student at the University of California, Santa Cruz.
Background

- I am a Ph.D Student at the University of California, Santa Cruz.
- My field is formal linguistics.
Background

- I am a Ph.D Student at the University of California, Santa Cruz.

- My field is formal linguistics, the study of sound systems, rhythmic structure, and syntactic structure.
Background

- I am a Ph.D Student at the University of California, Santa Cruz.

- My field is formal linguistics, the study of sound systems, rhythmic structure, and syntactic structure.

- Since 2016, I have been working on languages of Indonesia.
Background

- I am a Ph.D Student at the University of California, Santa Cruz.

- My field is formal linguistics, the study of sound systems, rhythmic structure, and syntactic structure.

- Since 2016, I have been working on languages of Indonesia, and since 2018, one language from West Sulawesi: Bahasa Mandar.
Background

- I am a Ph.D Student at the University of California, Santa Cruz.

- My field is formal linguistics, the study of sound systems, rhythmic structure, and syntactic structure.

- Since 2016, I have been working on languages of Indonesia, and since 2018, one language from West Sulawesi: Bahasa Mandar.

- This work has been done together with one speaker of Mandar: Jupri Talib.
Background

- I am a Ph.D Student at the University of California, Santa Cruz.

- My field is formal linguistics, the study of sound systems, rhythmic structure, and syntactic structure.

- Since 2016, I have been working on languages of Indonesia, and since 2018, one language from West Sulawesi: Bahasa Mandar.

- This work has been done together with one speaker of Mandar: Jupri Talib.

- One important source of support: the Fulbright Scholarship, via AMINEF.
Background

- I am a Ph.D Student at the University of California, Santa Cruz.

- My field is formal linguistics, the study of sound systems, rhythmic structure, and syntactic structure.

- Since 2016, I have been working on languages of Indonesia, and since 2018, one language from West Sulawesi: Bahasa Mandar.

- This work has been done together with one speaker of Mandar: Jupri Talib.

- One important source of support: the Fulbright Scholarship, via AMINEF.
Section 1

Introduction
Linear Order in the Grammar
Linear Order in the Grammar

What is responsible for determining the linear order of syntactic constituents in a string?
Linear Order in the Grammar

What is responsible for determining the linear order of syntactic constituents in a string?

One answer: Direct Linearization (Kayne 1994)
Linear Order in the Grammar

What is responsible for determining the linear order of syntactic constituents in a string?

One answer: Direct Linearization (Kayne 1994)

- The syntax encodes relationships of dominance between syntactic objects (c-command).
Linear Order in the Grammar

What is responsible for determining the linear order of syntactic constituents in a string?

One answer: *Direct Linearization* (Kayne 1994)

- The syntax encodes relationships of dominance between syntactic objects (c-command).
- As syntactic objects are converted into phonological strings, relationships of dominance (x c-commands y) are strictly converted into relationships of precedence (x precedes y).
Linear Order in the Grammar

What is responsible for determining the linear order of syntactic constituents in a string?

One answer: Direct Linearization (Kayne 1994)

- The syntax encodes relationships of dominance between syntactic objects (c-command).
- As syntactic objects are converted into phonological strings, relationships of dominance (x c-commands y) are strictly converted into relationships of precedence (x precedes y).

```
X^0
/   \\  /
Y^0  Z^0
```

\[
\text{LINEARIZATION} \quad \rightarrow \quad \checkmark \ [\ x > y > z]
\]
\[
\times \ [\ y > x > z]
\]
\[
\times \ [\ x > z > y]
\]
Linear Order in the Grammar

What is responsible for determining the linear order of syntactic constituents in a string?

One answer: Direct Linearization (Kayne 1994)
Linear Order in the Grammar

What is responsible for determining the linear order of syntactic constituents in a string?

One answer: Direct Linearization (Kayne 1994)

An alternative: Indirect Linearization (Berwick & Chomsky 2011)
Linear Order in the Grammar

What is responsible for determining the linear order of syntactic constituents in a string?

One answer: Direct Linearization (Kayne 1994)

An alternative: Indirect Linearization (Berwick & Chomsky 2011)

• Linearization typically translates relationships of dominance to those of precedence,
Linear Order in the Grammar

What is responsible for determining the linear order of syntactic constituents in a string?

One answer: *Direct Linearization* (Kayne 1994)

An alternative: *Indirect Linearization* (Berwick & Chomsky 2011)
- Linearization *typically* translates relationships of dominance to those of precedence,
- ...but it can be altered by operations that sit outside of the syntax proper.
Linear Order in the Grammar

What is responsible for determining the linear order of syntactic constituents in a string?

One answer: *Direct Linearization* (Kayne 1994)

An alternative: *Indirect Linearization* (Berwick & Chomsky 2011)

- Linearization *typically* translates relationships of dominance to those of precedence,
- ...but it can be altered by operations that sit outside of the syntax proper.

![Diagram](image_url)
Linear Order in the Grammar

What is responsible for determining the linear order of syntactic constituents in a string?

One answer: *Direct Linearization* (Kayne 1994)

An alternative: *Indirect Linearization* (Berwick & Chomsky 2011)
Linear Order in the Grammar

What is responsible for determining the linear order of syntactic constituents in a string?

One answer: Direct Linearization (Kayne 1994)

An alternative: Indirect Linearization (Berwick & Chomsky 2011)

Much research has argued that Indirect Linearization is an analytical necessity:
Linear Order in the Grammar

What is responsible for determining the linear order of syntactic constituents in a string?

One answer: *Direct Linearization* (Kayne 1994)

An alternative: *Indirect Linearization* (Berwick & Chomsky 2011)

Much research has argued that *Indirect Linearization* is an analytical necessity:

Linear Order in the Grammar

What is responsible for determining the linear order of syntactic constituents in a string?

One answer: Direct Linearization (Kayne 1994)

An alternative: Indirect Linearization (Berwick & Chomsky 2011)

Much research has argued that Indirect Linearization is an analytical necessity:
Linear Order in the Grammar

What is responsible for determining the linear order of syntactic constituents in a string?

One answer: *Direct Linearization* (Kayne 1994)

An alternative: *Indirect Linearization* (Berwick & Chomsky 2011)

Much research has argued that *Indirect Linearization* is an analytical necessity:

But this raises theoretical questions that do not come up in a Direct Linearization world:
Linear Order in the Grammar

What is responsible for determining the linear order of syntactic constituents in a string?

One answer: Direct Linearization (Kayne 1994)

An alternative: Indirect Linearization (Berwick & Chomsky 2011)

Much research has argued that Indirect Linearization is an analytical necessity:

But this raises theoretical questions that do not come up in a Direct Linearization world:

1. What type of structure does non-syntactic movement reference?
Linear Order in the Grammar

What is responsible for determining the linear order of syntactic constituents in a string?

One answer: Direct Linearization (Kayne 1994)

An alternative: Indirect Linearization (Berwick & Chomsky 2011)

Much research has argued that Indirect Linearization is an analytical necessity:

But this raises theoretical questions that do not come up in a Direct Linearization world:

1. What type of structure does non-syntactic movement reference?
2. What motivates it?
Linear Order in the Grammar

What is responsible for determining the linear order of syntactic constituents in a string?

One answer: *Direct Linearization* (Kayne 1994)

An alternative: *Indirect Linearization* (Berwick & Chomsky 2011)

Much research has argued that *Indirect Linearization* is an analytical necessity:

But this raises theoretical questions that do not come up in a Direct Linearization world:

1. What type of structure does non-syntactic movement reference?
2. What motivates it?
3. How does it fit into the architecture of the theory of syntax?
Linear Order in the Grammar
Linear Order in the Grammar

Today’s talk will investigate a case of post-syntactic displacement in Mandarin.
Linear Order in the Grammar

Today’s talk will investigate a case of post-syntactic displacement in Mandarin.

