Winter 14 – AMS225 Homework 1

Due at the beginning of class, Tuesday January 21.

1. Let \(\mathbf{X} = (X_1, X_2, X_3)^T \) be distributed as MVN(\(\mu \), \(\Sigma \)), where

\[
\mu = \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix} \quad \text{and} \quad \Sigma = \begin{bmatrix} 4 & 0 & -1 \\ 0 & 5 & 0 \\ -1 & 0 & 2 \end{bmatrix}
\]

Which of the following pairs of random variables are independent? Explain.

(a) \(X_1 \) and \(X_2 \).
(b) \(X_1 \) and \(X_3 \).
(c) \(X_2 \) and \(X_3 \).
(d) \((X_1, X_3) \) and \(X_2 \).
(e) \(X_1 \) and \(X_1 + 3X_2 - 2X_3 \).

2. Suppose \(\mathbf{X} \) is a random vector with mean \(\mu \). Prove that

\[
E(\mathbf{X} - \mu)(\mathbf{X} - \mu)^T = E(\mathbf{XX}^T) - \mu\mu^T.
\]

3. Let \(\mathbf{Z} \in \mathcal{R}^p \) be distributed as MVN(0, \(I_p \)). Given \(\mu \in \mathcal{R}^p \) and a positive definite \(p \times p \) matrix \(\Sigma \), derive methods to transform \(\mathbf{Z} \) into a \(p \)-variate Normal random vector with mean \(\mu \) and covariance \(\Sigma \) using:

(a) the spectral decomposition \(\Sigma = \mathbf{V}\Lambda\mathbf{V}^T \), where \(\mathbf{V}^T \mathbf{V} = \mathbf{I}_p \) and \(\Lambda \) is diagonal.
(b) the Cholesky decomposition \(\Sigma = \mathbf{L}\mathbf{L}^T \), where \(\mathbf{L} \) is lower-triangular.

4. Let \(Y \) be the random variable satisfying \(P(Y = 1) = P(Y = 1) = 1/2 \). Let \(X_1 \sim N(0, 1) \) and \(X_2 = YX_1 \), and let \(\mathbf{X} = (X_1, X_2)^T \). Show that

(a) \(X_2 \sim N(0, 1) \)
(b) however \(\mathbf{X} \) does not have a bivariate Normal distribution.

5. Let \(\mathbf{X} = (X_1, \ldots, X_n)^T \) be a \(n \times p \) matrix whose rows correspond to repeated observations on \(p \) variables. Let

\[
\bar{\mathbf{X}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_i
\]

denote the \(p \times 1 \) sample mean vector. A common operation in multivariate analysis is to center observations about the sample mean, i.e. to form the centered data matrix \(\tilde{\mathbf{X}} = \mathbf{X} - 1_n\bar{\mathbf{X}}^T \), where \(1_n \) is the \(n \times 1 \) matrix of ones.

(a) Exhibit an \(n \times n \) projection matrix \(\mathbf{H} \) such that \(\tilde{\mathbf{X}} = (\mathbf{I} - \mathbf{H})\mathbf{X} \). Note: A matrix \(\mathbf{A} \) is a projection matrix iff i. \(\mathbf{A} = \mathbf{A}^T \), and ii. \(\mathbf{AA} = \mathbf{A} \).
(b) Describe the vectors in the subspace that H projects onto, i.e. what do their entries look like?

(c) Show that $I - H$ is also a projection matrix.

(d) Describe the vectors in the subspace that $I - H$ projects onto, i.e. what is the mean of their entries?

6. Use the setup in the previous problem. In addition, assume that X_1, \ldots, X_n are i.i.d. multivariate normal.

(a) Show that the sample mean \bar{X} and the rows of the centered data matrix \tilde{X} are independent.

(b) Show that the sample mean \bar{X} and sample covariance matrix S_n are independent. Hint: Show that S_n is a function of \tilde{X} (be explicit).

7. Prove that if A is a symmetric real-valued matrix, then all eigenvalues of A are real valued. If additionally that A is positive semidefinite, then all eigenvalues are non-negative; and if A is positive definite, then all eigenvalues are positive.

8. Let X be a p-variate random vector and Σ be its covariance matrix. Prove that Σ is positive semidefinite using the basic properties of (univariate) variance. Hint: Recall that a symmetric matrix A is positive semidefinite iff
\[x^T A x \geq 0 \]
for all x.

2