Second Position Effects: Phonology and, if so, How?

Dan Brodkin (UCSC Linguistics)

AMP 2020

Two Questions on Second Position

1. Modularity: Where do Second Position Effects Arise

- Definition: linearization restrictions which force clitics to surface in second position (2p).
- Historical Parallel verb-second effects in Germanic, Medieval Romance, Kashmiri (Anderson 1993)

Phonological Approaches: second position effects arise postsyntactically.

- Postsyntactic Filtering. clitics move to cc: pr determines
Method: Theoretical Machinery behind 2 P ?

Align + StrongStart: 2p clitics move as far left as they can without violting ind

- Poster Summary

1. Mandar (South Sulawesi, Austronesian): 2 p clitics placed at pr, follow the first word in their intonational phrase.

Against Strong Start: 2p elements prosodically heavy; can surface intially.

Mandar Clitics: Crash Course

1. Mandar Basics

- Auxbiliaries wrecede the yerb; arguments follow.
- Regular penultimate stresss marked with I^{*}.
- Maximal prosodic words bear a right-edge H -
- N.b. $\mathrm{L}^{H} \mathrm{H}$ - acent marked with underline.

2. The Second-Position Clitic System

- Roughly forty 2 p elements with similar distribution
- Adverbs, aspectual markers, agreement, pronouns

Clitic Cluster

- Clitics form a rigidly-ordered cluster in 2 p.
- Disyllabic unacecteded clitics > monosyllabic clitics
- Monosyllabic lititics > multisylahic accented ditics
(1) The Clitic Cluster appears in $2 P$
 'So, seems lik
 'She just still hasn't come back yet!

$\sigma \sigma$	σ	σ
sannal very	bo again	
leqbaq just	pa yet	kapang

leqbaq just pa yet
bandi really? aq 1.AGR

Clitic Placement is Prosodic

- The cluster spuffaces together when the highest host is the velb or a awiliary. resembles a complex $x^{\text {o }}$.
- Certain complementizers break this pattern; attract only a subbet of 2p elements and force others to surface lower
- Mau 'although's hostst clitics which originate at or above Asp: dua 'still', but not sannal 'very' or $=i{ }^{\circ}$ Acr.'
(2) The Clitic Cluster splits up in the C-Domain
$\underset{\text { Mau=dua }}{\text { Melog=sannal-i }}$ intita,
Although I still want to see her...

2. The cluster splits constituents.

- Complex NP predicates: 2p elements split the linear string of possessed.Np-possessor.
- Syntactic operations cannot separate these two elementst the possessor resists being moved independently.
Paralle patters with complex pp predicates: 2 e elements split locative prepositions and their complements
(3) The Clitic Cluster splits up complex NP, PP Predicates

Diong=i dililiaq diqo tommuane.
there=Acr on=floor that man
'TThe
Word accent matters
(4) Only Accented Preverbal Elements host Clitics
a. \quad Mane sangnging $\frac{\text { missung=band=i=tuqu. }}{\text { then all }}$ go.out=really $=A$ CRR $=$ EMPH 'And then they all went out?'

4. Binarity Effects Adjust Clitic Placement.

- schenas: whatever their normal behavior, clitics strictly follow the first element in two-word utterances

Complementizers: generally cannot host 2 e elements like AGR; forced to do so in two-word utterances.
Complex vps: 2 e elements can follow v-o strins when they form single
(5) Prosodic Rephrasing Influences Clitic Placement

5. point: 2 P placement depends on prosodic factors; 2 P linearization occurs in the post-syntax.

The Strong Start Approach

1. StrongStart: a Formalization

- Desimerata
- STreonscrarr-style prohibitions should be visible elesewhere in the language.

Against Strong Start

No STRONGSTART EIsewhere

- Unaccented adverbs: behave like phrasal procilics but occur freely at the left edge of the intonational phra
(6) Phrasal Proclitics permitted at the Left Edge

$$
\begin{aligned}
& \text { ha-di-bawaij/ [na.ri.ward.wa.i] }
\end{aligned}
$$

$\underline{\underline{\sigma \sigma}} \quad \underline{\sigma \sigma} \quad \underline{\sigma \sigma}$
2. Prosodically Heavy Clitics

- 'Outer' 2p clitics: bear accents can be multisyllabic
- Resemble words; should not violate STroNGSTART

$$
\begin{aligned}
& \text { tuqu even } \begin{array}{l}
\text { todiq } \\
\text { poor }
\end{array}
\end{aligned}
$$

(7) Heavy Clitic Distribution: some strict 2P, others can be clause-initial topics, foci, or regular adverbs

a.		d.	$\begin{aligned} & \text { Indas } \\ & N E G=y \end{aligned}$	g.	
				h.	
	*Meloq=bosi lao palakan		dea todiq		

Prosodic Subcategorization

Alternative: 2p elements subcategorize for a particular position within a prosodic unit (Chung 2003). - Subcategorization: morphemes come exically specified with information about their prosodic behavior (Inkelas 1989) - DEFANTrIN: c citics are elements which subcategorize for certain types of host (and potentialy, for positions)
implementation: subcat constraints (Bennett et al. 2018; Tyler 2019) over stay (Grimshaw 1997)