I argue that:
Today’s talk will investigate a case of post-syntactic displacement in Mandarin.

I argue that:

1. There is a class of elements that undergo displacement in the phonology,
Linear Order in the Grammar

Today's talk will investigate a case of post-syntactic displacement in Mandarin.

I argue that:

1. There is a class of elements that undergo displacement in the phonology,
2. They move to a particular position within the prosodic structure of the clause, and
Linear Order in the Grammar

Today’s talk will investigate a case of post-syntactic displacement in Mandar.

I argue that:

1. There is a class of elements that undergo displacement in the phonology,
2. They move to a particular position within the prosodic structure of the clause, and
3. This movement is driven by prosodic constraints on phonologically minimal words.
Section 2

Background
Mandar: Quick Facts
Mandar: Quick Facts

Mandar is an Austronesian language that is spoken on the Indonesian island of Sulawesi.
Mandar: Quick Facts

Mandar is an Austronesian language that is spoken on the Indonesian island of Sulawesi.

The language shows a surface profile that is typical of South Sulawesi: (Brodkin 2020, 2021...
Mandar: Quick Facts

Mandar is an Austronesian language that is spoken on the Indonesian island of Sulawesi.

The language shows a surface profile that is typical of South Sulawesi: (Brodkin 2020, 2021...)
- vso word order (but allows vos)
Mandar: Quick Facts

Mandar is an Austronesian language that is spoken on the Indonesian island of Sulawesi.

The language shows a surface profile that is typical of South Sulawesi:
- vso word order (but allows vos)
- Voice system: AV, PV, LV, CV, PASS
Mandar is an Austronesian language that is spoken on the Indonesian island of Sulawesi.

The language shows a surface profile that is typical of South Sulawesi: (Brodkin 2020, 2021...)
- VSO word order (but allows VOS)
- Voice system: AV, PV, LV, CV, PASS
- Agreement: the pivot is indexed with an absolutive enclitic.
Mandar: Quick Facts

Mandar is an Austronesian language that is spoken on the Indonesian island of Sulawesi.

The language shows a surface profile that is typical of South Sulawesi: (Brodkin 2020, 2021...)
- vso word order (but allows vos)
- Voice system: AV, PV, LV, CV, PASS
- Agreement: the pivot is indexed with an absolutive enclitic.

This talk will focus on something new in the language: the demonstrative system.
Mandar: Quick Facts

Mandar is an Austronesian language that is spoken on the Indonesian island of Sulawesi.

The language shows a surface profile that is typical of South Sulawesi: (Brodkin 2020, 2021...)
- vso word order (but allows vos)
- Voice system: AV, PV, LV, CV, PASS
- Agreement: the pivot is indexed with an absolutive enclitic.

This talk will focus on something new in the language: the demonstrative system.

Data come from two sources: descriptive literature and ongoing work (2018-) with Jupri Talib,
The Construction
The Construction

The phenomenon: a **demonstrative-reinforcer construction** (Bernstein 1997, Roehrs 2010)
The Construction

The phenomenon: a **demonstrative-reinforcer construction** (Bernstein 1997, Roehrs 2010) Mandar has two demonstratives that are invariably followed by locative “reinforcers.”
The Construction

The phenomenon: a demonstrative-reinforcer construction (Bernstein 1997, Roehrs 2010) Mandar has two demonstratives that are invariably followed by locative "reinforcers."

(1) a. di’e ... e
 this ... here

 b. di’o ... o
 that ... there
The Construction

The phenomenon: a **demonstrative-reinforcer construction** (Bernstein 1997, Roehrs 2010) Mandar has two demonstratives that are invariably followed by locative “reinforcers.”

(1) a. di’e ... e
 this ... here
The Construction

The phenomenon: a **demonstrative-reinforcer construction** (Bernstein 1997, Roehrs 2010) Mandar has two demonstratives that are invariably followed by locative "reinforcers."

(1) a. di’e ... e
 this ... here

The demonstrative and reinforcer typically bracket the associated DP:
The Construction

The phenomenon: a **demonstrative-reinforcer construction** (Bernstein 1997, Roehrs 2010) Mandar has two demonstratives that are invariably followed by locative “reinforcers.”

(1) a. **di’e ... e**
 this ... here

The demonstrative and reinforcer typically bracket the associated DP:

(2) **Apa sangan-na [DP di’e kappung e] ?**
 what name-3GEN this village here
 ‘What’s the name of this village here?’

Friberg & Jerniati 2000:
The Construction

The phenomenon: a **demonstrative-reinforcer construction** (Bernstein 1997, Roehrs 2010) Mandar has two demonstratives that are invariably followed by locative “reinforcers.”

(1)

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>di’e</td>
<td>...</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>this</td>
<td>...</td>
<td>here</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The demonstrative and reinforcer typically bracket the associated DP:
The Construction

The phenomenon: a **demonstrative-reinforcer construction** (Bernstein 1997, Roehrs 2010) Mandar has two demonstratives that are invariably followed by locative “reinforcers.”

(1) a. di’e ... e
 this ... here

The demonstrative and reinforcer typically bracket the associated DP:

But under some circumstances, the reinforcer surfaces *quite far away*:
The Construction

The phenomenon: a demonstrative-reinforcer construction (Bernstein 1997, Roehrs 2010) Mandar has two demonstratives that are invariably followed by locative “reinforcers.”

(1) a. di’e ... e
 this ... here

The demonstrative and reinforcer typically bracket the associated DP:

But under some circumstances, the reinforcer surfaces quite far away:

(3) [\text{DP } \text{Di’e muane-na }] \text { ma-kikkir sanna’ e.}
 This \text{man-3GEN} \text{STAT-miserly very here}
 ‘This husband of hers was truly a pinchpenny.

Pelenkahu et al. 1983;
The Construction

The phenomenon: a **demonstrative-reinforcer construction** (Bernstein 1997, Roehrs 2010) Mandar has two demonstratives that are invariably followed by locative “reinforcers.”

(1) a. di’e ... e
 this ... here

The demonstrative and reinforcer typically bracket the associated DP:

But under some circumstances, the reinforcer surfaces **quite far away**:

(3) $\left[_{DP} \text{Di’e muane-na } \right]$ ma-kikkir sanna’ e.
 This man-3GEN STAT-miserly very here
 ‘This husband of hers was truly a pinchpenny. Pelenkahu et al. 1983;

The Puzzle: How can we capture the dependency **and** the position of the reinforcers?
The Roadmap

1. The Basic Syntax
The Roadmap

1. The Basic Syntax
2. The Prosodic Generalization
The Roadmap

1. The Basic Syntax
2. The Prosodic Generalization
3. The Phonological Solution
Section 3
The Basic Syntax
The Reinforcers

This construction recruits a pair of locative adverbs that typically adjoin to the vp.
The Reinforcers

This construction recruits a pair of locative adverbs that typically adjoin to the vp.

(4) a. $[_{vp} \text{ Buali=a'} \text{ mating e }]$!
 $lv.\text{open=1ABS for.me here}$
 “Open up for me here!”

b. $\text{Apa=digena'} [_{vt} \text{ di-uwa o }]$?
 $\text{what=just PASS-say there}$
 “What was just said there?”

Pelenkahu et al. 1983

Friberg & Jerniati 2000;
The Reinforcers

This construction recruits a pair of locative adverbs that typically adjoin to the VP.

The reinforcers are obligatory in the presence of these two demonstratives.

(5) *Di’e buku
 This book
 “This book.”
The Reinforcers

This construction recruits a pair of locative adverbs that typically adjoin to the vp.

The reinforcers are obligatory in the presence of these two demonstratives.

The reinforcers are only obligatory with certain demonstratives.

(6) **Iting** buku.
That book
“That book.”
The Reinforcers

This construction recruits a pair of locative adverbs that typically adjoin to the VP.

