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Abstract. The performance of the Geweke—Porter-Hudak (GPH) test, the modified
rescaled range (MRR) test and two Lagrange multiplier (LM) type tests for fractional
integration in small samples is examined using Monte Carlo methods. Both the GPH
and MRR tests are found to be robust to moderate autoregressive moving-average
components, autoregressive conditional heteroskedasticity effects and shifts in the
variance. However, these two tests are sensitive to large autoregressive moving-aver-
age components and shifts in the mean. It is also found that the LM tests are sensitive
to deviations from the null hypothesis. As an illustration, the GPH test is applied to
two economic data series.

Keywords. Tests for fractional integration; Monte Carlo experiment; ARMA;
ARCH; shifts in parameters.

1. INTRODUCTION

Recently, autoregressive. fractionally integrated moving-average (ARFIMA)
processes have received considerable attention in the literature. Granger and
Joyeux (1980) and Hosking (1981) are credited as the two seminal studies on
ARFIMA processes. Recent theoretical and empirical studies on this topic
include those of Diebold and Rudebusch (1989,1991a), Fox and Taqqu
(1986), Geweke and Porter-Hudak (1983), Li and McLeod (1986), Lo (1991),
Porter-Hudak (1990), Robinson (1991), Shea (1991), Sowell (1990a, b), and
Yajima (1988, 1989). _

ARFIMA processes generalize standard linear ARIMA(p, d, g) models by
allowing the degree of integration d to assume non-integer values. This
generalization provides a more flexible framework to study time series data.
In particular, the class of fractional processes can be used to model data
dependence that is stronger than allowed in stationary ARMA processes and
weaker than implied by unit root processes. This ability to describe strong
dependence without resorting to non-stationary unit root processes attracts,
for example, researchers who are interested in studying persistence in
economic and financial time series.

One common test for fractional integration is the frequency-domain regres-
sion-based procedure introduced by Geweke and Porter-Hudak (1983). Lo
(1991) proposes another test which is modified from the classical rescaled
range statistic (Hurst, 1951; Mandelbrot, 1972). In addition, Robinson (1991)
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develops a Lagrange multiplier (LM) type test for fractional integration. Most
applied work using these techniques relies on asymptotic results to make
small-sample inferences, and there is limited Monte Carlo evidence regarding
the robustness of these tests to different data-generating mechanisms.

In this paper we examine the finite-sample properties of these three tests by
analyzing their sensitivity to different data-generating mechanisms via Monte
Carlo methods. Critical values used in the Monte Carlo experiment are based
on the asymptotic distributions of these tests. Section 2 briefly describes the
tests for fractional integration. Monte Carlo results based on simulated
ARMA processes, autoregressive conditional heteroskedastic (ARCH) pro-
cesses, fractional processes and processes with shifts in mean or variance are
presented in Section 3. Two examples drawn from economic data are
provided in Section 4. Concluding remarks are offered in Section 5.

2. TESTS FOR FRACTIONAL INTEGRATION

{X,} is said to be generated from an ARFIMA(p, d, q) process if
@®(B)(1 — B)?X, = O(B)e,, (1)

where ¢, ~IID(0, 02), B is the backward-shift operator, ®(B) is the AR
polynomial, ®@(B) is the MA polynomial, and the fractional integrating
operator (1 — B)? is defined by (1 — B)? = >, 7_o['(k — d)B*/T(k + 1)T'(-d)
with I'(-) being the gamma function.

X, is both stationary and invertible if the roots of ®(B) and ©(B) are
outside the unit circle and d <|[0.5|. When d=0, an ARFIMA process
reduces to an ARMA process. In contrast with the spectral density of a unit
root process which is approximated by S(w) < w™ as w— 0, the spectral
density of an ARFIMA process behaves as S(w) < @2 as w— 0 (Hosking,
1981). A wide range of low frequency behavior can thus be modeled when d
is not restricted to the integer domain. Further, the existence of fractional
integration can be determined by the significance of the sample d parameter.

