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Abstract

This paper develops a test for causality in variance. The test is based on the residual
cross-correlation function (CCF) and is robust to distributional assumptions. Asymptotic
normal and asymptotic ¢ statistics are derived under the null hypothesis of no causality
in variance. Monte Carlo results indicate that the proposed CCF test has good empirical
size and power properties. Two empirical examples iltustrate that the causality test yields
useful information on the temporal dynamics and the interaction between two time series.
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1. Introduction

Recently, there has been increasing interest in the causation in conditional
variance across various financial asset price movements.' The study of causality
in variance is of interest to both academics and practitioners because of its
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economic and statistical significance. First, changes in variance are said to
reflect the arrival of information and the extent to which the market evaluates
and assimilates new information. For example, Ross (1989) shows that in a no-
arbitrage economy the variance of price changes is directly related to the rate of
information flow to the market. Engle, Ito, and Lin (1990), however, attribute
movements in variance to the time required by market participants
in processing new information or in policy coordination. Thus, the relation
between information flow and volatility gives an interesting perspective to
interpret the causation in variance between a pair of economic time series.
Second, the causation pattern in variance provides an insight concerning the
characteristics and dynamics of economic and financial prices, and such in-
formation can be used to construct better econometric models describing the
temporal dynamics of the time series.

This paper develops a two-stage procedure to test for causality in variance,
which is asymptotically robust to distributional assumptions. The first stage
involves the estimation of univariate time-series models that allows for time
variation in both conditional means and conditional variances. In the second
stage the resulting series of squared residuals standardized by conditional
variances are constructed. The cross-correlation function (CCF) of these
squared-standardized residuals is then used to test the null hypothesis of no
causality in variance. This two-stage method extends the procedures developed
in Haugh (1976) and McLeod and Li (1983).

This study also discusses the effect of causality in mean, if any, on tests for
causality in variance and the interaction between the tests for causality in mean
and variance. Depending on model specifications, causation in mean can exist
with or without the presence of causality in variance and vice versa. This
observation motivates us to use empirical examples to investigate the test
performance when there exists causation in both the mean and variance.

The next section introduces the two-stage CCF test for causality in variance.
Some remarks on the test and its finite-sample performance are offered in
Section 3. Section 4 presents two examples drawn from financial data. These
examples also illustrate how to handle the existence of causation in both the
mean and variance. Section 5 summarizes the paper.

2. A two-stage procedure

The concept of causation in the second moment can be viewed as a natural
extension of the well-known Wiener-Granger causality in mean (Granger,
Robins, and Engle, 1986).> Consider two stationary and egordic time series,

*The notion of Wiener-Granger causality in mean is introduced by Granger (1969) and is extensive-
ly discussed in, for example, Granger (1980). Geweke (1984), and Pierce and Haugh (1977).
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X,and Y, Let I, and J, be two information sets defined by I, = {X,_;j = 0}
and J, = {X,_;, Y, ;j=0}. Y, is said to cause X, in variance if

E{(X1+1 7“.\‘.1*1)2|11} 7£ E{(Xx+l _.U.\-,x+1)2|Jr}s (1)

where u, 4, is the mean of X, , ; conditioned on I,. Feedback in variance occurs
if X causes Y and Y causes X. There is instantaneous causality in variance if

E{(Xr—l _ﬂ,\-.x+1)21-]r} 7& E{(XH—l _.Nx‘r+1)2|J1 + Yt*l}" (2)

As in the case of causality in mean, the concepts defined in relations (1) and (2)
are too general to be empirically testable. Thus, additional structure is required
in order to make the general causality concept applicable in practice. Suppose
X, and Y, can be written as

X, =, +hile, 3)
Y, = g+ hgf & 4)

where {¢} and [{,} are two independent white noise processes with zero mean
and unit variance. Their conditional means and variances are given by

Kz = Z (pz.i(oz,u)zr*i’ (5)
i=1

h.,= Q.0 + Z Q)z.i(():,h) {(er»i - ,Uz.r—i)z - (P:.o}w (6)
i=1
where 0., is a p, . x | parameter vector; W = u h; ¢, {6, ,) and ¢_ (0. ,) are
uniquely defined functions of 0 , and 0. ,; and Z = X, Y. Specifications (5) and
(6) include the time-series models such as the commonly-used ARMA models
and (generalized) autoregressive conditional heteroskedastic ((G)ARCH) pro-
cesses (cf. Robinson, 1991). The feasible set of parameter values is implicitly
defined by the stationarity assumption.?
Let U, and V, be the squares of standardized innovations,

U, = ((Xr - ll,\'.z)z,/fhx.r) = f;fzs (7
Vi=(Y = . Vihe) =G (8)
r.{k) be the sample cross-correlation at lag k,

r!”'(k‘) = (‘lll'(k) ((.MM(O)(.ITI‘(O)) - 1/2’ (9)