The reinforcers are obligatory in the presence of these two demonstratives.

The reinforcers are only obligatory with certain demonstratives.

The reinforcers have to “match” the demonstratives that appear.

(7) *Di’e buku □.
 This book there
 “This book.”
Lexical Selection
Lexical Selection

Proposal: this syntactic dependency involves Lexical Selection (Merchant 2019)
Lexical Selection

Proposal: this syntactic dependency involves Lexical Selection
 (Merchant 2019)
 - The demonstrative originates in a specifier position in the DP
 (Brugè 2002)
Lexical Selection

Proposal: this syntactic dependency involves Lexical Selection
- The demonstrative originates in a specifier position in the DP
- The demonstrative selects the reinforcer

(Merchant 2019) (Brugè 2002) (Roehrs 2010)
Lexical Selection

Proposal: this syntactic dependency involves Lexical Selection

- The demonstrative originates in a specifier position in the DP (Merchant 2019)
- The demonstrative selects the reinforcer (Brugè 2002)
- DP-Internal Word Order: linked to DP-internal movement (Roehrs 2010)
- DP-Internal Word Order: linked to DP-internal movement (Paul & Potsdam 2022)
Lexical Selection

Proposal: this syntactic dependency involves Lexical Selection (Merchant 2019)
- The demonstrative originates in a specifier position in the DP (Brugè 2002)
- The demonstrative selects the reinforcer (Roehrs 2010)
- DP-Internal Word Order: linked to DP-internal movement (Paul & Potsdam 2022)

(8) Demonstratives select Reinforcers

\[
\begin{array}{c}
\text{DP} \\
\text{DEMP} \\
\text{DEM}^0 \\
\text{ADV}^0 \\
edi'e/di'o \\
ed\end{array}
\quad
\begin{array}{c}
\text{D'} \\
\text{D}^0 \\
\phi \\
\text{NP} \\
\text{NOUN} \\
\text{ADV} \\
e/o
\end{array}
\]
Dealing with Separation
Dealing with Separation

Puzzle: the reinforcer invariably appears at the right edge of the clause.
Dealing with Separation

Puzzle: the reinforcer invariably appears at the right edge of the clause.

(9) Map-pesta=i toAmerika [dp di’o allo] map-pake baraccung o.
AV-celebrate=3ABS Americans that day AV-shoot fireworks there
“Americans celebrate on that day by shooting fireworks.”

JT: 9.13, 19
Dealing with Separation

Puzzle: the reinforcer invariably appears at the right edge of the clause.
Dealing with Separation

Puzzle: the reinforcer invariably appears at the right edge of the clause.

Within the syntax, we could try to capture this pattern in a number of ways:
Dealing with Separation

Puzzle: the reinforcer invariably appears at the right edge of the clause.

Within the syntax, we could try to capture this pattern in a number of ways:

1. **Rightward Movement** of the reinforcers:
Dealing with Separation

Puzzle: the reinforcer invariably appears at the right edge of the clause.

Within the syntax, we could try to capture this pattern in a number of ways:

1. **Rightward Movement** of the reinforcers:
Dealing with Separation

Puzzle: the reinforcer invariably appears at the right edge of the clause.

Within the syntax, we could try to capture this pattern in a number of ways:

1. **RIGHTWARD MOVEMENT** of the reinforcers:

2. **LEFTWARD MOVEMENT** of everything else:
Dealing with Separation

Puzzle: the reinforcer invariably appears at the right edge of the clause.

Within the syntax, we could try to capture this pattern in a number of ways:

1. **Rightward Movement** of the reinforcers:

2. **Leftward Movement** of everything else:
Dealing with Separation

Puzzle: the reinforcer invariably appears at the right edge of the clause.

Within the syntax, we could try to capture this pattern in a number of ways:

1. Rightward Movement of the reinforcers:

2. Leftward Movement of everything else:

3. Base-Generation of the reinforcers at the right edge:
Dealing with Separation

Puzzle: the reinforcer invariably appears at the right edge of the clause.

Within the syntax, we could try to capture this pattern in a number of ways:

1. **Rightward Movement** of the reinforcers:

2. **Leftward Movement** of everything else:

3. **Base-Generation** of the reinforcers at the right edge:
Dealing with Separation

Syntactic accounts face two empirical challenges.
Dealing with Separation

Syntactic accounts face two empirical challenges.

Problem One: the domains that host the reinforcers are syntactically heterogeneous.
Dealing with Separation

Syntactic accounts face two empirical challenges.

Problem One: the domains that host the reinforcers are syntactically heterogeneous.

- They include matrix and embedded clauses, both finite and non-finite:
Dealing with Separation

Syntactic accounts face two empirical challenges.

Problem One: the domains that host the reinforcers are syntactically heterogeneous.

- They include matrix and embedded clauses, both finite and non-finite:

 (10) \[\text{Mau tanda}=i \quad \text{di’e paket } \quad \text{e } \quad \text{ndappa}=i \quad \text{u-buai}. \]

 though arrived=3ABS this package here not.yet=3ABS PV.1ERG-open

 ‘Though this package came, I haven’t opened it yet.’

 JT; 11.12; 29.
Dealing with Separation

Syntactic accounts face two empirical challenges.

Problem One: the domains that host the reinforcers are syntactically heterogeneous.

- They include matrix and embedded clauses, both finite and non-finite:
Dealing with Separation

Syntactic accounts face two empirical challenges.

Problem One: the domains that host the reinforcers are syntactically heterogeneous.

- They include matrix and embedded clauses, both finite and non-finite:
- Clause-initial topics (but not foci):
Dealing with Separation

Syntactic accounts face two empirical challenges.

Problem One: the domains that host the reinforcers are syntactically heterogeneous.

- They include matrix and embedded clauses, both finite and non-finite:

- Clause-initial topics (but not foci):

 (11) \[\text{DP} \quad \text{Di'o wattu} \quad \text{o} \quad \text{, na=mamba=i s-um-obal.} \]

 that time there FUT=AV.go=3ABS AV-sail

 ‘At that time, he was going to sail.’

 Pelenkahu et al. 1983:
Dealing with Separation

Syntactic accounts face two empirical challenges.

Problem One: the domains that host the reinforcers are syntactically heterogeneous.

- They include matrix and embedded clauses, both finite and non-finite:
- Clause-initial topics (but not foci):
Dealing with Separation

Syntactic accounts face two empirical challenges.

Problem One: the domains that host the reinforcers are syntactically heterogeneous.

- They include matrix and embedded clauses, both finite and non-finite:
- Clause-initial topics (but not foci):
- And fragment answers.
Dealing with Separation

Syntactic accounts face two empirical challenges.

Problem One: the domains that host the *reinforcers* are syntactically heterogeneous.

- They include matrix and embedded clauses, both finite and non-finite:
- Clause-initial topics (but not foci):
- And fragment answers.

(12) \([_{DP\quad Di’o\; kopi\quad o}\;].\)

that coffee there

‘That coffee.’
Dealing with Separation

Syntactic accounts face two empirical challenges.

Problem One: the domains that host the reinforcers are syntactically heterogeneous.
Dealing with Separation

Syntactic accounts face two empirical challenges.

Problem One: the domains that host the reinforcers are syntactically heterogeneous.

Problem Two: when demonstratives compete, the winner is chosen without reference to height.
Dealing with Separation

Syntactic accounts face two empirical challenges.

Problem One: the domains that host the reinforcers are syntactically heterogeneous.

Problem Two: when demonstratives compete, the winner is chosen without reference to height.

- When clauses contain two demonstratives, only the rightmost is matched.
Dealing with Separation

Syntactic accounts face two empirical challenges.

Problem One: the domains that host the reinforcers are syntactically heterogeneous.

Problem Two: when demonstratives compete, the winner is chosen without reference to height.