Three tests for fractional integration are considered. The first test is based
on a modified rescaled range (MRR) statistic derived by Lo (1991). The
MRR statistic Q1 is defined by '

Qr = R/or(q) (2)
where
R=maxi(X,—)‘()— min i(X,—)‘() 3)
0<isT =1 0<isT ;=1

o7(q) = o + Zi > (1 - %)(Xi - X)(Xi-; - X) 4)

j=1 i=j+1
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T X 2
g 0 )

with g being set equal to the integer part of (37/2)2{2p/(1 — p*)}??; p is
the sample first-order autocorrelation coefficient and X is the sample mean.
R measures the range of cumulative departures from X. 0%(q) is a hetero-
skedasticity- and autocorrelation-consistent variance estimator. Extreme
values of O are regarded as signs of fractional integration. Critical values of
the MRR test are given in Lo (1991).

Geweke and Porter-Hudak (hereafter GPH), in their 1983 article, proposed
a semi-nonparametric procedure to test for fractional integration (also see
Yajima, 1989). The procedure is motivated by the log spectral density of the
ARFIMA process, and amounts to estimating the least squares regression

In{I(w;)} = ¢ —dln{4sin®>(w;2)} +1; (G =1,..., n) (6)

where 1 (co]) is the periodogram of {X,} at frequency w;, w;=2mj/T
(G=1,..,T-1)and n=g(T) K T.

There is ev1dence of fraction integration if d, the least squares estimate of
d, is significantly different from zero. With a proper choice of n, the
asymptotic distribution of d depends on neither the order of the ARMA part
nor the distribution of the error term. It is suggested to set n = T05 and use
the known variance of 7;, 72/6, to compute the sample variance of d.

The third test for fractional integration is an LM type test developed by
Robinson (1991). Specifically, we consider the null hypothesis of a white
noise process against the fractional white noise, ARFIMA(O, 4, 0), alterna-
tive. Under these specifications two variants of the LM test are derived:

T-1 -12 T-1
o= Tlﬂ(E i ) 2 C(Coi)™ ™
j=1 =
and
T-1 -1 T-
n=(3 k%) 3 C ®
j=1 j=1
where C; and K; are defined by
T__
G=T" 3 (X, ~ RYXy - X) ©)
t=1

and

||M~]

(X X)X,y — X% (10)

Under the null hypothesis, both A; and A, have an asymptotic standard
normal distribution. In addition A, is robust to conditional heteroskedasticity.
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3. MONTE CARLO RESULTS

In the Monte Carlo experiment, we consider sample sizes T of 100, 300 and
500. In each case T + 50 observations are generated and the last T observa-
tions are used to reduce the effect of initial values. Each data series is tested
for fractional integration using the tests described in Section 2. The simula-
tion results are based on 1000 replications. For the GPH test, n is set equal
to T%5. Observed rejection percentages at the two-sided nominal 5% signifi-
cance level are reported. Note that under the null hypothesis of no fractional
integration the 95% confidence interval of the rejection percentage is equal to
5% +1.4%.

3.1. ARMA and fractional processes

The Monte Carlo experiment examining the effect of different ARMA and
ARCH specifications is based on the following simulated processes:

X, =X, + ¢ (11)

X, =€ + O¢,_, (12)
and

X =u, Upge—y ~ N, k)

h, = ap + au’y, (13)

where ¢, ~ IIDN(0, 1). The AR parameter ¢ and the MA parameter 8 are
set equal to 0.1, +0.5, £0.7 and +0.9. The ARCH parameter « is set equal
to 0.1, 0.3, 0.5, 0.7 and 0.9. «, is set equal to 1.

The sensitivity to AR components is reported in Table I. The simulation
result suggests that the MRR test is conservative in the sense that it tends to
reject the null less frequently than the nominal 5% significance level. The
rejection frequency is quite robust to changes in the AR parameter. On the
other hand, the GPH test is sensitive to large AR parameters. When ¢ is in
the range of 0.7-0.9, the GPH test rejects the null hypothesis of no fractional
integration much too often (recall that the 95% confidence interval is
5% *1.4%). The over-rejection rate decreases rather slowly with sample
size. With ¢ =0.9 and T = 500, the GPH test still rejects the null hypothesis
622 times out of 1000 trials. Moreover, when we examine the breakdown of
rejection frequencies (not shown), we find that large AR parameters bias the
GPH test in favor of d > 0 alternatives. For the A; and A, tests the rejection
rate is significantly larger than the nominal 5% level even in the presence of
weak serial correlation. It is noted that a positive (negative) AR parameter
leads to large (small) A, and 4, estimates, and hence the rejection of the null.

