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Abstract. Finite sample critical values currently available for the augmented
Dickey—-Fuller test are commonly obtained via simulations using ARIMA (0, 1, 0)
processes. An implicit but critical assumption is that the possible presence of nuisance
nonunit roots in general processes does not affect the finite sample size property of
the test. The validity of this assumption, though always presumed, has not been
verified. This study shows that the use of ARIMA (0, 1,0) processes for computing
the critical values is not so restrictive as it may seem. By estimating empirical size
curves as a function of nuisance root parameters, results of Monte Carlo analysis
suggest that the empirical test size is not sensitive to nuisance autoregressive (AR)
and moving-average (MA) roots over a wide range of their values, except only when
the AR or MA root is near unity. The results support, though not unqualifiedly, the
reliability and usefulness of finite sample critical values estimated based on simple
ARIMA (0, 1, 0) processes.

Keywords. Augmented Dickey-Fuller test; empirical size; nuisance root parameter;
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1. INTRODUCTION

The augmented Dickey—Fuller (ADF) test has been widely used to test for
unit roots in time series. Consider a series {x,} generated by the following
data generating process (DGP):

1-pL)x,=u
p q
[T - ¢:Lyu, = [T(1 - 6;L)e, t=1,2,...,T 1)
i=1 j=1

where L is the lag operator; p is the largest autoregressive (AR) root; ¢; and
0, are the respective roots of the AR and moving-average (MA) lag
polynomials describing the innovation process u,, with |¢,| <1 and |6,| < 1; e,
is independent and identically distributed (i.i.d.) N(0, 0?); and the AR and
MA parts share no common root. A unit root exists when p=1. Let
A=1- L. Using AR (k) as an approximating model, the ADF test for the
hypothesis Hy: p =1 is conducted by regressing Ax, on (1,x,_;, Ax,_q, ...,
Ax,_,,1) and examining the negativity of the coefficient on x,_; based on its
regression ¢ ratio 7.
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Under Hy: p = 1, the asymptotic distribution of the ADF statistic is given
by

1 1 -1/
I = { f w(r) dW(r)}{ f W(r)? dr} Q)
0 0

where W(r) is a standard Brownian motion over the [0, 1] interval (see
Dickey and Fuller, 1979). This distribution is invariant with respect to k (the
lag order) and ¢; and 6, (the nonunit root parameters). Since direct
derivation of the finite sample distribution is not tractable, finite sample
critical values are typically estimated via simulations. Although the independ-
ence with respect to k, ¢; and 6, is an asymptotic result only, its validity in
finite samples — with: which empirical applications always deal—has not been
verified but presumed. For example, MacKinnon (1991) provides response
surface estimates of finite sample critical values for the ADF test with a fixed
k =1 and DGPs given by ARIMA (0, 1, 0) processes. More general DGPs,
for which u, is serially correlated, will contain additional nuisance parameters,
¢; and 6,. Cheung and Lai (1995) extend MacKinnon’s (1991) analysis by
allowing for the effect of k but still omits these other nuisance parameters.
Such omission will not be appropriate if ¢, and 6, can systematically affect
the empirical size of the ADF test. This study examines the potential
sensitivity of the empirical test size to nonunit roots.

2. MONTE CARLO EXPERIMENTS AND RESULTS

To allow for possibly different effects of the AR and MA roots on the ADF
test, two DGPs are considered under Hy: p = 1. They are ARIMA(1,1,0)
and ARIMA (0,1,1) processes. Following Equation (1), let ¢ = ¢; and
6 = 6,. The experimental design covers different possible combinations of (k,
T, ¢, 0) with k= {2, 4, 6, 8, 10, 12}, T = {50, 100, 250}, ¢ = {0.95, 0.90,
..., —0.95} and 6 = {0.95, 0.90, ..., —0.95}. ADF tests with and without a
time trend are conducted. For each given (k, T) combination, finite sample
critical values of the 5% and 10% tests are computed using the response
surfaces estimated by Cheung and Lai (1995), thereby correcting for the
effects of both k and T parameters. In this way, more accurate evaluation of
the effects of nuisance AR and MA parameters on the test size can be made
by separating them from those of k and T. The design here yields a total of
2808 possible combinations of simulation experiments, each of which is based
on 40000 replications.