- When clauses contain two demonstratives, only the **rightmost** is matched.

(13) Na-alli=i [\(_{\text{DP}}\) di’e tau] [\(_{\text{DP}}\) di’o buku] o.

pv.3ERG-buy=3ABS this person that book there

‘This person bought that book.’

JT; 3.5, 154
Dealing with Separation

Syntactic accounts face two empirical challenges.

Problem One: the domains that host the reinforcers are syntactically heterogeneous.

Problem Two: when demonstratives compete, the winner is chosen without reference to height.

- When clauses contain two demonstratives, only the **rightmost** is matched.
- ... even when the rightmost DP is obviously lower in the syntax.
Dealing with Separation

Syntactic accounts face two empirical challenges.

Problem One: the domains that host the reinforcers are syntactically heterogeneous.

Problem Two: when demonstratives compete, the winner is chosen without reference to height.

- When clauses contain two demonstratives, only the **rightmost** is matched.
- ... even when the rightmost DP is obviously lower in the syntax.

(14) Bemme=i $[\text{DP} \quad \text{di’o tau}]$ $[\text{PP} \quad \text{non di’e passauang}]$ e !

fall=3ABS that person down this well here

‘That person fell down this well!’

JT; 3.5, 169
Dealing with Separation

Syntactic accounts face two empirical challenges.

Problem One: the domains that host the reinforcers are syntactically heterogeneous.

Problem Two: when demonstratives compete, the winner is chosen without reference to height.
Dealing with Separation

Syntactic accounts face two empirical challenges.

Problem One: the domains that host the reinforcers are syntactically heterogeneous.

Problem Two: when demonstratives compete, the winner is chosen without reference to height.

Result: the correct analysis...
Dealing with Separation

Syntactic accounts face two empirical challenges.

Problem One: the domains that host the reinforcers are syntactically heterogeneous.

Problem Two: when demonstratives compete, the winner is chosen without reference to height.

Result: the correct analysis...

1. Cannot take the reinforcers to sit in a consistent position (e.g., c^0),
Dealing with Separation

Syntactic accounts face two empirical challenges.

Problem One: the domains that host the reinforcers are syntactically heterogeneous.

Problem Two: when demonstratives compete, the winner is chosen without reference to height.

Result: the correct analysis...

1. Cannot take the reinforcers to sit in a consistent position (e.g., c^0),
2. Cannot take their associates to move to a consistent position (e.g., SPEC, TP),
Dealing with Separation

Syntactic accounts face two empirical challenges.

Problem One: the domains that host the reinforcers are syntactically heterogeneous.

Problem Two: when demonstratives compete, the winner is chosen without reference to height.

Result: the correct analysis...

1. Cannot take the reinforcers to sit in a consistent position (e.g., c^0),
2. Cannot take their associates to move to a consistent position (e.g., SPEC, TP),
3. And cannot treat the reinforcers as a type of (Locality-Sensitive) Agreement (e.g., in c^0).
Section 4

The Prosodic Generalization
Prosodic Domains
Prosodic Domains

The key to understanding the distribution of the reinforcers lies in **prosodic organization**.
Prosodic Domains

The key to understanding the distribution of the reinforcers lies in **prosodic organization**.

Phonological strings have their own constituent structure (Selkirk 1984; Nespor & Vogel 1986)
Prosodic Domains

The key to understanding the distribution of the reinforcers lies in **prosodic organization**.

Phonological strings have their own constituent structure (Selkirk 1984; Nespor & Vogel 1986)

1. Grounded in, but distinct from, syntax (Nespor & Vogel 1986, Selkirk & Elordieta 2011)
Prosodic Domains

The key to understanding the distribution of the reinforcers lies in **prosodic organization**.

Phonological strings have their own constituent structure (Selkirk 1984; Nespor & Vogel 1986)

1. Grounded in, but distinct from, syntax (Nespor & Vogel 1986, Selkirk & Elordieta 2011)

2. Made up of prosodic categories with distinct phonological properties (tones, lengthening...)
Prosodic Domains

The key to understanding the distribution of the reinforcers lies in **prosodic organization**.

Phonological strings have their own constituent structure (Selkirk 1984; Nespor & Vogel 1986)

1. Grounded in, but distinct from, syntax (Nespor & Vogel 1986, Selkirk & Elordieta 2011)
2. Made up of prosodic categories with distinct phonological properties (tones, lengthening...)
3. Assumed inventory: word, phrase, intonational phrase \((\omega, \phi, \iota)\) (Itô & Mester 2009)
Prosodic Domains

The key to understanding the distribution of the reinforcers lies in **prosodic organization**.

Phonological strings have their own constituent structure (Selkirk 1984; Nespor & Vogel 1986)
Prosodic Domains

The key to understanding the distribution of the reinforcers lies in **prosodic organization**.

Phonological strings have their own constituent structure (Selkirk 1984; Nespor & Vogel 1986)

Illustration: Prosodic Organization
Prosodic Domains

The key to understanding the distribution of the reinforcers lies in **prosodic organization**.

Phonological strings have their own constituent structure (Selkirk 1984; Nespor & Vogel 1986)

Illustration: Prosodic Organization

(15) Mane mi’-oro=i di olo boyan-na.
 just AV-sit=3ABS in front house-3GEN

‘They just sat in front of his house.’

JT: 6.30, 1
Prosodic Domains

The key to understanding the distribution of the reinforcers lies in **prosodic organization**.

Phonological strings have their own constituent structure (Selkirk 1984; Nespor & Vogel 1986)

Illustration: Prosodic Organization

(15) Mane mi’-oro=i di olo boyan-na. (16) *Prosodic Structure*

*just AV-sit=3ABS in front house-3GEN

‘They just sat in front of his house.’

JT: 6.30, 1
Prosodic Domains

(15) Mane mi’-oro=i di olo boyan-na.
 just AV-sit=3ABS in front house-3GEN

'They just sat in front of his house.'

JT: 6.30, 1
Prosodic Domains

(15) Mane mi’-oro=i di olo boyan-na.
 just AV-sit=3ABS in front house-3GEN
 ‘They just sat in front of his house.’
 JT: 6.30, 1

(16) Prosodic Structure

Prosodic Structure
Prosodic Domains

(15) Mane mi’-oro=i di olo boyan-na.
just AV-sit=3ABS in front house-3GEN
‘They just sat in front of his house.’
JT: 6.30, 1

(16) Prosodic Structure

(17) Pitch Track: Example (15)

<table>
<thead>
<tr>
<th>mane</th>
<th>mi’oro’</th>
<th>i</th>
<th>ri</th>
<th>olo</th>
<th>wo</th>
<th>yan</th>
<th>na</th>
</tr>
</thead>
<tbody>
<tr>
<td>boyanna</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

They just sat down in front of his house
The Intonational Phrase
The Intonational Phrase

The crucial unit here: the intonational phrase.
The Intonational Phrase

The crucial unit here: the intonational phrase.

- The largest constituent in the prosodic hierarchy.
The Intonational Phrase

The crucial unit here: the intonational phrase.

- The largest constituent in the prosodic hierarchy.
- Prosodic Diagnostic: final lengthening at the right edge.
The Intonational Phrase

The crucial unit here: the *intonational phrase*.

- The largest constituent in the prosodic hierarchy.
- Prosodic Diagnostic: final lengthening at the right edge.

Prosodic Generalization: the reinforcers always surface at the right edge of an $\ni P$.
The Intonational Phrase

The crucial unit here: the intonational phrase.

- The largest constituent in the prosodic hierarchy.
- Prosodic Diagnostic: final lengthening at the right edge.

Prosodic Generalization: the reinforcers always surface at the right edge of an vP.

(18) Reinforcer Placement: \{i ... (ϕ [ω DEM] __ [ω DP]) ... [ADV] \}
The Intonational Phrase

The crucial unit here: the intonational phrase.