Table II presents the effect of MA components on the estimated size of the
tests. Rejection frequencies of both the MRR and GPH tests are significantly
larger than the nominal significance level when the MA parameter is near
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TABLEI

ReJECTION PERCENTAGE OF THE NoMINAL 5% FracTioNaL INTE-
GRATION TEsT WHEN THE DATA FoLLow AN AR(1) PrOCESS

MRR GPH A A,

T = 100

$=—09 3.6 5.0 100.0 100.0
¢ =07 0.2 3.8 100.0 100.0
¢=-05 0.9 5.0 96.8 95.6
¢ =-0.1 7.4 4.4 7.1 7.0
o= 01 5.1 49 14.2 14.8
p= 05 2.0 6.4 98.9 98.8
p= 07 1.6 16.6 100.0 100.0
o= 09 0.9 7.7 100.0 100.0
T = 300

¢=-09 0.0 4.0 100.0 100.0
¢=—0.7 1.0 5.9 100.0 100.0
¢=-0.5 2.4 5.1 100.0 100.0
¢ = —0.1 5.8 5.9 2.1 2.3
p= 0.1 6.1 5.2 29.5 29.7
p= 05 32 4.9 100.0 100.0
p= 0.7 2.8 8.4 100.0 100.0
o= 09 1.6 69.5 100.0 100.0
T = 500

¢=-09 0.0 5.9 100.0 100.0
¢=-07 0.9 5.1 100.0 100.0
¢=—-05 2.8 4.3 100.0 100.0
¢ = —0.1 6.8 4.1 39.4 39.5
o= 01 5.9 52 43.0 2.8
p= 0.5 4.1 6.4 100.0 100.0
p= 07 3.7 6.3 100.0 100.0
o= 09 1.4 62.2 100.0 100.0

MRR, modified rescaled range test; GPH, Geweke—-Porter-Hudak
test; A;, the LM test which is not robust to heteroskedasticity; 4,,
the LM test that is robust to heteroskedasticity. The number
reported in the table is the rejection percentage of the two-sided
5% test. Under the null of no fractional integration, the 95%
confidence interval of the rejection percentage is 5 + 1.4. The data
were constructed to follow X, = ¢X,_; + ¢, £, ~ N(0, 1).

—0.9. It is interesting to note that, with 8 = —0.9, the rejection percentage of
the MRR test increases as the sample size rises. In contrast with the case of
AR components, the breakdown of rejection frequencies indicates that
negative MA parameters bias both the GPH and MRR tests towards d <0
alternatives. Once again, we observe that both the A, and A, tests are very
sensitive to serial correlation in the data. For example, more than 5% of the
A, and A, estimates are significantly larger (smaller) than zero when 8 equals
0.1 (—0.1).

The effect of conditional heteroskedasticity on the tests is shown in Table
III. Both the MRR and GPH tests are robust to ARCH effects. The only
significant deviation from the nominal 5% size is the case of a; = 0.1 and
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TABLEII

REJECTION PERCENTAGE OF THE NOMINAL 5% FRACTIONAL INTE-
GRATION TEST WHEN THE DATA ForLow AN MA(1) ProCESS

MRR GPH A A,

T =100

6=-09 13.9 50.3 100.0 100.0
8=-07 7.5 15.6 100.0 100.0
6=-05 6.4 5.1 99.5 99.7
6= —0.1 7.6 4.6 7.3 7.1
6= 0.1 5.2 5.0 13.0 13.7
8= 05 3.3 4.9 80.6 78.3
6= 07 2.7 5.7 90.3 86.7
6= 09 2.6 5.8 93.1 90.3
T = 300