The Monte Carlo results are summarized using graphs, which can efficiently
present a vast amount of data information in a compact space and help reveal
general overall patterns. Following Tufte’s (1983) idea of ‘small multiples,’
multiple graphs are arranged in series to facilitate comparison across k, T, ¢
and 0 parameters. The results are organized into groups for different ADF
tests: with a time trend (Figure 1) and without time trend (Figure 2). Each
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Ficure 1. Empirical size curves for the ADF test with a time trend: (a) T = 50; (b) T = 100;
(©) T =250; (d) T =50; (&) T =100; (f) T=250. (@)-(0) -—, k=2 k=4 — k=6
k=8 ()—(f): ——, k=65, k=8 —, k=10; ~ k=12,

group consists of a 3 X 2 matrix of graphs, showing how the empirical test size
of the ADF test with various lag choices changes as a function of the nuisance
AR or MA root. The results for the 5% test are reported below (similar
results were obtained for the 10% test).

A number of interesting results can be observed from Figures 1 and 2.
Consider first the sensitivity of the test size to the nuisance AR parameter.
The empirical size curves are almost entirely flat at the 5% level — which is
the nominal size of the test — indicating that the nonunit AR parameter
causes little size distortion in general. The empirical test size may deviate
from its nominal level only when the value of the AR root is large and close
to unity, a situation in which the DGP is near to having two unit roots. These
findings are robust with respect to the type of the ADF test as well as the lag
order parameter. The robustness with respect to the latter reflects and
confirms the accuracy of the lag-adjusted critical values used.
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Ficure 2. Empirical size curves for the ADF test without a time trend: (a) T = 50; (b) T = 100;
(c) T =250; (d) T =50; (e) T = 100; (f) T =250. (a)-(c): ——, k=2; k— —, k=6;
-, k=8 (d)-(f):-—, k=6; .- ,k=8—k—10—- k-12

Consider next the sensitivity to the nuisance MA parameter. The empirical
size curves remain flat at the 5% level over a broad range of values of the
MA root. The range of values over which the empirical size curve is flat
appears wider for tests with a higher lag order than those with a lower lag
order. This can be explained by the fact that a low AR lag order provides
poor approximation to strong MA dependence, resulting in substantial size
distortion (see Agiakloglou and Newbold (1992) for the power implications of
using different lag orders). Moreover, the size distortion can be particular
serious when the value of the MA root is large and positive, a situation in
which some root-cancellation effects may be at work. Schwert (1989) observes
similar size distortion for DGPs with a large and positive MA root. Com-
pared with Schwert’s, our results are actually stronger, given the adjustments
here for possible finite sample bias and the lag order effect. In addition, the

1
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empirical size curve reported here can provide a clear sense of the potential
size distortion as a function of different ranges of the MA root values, instead
of just a few parameter values.

The results as a whole show that the empirical size of the ADF test is not
sensitive to nuisance AR and MA parameters over a rather wide range of
their values, provided that a sufficiently large lag order is employed in the
test to capture dependence — the usual condition required for applying the
ADF test. It follows that the use of simple random walk processes can still
yield reasonable reliable and accurate estimates of finite sample critical
values.

3. CONCLUSION

An issue concerning empirical applications of the ADF test has been
examined. Finite sample critical values available in the literature for the test
are commonly obtained through simulations using ARIMA (0, 1, 0) processes.
Such processes appear restrictive in most practical situations. The reliability
and usefulness of these finite sample critical values relies on an implicit but
critical assumption that the presence of nonunit roots in more general
processes does not affect the size property of the test. The validity of this
assumption is always presumed in applied work but has not been systematic-
ally verified. If the empirical test size is actually sensitive to nuisance nonunit
roots, the finite sample critical values currently available will be of limited
use, and their lack of general applicability will make practical uses of the
ADF test difficult. If the sensitivity is significant, a new set of critical values
will have to be computed for every different DGP; this in turn will require
accurate knowledge of the exact parametric specification of each given DGP.

This study finds that the use of ARIMA (0,1,0) processes is not so
restrictive as it may seem. The sensitivity of the empirical size to nuisance
nonunit roots is evaluated using the Monte Carlo method, through which
empirical size curves as a function of nuisance root parameters are estimated.
It is found that the empirical test size is not sensitive to nuisance AR and MA
parameters over a wide range of their values, except only when either root is
positive and near unity. The results provide support, though not an entirely
unqualified one, for the reliability and usefulness of finite sample critical
values estimated based on simple ARIMA (0, 1, 0) processes.
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