- The largest constituent in the prosodic hierarchy.
- Prosodic Diagnostic: final lengthening at the right edge.

Prosodic Generalization: the reinforcers always surface at the right edge of an vP.

(18) Reinforcer Placement: \(\{ _ _ _ (\phi [\omega \text{ DEM }] _ [\omega \text{ DP }]) _ \text{ ADV} \} \)

This captures their surface distribution:
The Intonational Phrase

The crucial unit here: the intonational phrase.

- The largest constituent in the prosodic hierarchy.
- Prosodic Diagnostic: final lengthening at the right edge.

Prosodic Generalization: the reinforcers always surface at the right edge of an \(\nu \text{P} \).

(18) Reinforcer Placement: \(\{ \nu \ldots (\phi \ [\omega \ \text{DEM} \] \ _ \ [\omega \ \text{DP} \] \) \ldots \ [\text{ADV}] \} \)

This captures their surface distribution:

- Fragments \(\rightarrow \nu \)
The Intonational Phrase

The crucial unit here: the *intonational phrase*.

- The largest constituent in the prosodic hierarchy.
- Prosodic Diagnostic: final lengthening at the right edge.

Prosodic Generalization: the reinforcers always surface at the right edge of an νP.

(18) **Reinforcer Placement:** \(\{ \iota \ldots (\phi [\omega \text{ DEM }] \ldots [\omega \text{ DP }]) \ldots \text{ADV} \} \)

This captures their surface distribution:

- Fragments \(\rightarrow \iota \)
- Clause-initial topics \(\rightarrow \iota \)
The Intonational Phrase

The crucial unit here: the intonational phrase.

- The largest constituent in the prosodic hierarchy.
- Prosodic Diagnostic: final lengthening at the right edge.

Prosodic Generalization: the reinforceers always surface at the right edge of an \(\nu \text{P} \).

\[(18) \quad \text{Reinforcer Placement: } \{ \nu \ldots (\phi [\omega \text{ DEM }] _ [\omega \text{ DP }]) \ldots \text{ADV} \}\]

This captures their surface distribution:

- Fragments \(\rightarrow \nu \)
- Clause-initial topics \(\rightarrow \nu \)
- Matrix clauses, preposed embedded clauses \(\rightarrow \nu \)
Another Pitch Track
Another Pitch Track

Illustration: the reinforcers surface in positions where they receive final lengthening.
Another Pitch Track

Illustration: the reinforcingers surface in positions where they receive final lengthening.

(19) Mane u-saka=i di’o manu’ di boyang o.
 Just pv.1ERG-catch=3ABS that bird in house there
 ‘I just caught that bird in the house.’

JT: 6.30, 2
Another Pitch Track

Illustration: the reinforcers surface in positions where they receive final lengthening.

(19) Mane u-saka=ι di’o manu’ di boyang o.
 Just pv.1ERG-catch=3ABS that bird in house there
 ‘I just caught that bird in the house.’
 JT: 6.30, 2

(20) \{_{ι} \text{ Mane usakai } \text{(φ)} di’o manu’ \text{(φ)} di boyang \text{(φ)} \}
Another Pitch Track
Another Pitch Track

(20) \{ \text{\textphi\ Mane usakai\textphi\ di'o manu'\textphi\ di boyang} \}
Another Pitch Track

(20) \{ l (\phi \text{ Mane usakai}) (\phi \text{ di’o manu’}) (\phi \text{ di boyang}) \}

<table>
<thead>
<tr>
<th>ma</th>
<th>ne</th>
<th>u</th>
<th>sa</th>
<th>ka</th>
<th>i</th>
<th>ri?</th>
<th>o</th>
<th>ma</th>
<th>nu?</th>
<th>ri</th>
<th>wo</th>
<th>ya</th>
<th>ŋo</th>
</tr>
</thead>
<tbody>
<tr>
<td>mane</td>
<td>usaka</td>
<td>i</td>
<td>di’o</td>
<td>manu’</td>
<td>di</td>
<td>boyang</td>
<td>o</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>just</td>
<td>PV.1.catch</td>
<td>abs</td>
<td>that</td>
<td>bird</td>
<td>in</td>
<td>house</td>
<td>there</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

'I just caught that bird in the house.'
Section 5
The Phonological Account
Post-Syntactic Displacement
Post-Syntactic Displacement

Proposal: the reinforcers are positioned at the right edge of the intonational phrase.
Post-Syntactic Displacement

Proposal: the reinforcers are positioned at the right edge of the intonational phrase.

(21) Reinforcer Postposing: \{u \ldots (\phi [\omega \text{DEM}] \text{ } \ldots [\omega \text{DP}]) \ldots \text{ADV}\}
Post-Syntactic Displacement

Proposal: the reinforcers are positioned at the right edge of the intonational phrase.

\[(21) \quad \text{Reinforcer Postposing:} \quad \{ \underbrace{\ldots (\phi [\omega \text{ DEM }] \ldots [\omega \text{ DP }]) \ldots \text{ ADV} \}} \]

This step must occur in a component of the grammar where prosodic information is available. This information is \textit{not} available in the syntax, on standard assumptions (Zwicky & Pullum 1986)
Post-Syntactic Displacement

Proposal: the reinforceers are positioned at the right edge of the intonational phrase.

(21) Reinforcer Postposing: \(\{ _ _ _ (_ (_ [_ [_ _ DEM] _ [_ [_ _ DP]] _ ... _ ADV)) _ \} \)

This step must occur in a component of the grammar where prosodic information is available.
This information is not available in the syntax, on standard assumptions (Zwicky & Pullum 1986)

Result: this is a case of post-syntactic displacement that occurs in the phonology.
Phonological Displacement: Why?
Phonological Displacement: Why?

Starting Formalization: Prosodic Subcategorization (Inkelas 1990)
Phonological Displacement: Why?

Starting Formalization: Prosodic Subcategorization (Inkelas 1990)

- Lexical items can be prespecified for the way in which they interact with prosodic structure.
Phonological Displacement: Why?

Starting Formalization: Prosodic Subcategorization (Inkelas 1990)

- Lexical items can be prespecified for the way in which they interact with prosodic structure.

(22)

a. $\sqrt{\text{NUH-UH}} \rightarrow \{_ _ _ \} \text{ HLH}$

b. "The lexical item nuh-uh has to be an ι that bears the contour Rise-Fall-Rise."
Phonological Displacement: Why?

Starting Formalization: Prosodic Subcategorization (Inkelas 1990)

- Lexical items can be prespecified for the way in which they interact with prosodic structure.

\[(22) \quad a. \quad \sqrt{\text{NUH-UH}} \rightarrow \{\nu \quad \}_\text{HLH} \]

b. “The lexical item *nuh-uh* has to be an *\nu* that bears the contour Rise-Fall-Rise.”

- Formalism: the reinforcers are lexically specified to surface at the right edge of the *\nu*:
Phonological Displacement: Why?