6=-09 55.7 49.9 100.0 100.0
6 =-07 11.5 9.3 100.0 100.0
6 =—-0.5 5.8 5.2 100.0 100.0
8=-01 6.1 59 239 24.0
6= 0.1 6.5 5.2 26.2 26.2
6= 05 3.6 4.7 99.8 99.8
6= 07 43 5.5 100.0 100.0
6= 09 2.5 4.8 100.0 100.0
T = 500

6 =-09 80.4 51.2 100.0 100.0
6 =-07 14.0 7.4 100.0 100.0
6=-05 5.2 37 100.0 100.0
6 =-0.1 7.1 4.1 02 2.3
6= 01 5.9 6.2 38.4 39.0
6= 05 5.1 5.4 100.0 100.0
6= 07 3.8 5.3 100.0 100.0
6= 09 42 4.9 100.0 100.0

See the note to Table I. The data were constructed to follow
X, =¢,+ 0¢,_y, £, ~N(0,1).

T = 100. In contrast, the rejection percentage of the A; test increases with
both the ARCH parameter and the sample size. The rejection frequency is
statistically larger than the nominal size when the sample size T =300 or
when there is a moderate ARCH effect, say «; = 0.3. On the other hand, the
estimated size of the A, test, which is expected to be robust to ARCH effects,
is very close to the theoretical 5% level.

3.2. Fractional processes

The data {X,} used to examine the estimated power of the tests against
ARFIMA(O, 4, 0) alternatives are constructed to follow

(1 - B)‘X, = ¢, (14)

and the fractional differencing parameter d is set equal to +0.05, +£0.25 and
+0.45. The data are generated according to Hosking (1984).
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TABLE Il

REJECTION PERCENTAGE OF THE NOMINAL 5% FRACTIONAL INTE-
GRATION TesT WHEN THE DATA FoLLow AN ARCH PRrOCESs

MRR GPH A A
T=100
a=01 8.0 6.7 5.5 4.5
a=03 54 5.0 8.8 4.6
a =05 5.8 52 10.7 3.9
a=07 4.2 51 17.3 4.9
a=09 2.6 5.9 21.6 4.1
T = 300
a=01 7.3 53 6.8 5.6
a=03 7.2 5.7 8.8 4.2
a=05 5.0 4.5 15.8 4.9
a=07 4.6 4.9 23.4 3.8
a=209 4.4 4.8 36.2 6.5
T =500
a=01 51 4.1 6.1 5.0
a=03 53 5.4 9.8 4.6
a=05 53 57 17.3 4.9
a=07 4.4 5.4 27.4 5.0
a=09 39 5.0 41.0 51

See the note to Table 1. The data were constructed to follow
X, =u, u,~N@O, h), h,= ag + au? .

Results in Table IV show that the MRR test detects negative differencing
parameters better than positive differencing parameters. In general, the
estimated power of the MRR test increases with either the absolute value of
d or the sample size. An exception is that the power recorded for an
ARFIMA(0, 0.45, 0) process is lower than that for an ARFIMA(O0, 0.35, 0)
process. A possible explanation is as follows. The truncation lag g in the
MRR test controls the amount of serial correlation to be discounted in
computing the statistic. As g increases with d, which determines the strength
of dependence in the data, we may encounter two problems. First, a large g
may mean too much dependence due to fractional integration being dis-
counted and thus lowering the power of the test. Second, Lo and MacKinlay
(1989) show that unpredictable behavior of Q; can occur when g is large
relative to the sample size.

When d < 0.25, the estimated power of the GPH test is lower than that of
the MRR test. With the sample sizes examined, the GPH test has practically
no power to detect fractional processes with d = —0.05 or 0.05. However, the
estimated power rises quickly when |d| = 0.25.