- SUBCAT: "Aov for every instance of morpheme x whose prosodic subcategorization frame is not satisfied." Tyler 2019:9 NoShifT: "If a terminal element α is linearly ordered before a terminal element β in the syntactic representation of an expression E, then the phonological exponent of α should precede the phonological exponent of β in the phonologial
Berpesesent, Elfner, $\&$ McCloskey $2016: 202$ Advantages
- Captures 2p placement effects without reference to sTroNGGTTART; avoids the pitfalls above.
- Helps explain an independent puzzle: strict mirrored order of 2 pelements in the clitic cluster

Mirroring and Antisymmetry

Mirror Order in the Clitic Cluster
(8) Linear Order mirrors Syntactic Height

b. $\frac{\text { pissang }}{\text { once }}=\frac{\text { poleq }}{\text { again }}>\frac{\text { kapang }}{\text { anabe }}=\frac{\text { palakang }}{\text { seems }}>\frac{\text { todiq }}{\text { poorthing }}>$ dioloq $=\frac{\text { manini }}{\text { now }}$
2. Mirror Order on the LCA: derived within the syntax through canonical movement operations

- ONE VIEw: mirrored order arises via iterative head-adjunction of clitics into a complex x^{0}
- prosime: Mandar 2 e elements seem not to form a complex x^{0} : the cluster splitis up across the c-domain (2).
- ANotrur: mirrored order arises via iterative fronting of phrases over their own specifiers; snowball movement

Alternative: clitics base-generated in the mirrored order in the syntax.
- MECHANISM: every projection which hosts a clitic requires it to merge on/adjoin to the right. - PRECEDENT: parameterized linearization of the specifiers of lexical and functional projections (Aissen 1992)

Derivational Linearization

1. Mirror order falls out on a strongly cyclic model where linearization follows each round of merge - Each round of external merge triggers transfer to pr (Epstein \& Seely 2002) or lexical access (Starke 20092, Caha 2 - Interface transfer in steps: vocabuary Subategoization fres

- Subcategorization frames force 2 e elements to displace immediately for vocabulary insertion to succeed (Chung
(9) Cyclic transfer: Linearization upon External Merge

a. Linearization $\frac{\left./\left(h_{\phi}(\omega \sqrt{\text { very }})\right)(\phi(\omega \sqrt{\text { sick }}))\right) / \text { sub NoSHift }}{}$
a. (l $\downarrow(\omega$ mongeq $)$ sannal $))$

2. Faithfulness forces later rounds of linearization to append clitics to the right edge of the cluster - Later round of linearization cannot disurut 2 P relationships established in errier rounds of the derivation. FArtu.CIUsTres: Aov for every linearization of a 2 P element before a previously placed 2 P e element.
(10) Multiple Clitic Linearization: Mirror Order

Prosodic Reordering

1. Prosodic shape: unacented disyllabic clitics > unaccented monosyllabic clitics > accented clitics.
(11) Pring constraints: e.g. healv.last: Aov for every clitic before an accented clitic.
(11) Prosodic Reordering: Multi-Step Derivation
2-do.something=really? $=$ agai
Did you do it to him again?

a. Linearization $\quad / /(\mathrm{L}(\phi(\omega \sqrt{\text { really? }}))(\phi(\omega(\omega$ muanu $)$ poleq $))) / /$ Heavy.last Faitru.CL sub $^{\text {NoShift }}$ | ãa $\mathrm{a} .\left(\imath_{\phi}(\omega(\omega(\omega\right.$ muanu $)$ bandi $)$ poleq $\left.\left.)\right)\right)$ | | $*$ | | $* *$ |
| :--- | :--- | :--- | :--- | :--- | b. $(\iota(\phi(\omega(\omega$ (ω muanu $)$ poleq $)$ bandi $))$

Conclusions and Standing Questions

1. This account derives 2P placement and mirror order through a highly-cyclic approach to spell-out. 2. 2p effects arise through subcategorization requirements enforced throughout the derivation
. Nevertheless: several questions remain open

- Resurr: the subcas approach struggles to derive the prosodically-heterogenousous shape of the cluster; potential
requires a multi-step derivation or a gradient view of subcar (which renders it indistinguishable from AIIGN-2p).
- Continuous Relinearization into 2 P. requires either trans-derivational view of subser or about iterative vocabulary insertion; comes for free on an approach which posits single-cycle linearization
- Why do only certain 2 e elements climb into the c domain?

ACENOwLEDGMENTS Deep thanks to Nabila Haruna, Jupri Talib, and Anchu Mansur for their patience and enthusiasm

 in teaching me their language. Thanks as well to Ryan Bennett, Sandy Chung, and Junko tô for thoughts on this project atvarious points along the way and Matt Hewett for interesting conversations about cyylic spell-out. All errors are my own. selected references [1] Anderson, S. R. (1996). [2] Bennett, R., Elfner, E., \& McCloskey, J. (2016). [3] Bošković, Ž (2001). [4] Chung, S. (2003). [5] Halpern, A. (1995). [6] Inkelas, S. (1990). [7] Tyler, M. (2019).