Starting Formalization: Prosodic Subcategorization (Inkelas 1990)

- Lexical items can be prespecified for the way in which they interact with prosodic structure.

\[
\begin{align*}
(22) \quad & \quad \sqrt{\text{NUH-UH}} \rightarrow \{_ \quad _ _ _ _ \} \quad \text{HLH} \\
& \quad \text{b. “The lexical item } nuh-uh \text{ has to be an } _ \text{ that bears the contour Rise-Fall-Rise.”}
\end{align*}
\]

- Formalism: the reinforcers are lexically specified to surface at the right edge of the \(_ \):

\[
\begin{align*}
(23) \quad & \quad \sqrt{\text{HERE}} \rightarrow \{_ \quad _ _ _ _ \}\ \\
& \quad \sqrt{\text{THERE}} \rightarrow \{_ \quad _ _ _ _ \}
\end{align*}
\]
The Subcategorization Account
The Subcategorization Account

The Subcategorization Account

- CONSTRAINT SET:
The Subcategorization Account

- Constraint Set:

 1. SubCat: assign one violation (AOV) for every input \(x^0 \) that does not satisfy its prosodic subcategorization frame in surface prosodic structure cf. RESPECT: Bonet 2006
The Subcategorization Account

Schematic Analysis: Optimality-Theoretic Formalization (Prince & Smolensky 1993/2004)

- **Constraint Set:**

 1. **SubCat:** assign one violation (aov) for every input x^0 that does not satisfy its prosodic subcategorization frame in surface prosodic structure
 cf. **RESPECT:** Bonet 2006

 2. **Linearity:** aov for every relationship of precedence in the phonology that does not correspond to a relationship of dominance in the syntax.
 Grimshaw 1999
The Subcategorization Account

Schematic Analysis: Optimality-Theoretic Formalization (Prince & Smolensky 1993/2004)

- **Constraint Set:**
 1. **SubCat:** assign one violation (aov) for every input x^0 that does not satisfy its prosodic subcategorization frame in surface prosodic structure
 cf. **Respect:** Bonet 2006
 2. **Linearity:** aov for every relationship of precedence in the phonology that does not correspond to a relationship of dominance in the syntax.
 Grimshaw 1999

- **Ranking:** SubCat $>$ Linearity
The Subcategorization Account

- Constraint Set:

 1. **SubCat**: assign one violation (AOV) for every input x^0 that does not satisfy its prosodic subcategorization frame in surface prosodic structure
 cf. RESPECT: Bonet 2006

 2. **Linearity**: AOV for every relationship of precedence in the phonology that does not correspond to a relationship of dominance in the syntax.
 Grimshaw 1999

- Ranking: **SubCat > Linearity**

- Initial Tableau:
The Subcategorization Account

Schematic Analysis: Optimality-Theoretic Formalization (Prince & Smolensky 1993/2004)

- **Constraint Set:**

 1. **SubCat:** assign one violation (AOV) for every input x^0 that does not satisfy its prosodic subcategorization frame in surface prosodic structure

 cf. **Respect:** Bonet 2006

 2. **Linearity:** AOV for every relationship of precedence in the phonology that does not correspond to a relationship of dominance in the syntax.

 Grimshaw 1999

- **Ranking:** **SubCat** > **Linearity**

- **Initial Tableau:**

<table>
<thead>
<tr>
<th>$[\text{cp} \ldots \text{di’e e buku} \ldots]$</th>
<th>SubCat</th>
<th>Linearity</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{\text{a. }}{{t \ldots [\omega (\text{di’e})] [\omega (buku)] \ldots [\omega (\text{e})] }}$</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>$\frac{\text{b. }}{{t \ldots [\omega (\text{di’e})] \text{ e } [\omega (buku)] \ldots }}$</td>
<td>*!</td>
<td></td>
</tr>
</tbody>
</table>
A Deeper Analysis
A Deeper Analysis

Proposal: Reinforcer postposing is deeper than static idiosyncracy: it is phonology.
A Deeper Analysis

Proposal: Reinforcer postponing is deeper than static idiosyncracy: it is phonology.

The basic motivation lies in word minimality

McCarthy & Prince 1993
A Deeper Analysis

Proposal: Reinforcer postponing is deeper than static idiosyncracy: it is phonology.

The basic motivation lies in word minimality

- Mandarin imposes a size constraint on the prosodic word (\(\omega \)): it must be disyllabic.

McCarthy & Prince 1993
A Deeper Analysis

Proposal: Reinforcer postposing is deeper than static idiosyncracy: it is phonology.

The basic motivation lies in word minimality

- Mandar imposes a size constraint on the prosodic word (ω): it must be disyllabic.
- This can be seen clearly in the system of functional elements:
A Deeper Analysis

Proposal: Reinforcer postposing is deeper than static idiosyncracy: it is phonology.

The basic motivation lies in *word minimality*

- Mandar imposes a size constraint on the prosodic word (ω): it must be disyllabic.
- This can be seen clearly in the system of functional elements:
 - Functional heads do not form independent ωs before complements. (Selkirk 1995)
A Deeper Analysis

Proposal: Reinforcer postposing is deeper than static idiosyncracy: it is phonology.

The basic motivation lies in word minimality. McCarthy & Prince 1993

- Mandar imposes a size constraint on the prosodic word (ω): it must be disyllabic.
- This can be seen clearly in the system of functional elements:
 - Functional heads do not form independent ωs before complements. (Selkirk 1995)
 - In that context: many functional elements in Mandar are monosyllabic.
A Deeper Analysis

Proposal: Reinforcer postposing is deeper than static idiosyncracy: it is phonology.

The basic motivation lies in word minimality

- Mandar imposes a size constraint on the prosodic word (ω): it must be disyllabic.
- This can be seen clearly in the system of functional elements:
 - Functional heads do not form independent ωs before complements. (Selkirk 1995)
 - In that context: many functional elements in Mandar are monosyllabic.
 - When those functional heads surface in isolation, they become disyllabic.
A Deeper Analysis

Proposal: Reinforcer postposing is deeper than static idiosyncracy: it is phonology.

The basic motivation lies in word *minimality*

- Mandar imposes a size constraint on the prosodic word (\(\omega\)): it must be disyllabic.
- This can be seen clearly in the system of functional elements:

 McCarthy & Prince 1993
A Deeper Analysis

Proposal: Reinforcer postposing is deeper than static idiosyncracy: it is phonology.

The basic motivation lies in word minimality

- Mandar imposes a size constraint on the prosodic word (ω): it must be disyllabic.
- This can be seen clearly in the system of functional elements:

(24) a. \[_{\omega} \textbf{Sun} \text{di}=('bo.yang) \]
 out=of=house
 ‘Out of the house.’
A Deeper Analysis

Proposal: Reinforcer postposing is deeper than static idiosyncracy: it is phonology.

The basic motivation lies in word minimality

- Mandar imposes a size constraint on the prosodic word (ω): **it must be disyllabic.**
- This can be seen clearly in the system of functional elements:

\[
\begin{align*}
(24) & \quad a. \quad [\omega \text{Sun}]=\text{di}=('\text{bo.yang}). \\
& \quad \quad \text{out=of=house} \\
& \quad \quad \text{‘Out of the house.’} \\
& \quad b. \quad \text{Pole}=\text{mi} \quad [\omega ('\text{su.’ung})]. \\
& \quad \quad \text{come=PFV.3ABS out} \\
& \quad \quad \text{‘He came out.’} \\
& \quad \text{JT: 8.15, 28-29}
\end{align*}
\]
A Deeper Analysis

Proposal: Reinforcer postposing is deeper than static idiosyncracy: it is phonology.

The basic motivation lies in word minimality

- Mandar imposes a size constraint on the prosodic word (ω): it must be disyllabic.
- This can be seen clearly in the system of functional elements:

\[(24)\]

\[
\begin{align*}
\omega [\text{Su} &= \text{di} = (\text{bo.yang})], \\
\text{out} &= \text{of} = \text{house} \\
\text{‘Out of the house.’}
\end{align*}
\]

\[
\begin{align*}
\omega [\text{su.’ung}] , \\
\text{come} &= \text{PFV.3ABS} \\
\text{out} \\
\text{‘He came out.’}
\end{align*}
\]

 JT: 8.15, 28-29

\[(25)\] Short-Long Alternations

<table>
<thead>
<tr>
<th>HEAD</th>
<th>SHORT</th>
<th>LONG</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>P⁰</td>
<td>lo</td>
<td>lao</td>
<td>to</td>
</tr>
<tr>
<td></td>
<td>so</td>
<td>sau</td>
<td>over</td>
</tr>
<tr>
<td></td>
<td>nong</td>
<td>naung</td>
<td>to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>down</td>
</tr>
<tr>
<td>Σ⁰</td>
<td>sung</td>
<td>su’ung</td>
<td>out of</td>
</tr>
<tr>
<td></td>
<td>da</td>
<td>da’a</td>
<td>don’t!</td>
</tr>
<tr>
<td></td>
<td>ndang</td>
<td>andiang</td>
<td>not</td>
</tr>
</tbody>
</table>
The Right Edge is Special
The Right Edge is Special

Mandar imposes a size constraint on the prosodic word (ω): it must be disyllabic.
The Right Edge is Special

Mandar imposes a size constraint on the prosodic word (ω): it must be disyllabic. **Key Pattern**: this constraint is lifted at the right edge of the ι.
The Right Edge is Special

Mandar imposes a size constraint on the prosodic word (ω): it must be disyllabic.