The last two columns of Table IV report the estimated power of the A; and
A, tests. These two variants of the LM test have good power to detect
fractional integration.
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TABLEIV

REJECTION PERCENTAGE OF THE NOMINAL 5% FRACTIONAL INTE-
GRATION TeEsT WHEN THE DAtA Forrow anNn ARFIMA(O, 1,0)

PROCESS
MRR GPH A A

T=100

d = -0.45 37.4 25.7 98.5 98.7
d=-025 29.7 134 60.2 62.0
d = -0.05 11.4 6.8 4.7 4.9
d= 0.05 4.5 5.4 5.0 5.4
d= 025 5.5 15.6 711 71.4
d= 045 1.1 31.5 98.7 98.9
T = 300

d=—-0.45 78.7 50.0 100.0 100.0
d=-025 49.0 21.3 99.9 99.9
d = -0.05 10.3 6.3 159 16.9
d= 0.05 7.2 6.3 13.8 13.7
d= 025 27.2 23.7 99.7 99.7
d= 0.45 227 66.8 100.0 100.0
T = 500

d=-045 93.1 66.1 100.0 100.0
d=-025 58.2 28.1 100.0 100.0
d = -0.05 12.6 6.6 24.6 24.8
d= 0.05 9.4 52 26.8 27.4
d= 025 36.5 31.3 100.0 100.0
d= 045 41.1 77.8 100.0 100.0

See the note to Table I. The data were constructed to follow
(1- B)*X, = ¢, & ~N(0, 1).

3.3. Mean or variance shifting processes

A caveat for interpreting the result of fractional integration tests is that
structural changes may be observationally equivalent to fractional integration.
Specifically, tests for fractional integration may not distinguish fractional
integration from shifts in the mean of a series. Klemes (1974) illustrates that
the classical rescaled range statistic (i.e. Qr with g =0) is biased toward
fractional integration alternatives when there are shifts in the mean.

The construction of the MRR statistic provides a clue to the possible effect
of shifts in the mean on the MRR test. Given T observations {X, ..., X7},
the range R of cumulative deviations from the sample mean attains the
maximum when the observations above (or below) the mean are clustered in
one subsample. This pattern of data clustering is likely to occur when there is
one shift in the mean. This suggests that a shift in the mean can bias the test
in favor of fractional integration alternatives.

The effect of shifts in the mean on the GPH, A; and A, tests is less obvious.
However, given the possible impact on shifts in the mean on the Q; statistic
discussed above, we speculate that these tests will be affected in a similar way
and will be biased in favor of fractional integration alternatives.
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By construction the MRR test is robust to heteroskedasticity. Therefore,
we expect that shifts in variance do not affect the empirical size of the MRR
test. Once again, the impact of time-varying variance on the GPH, A; and A,
tests is not certain.

The Monte Carlo experiment examining the sensitivity of the tests to shifts
in parameters is based on the following data-generating processes:

X, =¢,
Ee, =0.5(-1)%, (k—-1)N <t < kN, (15)
and
X, =¢
V(e,) =1.5 + 0.5(-1)%, (k—1)N <t =<kN, (16)

where N =int {T/(g + 1)}, g is the number of shifts in the mean or variance,
and k=1,2,..., g+ 1. Essentially, (15) is a normal white noise process with
the mean alternating between —0.5 and 0.5 after each N observations.
Similarly, (16) is a random process with the variance alternating between 1
and 2 after each N observation. Table V presents the simulation results for
g=1,2,4 and 9. For notational convenience, we denote (15) with g =1 as
M1, with g =2 as M2, with g =4 as M4 and with g =9 as M9, and (16) with
g =1 as V1, with g =2 as V2, with g =4 as V4 and with g =9 as V9.

The results in Table V indicate that all the tests are sensitive to shifts in the
mean. Consistent with the intuition discussed above, the over-rejection rate is
positively related to the sample size and inversely related to the number of
regime changes. The A; and A, statistics are relatively more sensitive to shifts
in the mean. The breakdown of rejection frequencies indicates that, in the
presence of shifts in the mean, these tests tend to yield spurious evidence for
d >0 alternatives. On the other hand, the empirical size of these tests
appears to be robust to the patterns of variance shifts examined.

4. EXAMPLES

As an illustration this section applies the GPH test, which is commonly used
in the literature, to two economic time series. First, we consider the annual
real per capita US gross domestic product (GDP) data from 1870 to 1989.
The data through 1979 are taken from Maddison (1982) and the rest are
taken from various issues of the OECD Main Economic Indicators. Figure 1
shows the first log differences of the per capita data. No shifts in the mean
are observed although turbulence in the 1930s and 1940s is prominent.