Key Pattern: this constraint is lifted at the right edge of the ι.
- The right edge of the ι can optionally host a special type of focal accent
The Right Edge is Special

Mandar imposes a size constraint on the prosodic word (ω): it must be disyllabic.

Key Pattern: this constraint is lifted at the right edge of the ι.

- The right edge of the ι can optionally host a special type of focal accent
- This accent triggers a change in the ω-level stress of its host: penultimate \rightarrow **final**
The Right Edge is Special

Mandar imposes a size constraint on the prosodic word (\(\omega\)): it must be disyllabic.

Key Pattern: this constraint is lifted at the right edge of the \(\iota\).

- The right edge of the \(\iota\) can optionally host a special type of focal accent
- This accent triggers a change in the \(\omega\)-level stress of its host: penultimate \(\rightarrow\) final.

\[
(26) \quad \{\iota \, \text{Melo=a'} \quad [\omega \, \text{mac-co('wa) }] \} \\
\quad \text{AV.want=1ABS} \quad \text{AV-try} \\
\quad \text{‘I want to TRY.’}
\]
The Right Edge is Special

Mandar imposes a size constraint on the prosodic word (ω): it must be disyllabic. Key Pattern: this constraint is lifted at the right edge of the ι.

- The right edge of the ι can optionally host a special type of focal accent
- This accent triggers a change in the ω-level stress of its host: penultimate \rightarrow final.
The Right Edge is Special

Mandar imposes a size constraint on the prosodic word (ω): it must be disyllabic.

Key Pattern: this constraint is lifted at the right edge of the ι.

- The right edge of the ι can optionally host a special type of focal accent
- This accent triggers a change in the ω-level stress of its host: penultimate \rightarrow final.

- When they receive focal accent, **functional words can remain monosyllabic**:
The Right Edge is Special

Mandar imposes a size constraint on the prosodic word (\(\omega\)): it must be disyllabic.

Key Pattern: this constraint is lifted at the right edge of the \(i\).
- The right edge of the \(i\) can optionally host a special type of focal accent
- This accent triggers a change in the \(\omega\)-level stress of its host: penultimate \(\rightarrow\) final.

- When they receive focal accent, **functional words can remain monosyllabic**:

\[
(27) \quad \{i \,[\omega (\text{Sung})!] \} \\
\text{out} \\
\text{‘Out!’}
\]
The Reinforcers and the Right-Edge Accent
The Reinforcers and the Right-Edge Accent

Key Observation: the reinforcers “suck up” the focal accent at the right edge of the i.
The Reinforcers and the Right-Edge Accent

Key Observation: the reinforcers “suck up” the focal accent at the right edge of the \(\iota \).

- In the presence of a reinforcer, the preceding word cannot receive focal accent.
The Reinforcers and the Right-Edge Accent

Key Observation: the reinforcers “suck up” the focal accent at the right edge of the i.

- In the presence of a reinforcer, the preceding word cannot receive focal accent.

(28) $\{i \quad *$Basse=i \quad di'o \quad bayu \quad [\omega \quad mani('ni)] \quad o \quad \}$

wet=3ABS that shirt later there

Impossible: “That shirt will get wet LATER.”

JT: 8.24, 376
The Final Analysis
The Final Analysis

These observations set up a deeper analysis of Reinforcer Postposing:
The Final Analysis

These observations set up a deeper analysis of Reinforcer Postposing:

- The pattern targets a set of elements that violate a general constraint on Word Minimality,
The Final Analysis

These observations set up a deeper analysis of Reinforcer Postposing:

- The pattern targets a set of elements that violate a general constraint on Word Minimality,
- And it places them in a position where other monosyllables can satisfy that constraint.
The Final Analysis

These observations set up a deeper analysis of Reinforcer Postposing:

- The pattern targets a set of elements that violate a general constraint on Word Minimality,
- And it places them in a position where other monosyllables can satisfy that constraint.

This is displacement to resolve the prosodic needs of a reinforcer- a case of Prosodic Greed.
The Final Analysis
The Final Analysis

Claim One: monosyllabic words are licensed at the edge of the foot by a constraint on foot structure.
The Final Analysis

Claim One: monosyllabic words are licensed at the edge of the i by a constraint on foot structure.

- HEADEDNESS: AOV for every ω that does not contain a metrical foot. Nespor & Vogel 1986
The Final Analysis

Claim One: monosyllabic words are licensed at the edge of the \(\iota \) by a constraint on foot structure.

- **HEADEDNESS**: AOV for every \(\omega \) that does not contain a metrical foot. Nespor & Vogel 1986
- **FOOT.BINARITY_\(\sigma \)**: AOV for every metrical foot that is not disyllabic. Itô & Mester 1993
The Final Analysis

Claim One: monosyllabic words are licensed at the edge of the ι by a constraint on foot structure.

- **HEADEDNESS**: AOV for every ω that does not contain a metrical foot. Nespor & Vogel 1986
- **FOOT.BINARITYσ**: AOV for every metrical foot that is not disyllabic. Itô & Mester 1993
- **LICENSE(σ_{FT})$_\iota$**: AOV for every σ_{FT} that is not at the right edge of the ι. Kager 1996
The Final Analysis

Claim One: monosyllabic words are licensed at the edge of the i by a constraint on foot structure.
The Final Analysis

Claim One: monosyllabic words are licensed at the edge of the i by a constraint on foot structure.

Claim Two: the reinforcers undergo displacement to this edge in order to form licit words.
The Final Analysis

Claim One: monosyllabic words are licensed at the edge of the i by a constraint on foot structure.

Claim Two: the reinforcers undergo displacement to this edge in order to form licit words.

- MATCH(x^0, ω): AOV for every x^0 that does not correspond to a ω.
 Selkirk 2009
The Final Analysis

Claim One: monosyllabic words are licensed at the edge of the \(i \) by a constraint on foot structure.

Claim Two: the reinforcers undergo displacement to this edge in order to form licit words.

- \(\text{MATCH}(x^0, \omega) \): \(\text{AOV} \) for every \(x^0 \) that does not correspond to a \(\omega \).

 - \(\text{Dep} \): \(\text{AOV} \) for every output segment that does not have a correspondent in the input.

Selkirk 2009
The Final Analysis

Claim One: monosyllabic words are licensed at the edge of the \(i \) by a constraint on foot structure.

Claim Two: the reinforcers undergo displacement to this edge in order to form licit words.

- **MATCH**\((x^0, \omega)\): **AOV** for every \(x^0 \) that does not correspond to a \(\omega \).
 Selkirk 2009

- **DEP**: **AOV** for every output segment that does not have a correspondent in the input.

- **LINEARITY**: **AOV** for every relationship of precedence in the phonology that does not correspond to a relationship of dominance in the syntax.
 Grimshaw 1999
The Final Analysis

Claim One: monosyllabic words are licensed at the edge of the \(i \) by a constraint on foot structure.