When the GPH test is applied to the first differenced series, the asymptotic
t statistic of d (the point estimate is —0.67) is equal to —2.28, indicating that
there is less than unit root persistence in the per capita GDP data. When the
test is applied to the levels of the data, an asymptotic ¢ statistic of 3.35 is
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TABLEV

ReJECTION PERCENTAGE OF THE NoOMINAL 5% FRrRACTIONAL INTE-
GRATION TEsT WHEN THE DATA HAVE A NON-CONSTANT MEAN OR

VARIANCE
. MRR GPH A A

T =100

M1 79.1 2.0 89.7 90.3
M2 63.2 33.6 73.3 75.6
M4 5.4 21.9 58.1 61.5
M9 6.3 4.5 20.0 21.0
%! 7.7 37 3.4 2.9
V2 6.3 42 2.9 2.7
V4 7.3 5.7 1.9 2.0
\%) 6.6 5.1 4.2 4.3
T = 300

M1 100.0 67.4 100.0 100.0
M2 100.0 83.0 100.0 100.0
M4 80.0 76.8 100.0 100.0
M9 0.4 4.8 99.3 99.3
\%! 5.6 5.4 5.9 4.9
V2 6.5 5.3 4.6 4.0
\ 6.2 5.3 5.1 4.0
V9 5.8 5.6 5.2 4.7
T = 500

M1 100.0 82.5 100.0 100.0
M2 100.0 94.6 100.0 100.0
M4 99.3 93.9 100.0 100.0
M9 0.8 5.6 100.0 100.0
\%! 6.3 5.7 4.7 3.8
V2 6.0 5.4 5.4 4.3
V4 5.7 5.5 4.1 3.6
V9 5.7 5.5 4.8 4.0

See the note to Table I. The shift-in-mean models considered are
M1, M2, M4 and M9 where the number after M denotes the
number of shifts in the mean. The shift-in-variance models con-
sidered are V1, V2, V4 and V9 where the number after V denotes
the number of shifts in the variance. See the text for a more
detailed description on the construction of these data series.

obtained for d. These results suggest that the order of integration of the
annual real per capita GDP series is between 0 and 1.

We estimate an ARIMA specification for the data to examine the possibi-
lity that the fractional integration result is driven by the ARMA component
in the GDP data. ARMA(p, q) models with p, g <3 are considered. Both
the Akaike information criterion and the Bayesian information criterion
choose the ARMA(1,1) model. The maximum likelihood estimates of this
model are

y, = —4.3698+ 0.9979y,_,+£,+ 0.2354¢,_;. 7
(-2.11) (138.1) (2.61)
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Ficure 1. Real per capita US gross domestic product.

Asymptotic t-statistics are given in parentheses. The Ljung-Box Q(12) and
Q(24) statistics are 8.39 and 26.01 respectively, indicating no serial correla-
tion in the residuals. However, the augmented Dickey—Fuller test indicates

that there is a unit root in the data. When we re-estimate an ARIMA(0, 1, 1)
model we have

(1 —B)y, = 0.0190 + ¢, + 0.1771¢,_,. (18)
(3.40) (1.95)

Again, a Q(12) statistic of 14.67 and a Q(24) statistic of 21.85 indicate no
serial correlation in the residuals.

Given the previous simulation results, if the GDP series is generated by
(18), it is unlikely that its ARMA components explain the GPH test result. In
addition, Sowell (1990a) and Diebold and Rudebusch (1991b) show that the
Dickey-Fuller test has low power against fractional alternatives. These results
suggest favorable evidence of fractional integration in the GDP data. In fact,
Cochrane (1988) and Diebold and Rudebusch (1989), using different US
GDP data, also show that the persistence in the GDP data is weaker than a
unit root process but stronger than a stationary ARMA process. We should
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point out that the interpretation of the GPH test depends on the ARMA
model assigned to the data. For example, if the data are generated according
to (17) or other ARMA models that have an AR or MA root close to but not
equal to unity, then the GPH test result should be interpreted with caution.
This is because, as demonstrated in Section 3, the GPH test can give spurious
fractional integration results when the true data-generating mechanism resem-
bles an integrated process.