Claim Two: the reinforcers undergo displacement to this edge in order to form licit words.
The Final Analysis

Claim One: monosyllabic words are licensed at the edge of the i by a constraint on foot structure.

Claim Two: the reinforcingers undergo displacement to this edge in order to form licit words.

Constraint Ranking:
The Final Analysis

Claim One: monosyllabic words are licensed at the edge of the \(i \) by a constraint on foot structure.

Claim Two: the reinforcers undergo displacement to this edge in order to form licit words.

Constraint Ranking:
The Final Analysis

Claim One: monosyllabic words are licensed at the edge of the i by a constraint on foot structure.

Claim Two: the reinforcers undergo displacement to this edge in order to form licit words.

Final Tableau:
The Final Analysis

Claim One: monosyllabic words are licensed at the edge of the i by a constraint on foot structure.

Claim Two: the reinforcers undergo displacement to this edge in order to form licit words.

Final Tableau:

<table>
<thead>
<tr>
<th>[\text{cp} \ldots \text{di’e e buku} \ldots]</th>
<th>MATCH</th>
<th>Dep</th>
<th>Head</th>
<th>License</th>
<th>FtBin</th>
<th>Linearity</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. { \omega (di’e) } \omega (buku) \ldots \omega (e) }</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>b. { \omega (di’e) e \omega (buku) \ldots }</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. { \omega (di’e) \omega (e’e) \omega (buku) \ldots }</td>
<td></td>
<td></td>
<td></td>
<td>*!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. { \omega (di’e) \omega e \omega (buku) \ldots }</td>
<td></td>
<td></td>
<td></td>
<td>*!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. { \omega (di’e) \omega (e) \omega (buku) \ldots }</td>
<td></td>
<td></td>
<td></td>
<td>*!</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>
Section 6

Conclusion
Conclusions
Conclusions

Summing up, we’ve made some progress on the patterns that we set out to explain:
Conclusions

Summing up, we’ve made some progress on the patterns that we set out to explain:

- The dependency between reinforcers and demonstratives turns on syntactic selection.
Conclusions

Summing up, we’ve made some progress on the patterns that we set out to explain:

- The dependency between reinforcers and demonstratives turns on syntactic selection.
- The position of the reinforcers is forced by a prosodic requirement at the interface:
Conclusions

Summing up, we’ve made some progress on the patterns that we set out to explain:

- The dependency between reinforcers and demonstratives turns on syntactic selection.
- The position of the reinforcers is forced by a prosodic requirement at the interface:
 1. The reinforcers are too small to form licit words in-situ,
Conclusions

Summing up, we’ve made some progress on the patterns that we set out to explain:

- The dependency between reinforcers and demonstratives turns on syntactic selection.
- The position of the reinforcers is forced by a prosodic requirement at the interface:
 1. The reinforcers are too small to form licit words in-situ,
 2. Monosyllabic words are exceptionally licensed at the right edge of the υ,
Conclusions

Summing up, we’ve made some progress on the patterns that we set out to explain:

- The dependency between reinforcers and demonstratives turns on syntactic selection.

- The position of the reinforcers is forced by a prosodic requirement at the interface:
 1. The reinforcers are too small to form licit words in-situ,
 2. Monosyllabic words are exceptionally licensed at the right edge of the \(\iota \),
 3. The reinforcers postpose to the edge of the \(\iota \) to satisfy the pressure to form words.
Conclusions

Summing up, we’ve made some progress on the patterns that we set out to explain:
Conclusions

Summing up, we’ve made some progress on the patterns that we set out to explain:

These results provide evidence for the theory of *Indirect Linearization*:
Conclusions

Summing up, we’ve made some progress on the patterns that we set out to explain:

These results provide evidence for the theory of *Indirect Linearization*:

1. The **position** of the reinforcers must be described in terms of prosodic structure:
Conclusions

Summing up, we’ve made some progress on the patterns that we set out to explain:

These results provide evidence for the theory of *Indirect Linearization*:

1. The **position** of the reinforcers must be described in terms of prosodic structure:
 - Syntactic analyses inadequately characterize their domains of placement,
Conclusions

Summing up, we’ve made some progress on the patterns that we set out to explain:

These results provide evidence for the theory of *Indirect Linearization*:

1. The **position** of the reinforcers must be described in terms of prosodic structure:
 - Syntactic analyses inadequately characterize their domains of placement,
 - ...and they miss key generalizations about the relevance of prosodic phrasing.
Conclusions

Summing up, we’ve made some progress on the patterns that we set out to explain:

These results provide evidence for the theory of *Indirect Linearization*:

1. The **position** of the reinforcers must be described in terms of prosodic structure:
 - Syntactic analyses inadequately characterize their domains of placement,
 - ...and they miss key generalizations about the relevance of prosodic phrasing.

2. And the **motivation for displacement** must be linked to ω-level phonology.
Conclusions

Summing up, we’ve made some progress on the patterns that we set out to explain:

These results provide evidence for the theory of Indirect Linearization:

1. The **position** of the reinforcers must be described in terms of prosodic structure:
 - Syntactic analyses inadequately characterize their domains of placement,
 - ...and they miss key generalizations about the relevance of prosodic phrasing.

2. And the **motivation for displacement** must be linked to ω-level phonology.
 - Phonological information about terminal nodes is not available within the syntax,
Conclusions

Summing up, we’ve made some progress on the patterns that we set out to explain:

These results provide evidence for the theory of *Indirect Linearization*:

1. The **position** of the reinforcers must be described in terms of prosodic structure:

 - Syntactic analyses inadequately characterize their domains of placement,
 - ...and they miss key generalizations about the relevance of prosodic phrasing.

2. And the **motivation for displacement** must be linked to ω-level phonology.

 - Phonological information about terminal nodes is not available within the syntax,
 - ...and the syntax has no way to link ω-minimality, footing, and the edge of the i.
Conclusions

Summing up, we’ve made some progress on the patterns that we set out to explain:

These results provide evidence for the theory of \textit{Indirect Linearization}:
Conclusions

Summing up, we’ve made some progress on the patterns that we set out to explain:

These results provide evidence for the theory of *Indirect Linearization*:

And they fit neatly into a *parallel* and *global* theory of phonological Spell-Out:
Conclusions

Summing up, we’ve made some progress on the patterns that we set out to explain:

These results provide evidence for the theory of Indirect Linearization:

And they fit neatly into a parallel and global theory of phonological Spell-Out:

- This analysis requires the linearization of syntactic terminals to be determined in parallel with the resolution of ω-level phonology and the organization of the clause into νs.
Conclusions

Summing up, we’ve made some progress on the patterns that we set out to explain:

These results provide evidence for the theory of *Indirect Linearization*:

And they fit neatly into a *parallel and global* theory of phonological Spell-Out:

- This analysis requires the linearization of syntactic terminals to be determined in parallel with the resolution of \(\omega \)-level phonology and the organization of the clause into \(\nu \)s.

- This is ruled out by theories that assume a cyclic model of Phonological Spell-Out, where word-level phonology is worked out before the construction of clause-level prosodic constituency. (e.g., Dobashi 2004, Selkirk & Kratzer 2008, Embick 2010, a.o.)
Conclusions

Summing up, we’ve made some progress on the patterns that we set out to explain:

These results provide evidence for the theory of *Indirect Linearization*:

And they fit neatly into a *parallel and global* theory of phonological Spell-Out:

- This analysis requires the linearization of syntactic terminals to be determined in parallel with the resolution of ω-level phonology and the organization of the clause into ıs.

- This is ruled out by theories that assume a cyclic model of Phonological Spell-Out, where word-level phonology is worked out before the construction of clause-level prosodic constituency. (e.g., Dobashi 2004, Selkirk & Kratzer 2008, Embick 2010, a.o.)

- But it follows neatly on theories that allow this to occur. Prince & Smolensky 1993/2004