The second example is the real three-month T-bill rate series from 1960:1 to
1990:11. Both the T-bill rates and the inflation rates used to construct the real
series were taken from the International Financial Statistics data tape. The
series is plotted in Figure 2. The graph clearly suggests that there are shifts in
the mean of the real T-bill rate series around 1973 and 1980. When the GPH
test is applied to this series, the asymptotic ¢ statistic of d is equal to 2.65,
indicating the presence of fractional integration.

To ensure that the significant d is not induced by shifts in the mean of the
T-bill data, we split the series into three segments: (i) from 1960:I to 1973:1V,
(ii) from 1974:1 to 1980:IV and (iii) from 1981:I to 1990:II. The data for
deviation from the mean were then constructed by subtracting each real rate
from its corresponding subsample mean. The asymptotic ¢ statistic of d

7.2

54

3.6

1.8

0.0

/'
v

Real 3-Month T-Bill Rates

-1.8

=54 T T T T T T O T T O T T T T T T T T T T T T T
1960 1963 1966 1969 1972 1975 1978 1981 1984 1987 1990

Ficure 2. Real three-month T-bill rates.
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computed from the transformed data is 1.12 and suggests no fractional
integration.

An interpretation of the above result is that the rejection of the d =0
hypothesis in the real T-bill series is an artifact of changes in the mean of the
series. However, the interpretation is not definitive given no formal analysis
of the statistical property of d obtained from the de-meaned series. This
naturally leads to an interesting further research topic—a test for fractional
integration in the presence of structural changes—which is beyond the scope
of this paper.

5. CONCLUDING REMARKS

The finite-sample properties of three recently developed tests for fractional
integration are investigated using Monte Carlo methods. Compared with
simulation results reported in previous studies (e.g. Lo (1991), who reports
the performance of the MRR test in the presence of a white noise process, an
AR(1) with ¢ = 0.5 and fractional processes with d = +1/3), our experiment
considers a much wider class of data-generating mechanisms and a wider
range of parameter values. Further, by examining these three representative
methods, our exercise provides better information on the general perform-
ance of fractional integration tests in finite samples.

While both the MRR and GPH tests are found to be robust to moderate
ARMA components, ARCH effects and shifts in the variance, our simulation
results suggest several factors that can lead to spurious rejection of the
no-fractional-integration hypothesis. For instance, both the MRR and GPH
tests are biased towards d <O alternatives in the presence of large negative
MA components. When there are infrequent shifts in the mean, these two
tests tend to yield spurious evidence for d > 0 alternatives. Further, a large
AR parameter also biases the GPH test in favor of d > 0 alternatives.

The effect of large ARMA components on the MRR and GPH tests is not
unexpected. When ¢ is close to 1, the data series resembles a unit root
process. When @ is close to —1, the series resembles an over-differenced
process. This explains the results reported in Section 3. The MRR test is
robust to large ¢ because its truncation lag parameter g, which controls the
amount of autocorrelation to be discounted, is being adjusted according to
dependence in the data. For the GPH test, however, the fact that n is fixed
at T% impedes its ability to adjust for serial correlation in the data. To
minimize the effect of ARMA components on the GPH test, the choice of n
should be inversely related to the short-run dependence in the data. In fact,
Geweke and Porter-Hudak (1983) suggest that n should be kept small if d
appears sensitive to the choice of n.

It is found that both the A; and A, tests are sensitive to deviations from the
null of a white-noise process. The performance of these two tests crucially
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depends on the specification of the hypotheses under which the statistics are
constructed. Our simulaticn results provide a cautionary note on using these
LM tests to detect fractional integration in real-life data.

Overall, our Monte Carlo results and the two economic examples suggest
that results of fractional integration tests have to be interpreted with caution,
especially when there is good reason to believe that the time series contains a
large negative MA component or exhibits shifts in the mean. Preliminary
analysis to check for the ARIMA specification and the possibility of structural
changes is important for a proper interpretation of the result of fractional
integration tests.
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