*For example. the roots of an AR polynomial are outside the unit circle and the series { |- (0. )}
is summable. For a fractionally integrated process, the series {¢. ;(0. ,}} is square-summable. For
a GARCH(p. g) process, ¢._;(f).. ;) declines exponentially. See Box and Jenkins (1976), Engle (1982),
Bollerslev {1986), Granger and Joyeux (1980), Hosking (1981), and Cheung (1993) for a more detailed
discussion of these processes.
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where ¢, (k) is the kth lag sample cross covariance given by
Culk) =T 'Y (U, = U)V,-p — V), k=0, £1, £2, ..., (10)

and c¢,,(0) and ¢,(0) are the sample variances of U and V, respectively. Since { U}
and {V,} are independent, the existence of their second moments implies (e.g.,
Hannan, 1970

JTra®) 0] [1 0 y ,
()= {(obo 1) 2+ o

As in the test for causality in mean (Haugh, 1976; Pierce and Haugh, 1977),
expression (11) suggests that the CCF of squared standardized residuals can be
used to detect causal relations and identify patterns of causation in the second
moment.* The utility of the CCF has certain advantages over some possible
alternative tests for causality in variance. For instance, compared with a multi-
variate method, the CCF approach does not involve simultaneous modeling of
both intra- and inter-series dynamics, and hence it is relatively easy to imple-
ment. The uncertainty in both the first- and second-moment dynamics and the
potential interaction between the series would further complicate the formula-
tion of a multivariate GARCH model. This makes the task of correctly specify-
ing an adequate multivariate model very challenging.®> Thus, the CCF test is
especially useful when the number of series under investigation is large and long
lags in the causation pattern are expected. Further, the proposed test has
a well-defined asymptotic distribution and is asymptotically robust to distribu-
tional assumptions.

The CCF approach, which is similar to the test of causality in mean, also has
certain limitations. For instance, the CCF is not designed to detect causation
patterns that yield zero cross-correlations. An example is the nonlinear causation

*The use of the CCF to detect causality in variance relates closely to the approach adopted by
Granger, Robins, and Engle (1986). In their illustrative example, these authors focus on the
relationship between h, , and lagged Y?'s. Under the no-causality-in-variance assumption. the
squared innovation of X, h, ,¢Z, and h, .7 are not correlated. Similarly, the hypothesis that X does
not cause Y in variance implies zero correlation between /1, 2 and h, (7.1 >s. Thus, the null
hypothesis that X and Y are independent implies zero cross-correlation between h, &7 and h, 7 for
all s and 1.

SThe feasibility of using a multivariate approach to test causality in variance may be further
affected by the uncertainty surrounding the (asymptotic) distribution of the maximum likelihood
estimator for a multivariate GARCH process. In their recent study on multivariate GARCH models
Engle and Kroner (1993) argue that ‘the properties of MLEs in GARCH models are still open to
debate’ (p. 17) and conclude that (V) ery little is currently known about the properties of maximum
likelihood estimators in univariate GARCH model, let alone in multivariate GARCH-in-mean
models, despite the fact that this estimator permeates the multivariate GARCH-in-mean literature’
(p. 19).
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that is admissible in Eq.(1). The appealing features of the approach, how-
ever, make it very useful in practice. The sample residual cross-correlation
further provides information on the interaction between time-series data
and also help construct a more complex multivariate model (Parzen, 1969;
Pierce, 1977).

Since both U, and V, are unobservable, their estimators have to be used
to test the hypothesis of no causality in variance. We use the sample cross-
correlation coefficient #,,(k) computed from the consistent estimates of the
conditional means and variances of X, and Y, in place of r,(k). Let
0, = {(7”,, 0, @..0} be a consistent estimator of the true parameter vector
09 = {05, 020, @2.01: Z = X, Y; 6° = (02, 8); & = (0%, 05); and 0 = (0,, 0,). Then
Fuo(k) 1s defined as

fuv(k) = ruL‘(k) l(l =0 (12)

The sample cross-covariance ¢,, (k) and the sample variances ¢,,(0) and ¢,,.(0) are
similarly defined. The property of #,.(k) is given by:

Theorem 1. Consider {X,} and {Y,} defined by Egs. (3), (4), (5), and (6).
\/’/?(fur(kl)* ooy Fuelky)) converge to N(O,1,)) as T — o, where ky, ..., k,, are
m different integers., if (i) both E(&¥) and E(L8) exist, and (i) for all 0 in an open
convex neighborhood .4 (0°) of 6° and for all T, \/7 0% 4p(k)/00,00; exists and is
bounded in probability for 0,0, € 0 and for A, B = U, V.

Proof. See the Appendix.

Given the asymptotic behavior of 7,.(k), a normal test statistic or a chi-square
test statistic can be constructed to test the null hypothesis of noncausality. To
test for a causal relationship at a specified lag k, we can compare / T¥,.(k) with

the standard normal distribution. Alternatively. a chi-square test statistic de-
fined by

k
S=T Y fulir. (13)

i=j

which has a chi-square distribution with (k — j + 1) degrees of freedom, can be
used to test the hypothesis of no causality from lag j to lag k. The choice of j and
k depends on the specification of alternative hypotheses. When there is no
a priori information on the direction of causality, we may set — j = k = m. The
parameter m should be large enough to include the largest nonzero lag that may
appear in the causation pattern. When a uni-directional causality pattern, say,
Y, does not cause X, is considered, we set j = 1 and k = m.
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3. Discussion

Several remarks on the proposed CCF test are in order. First, causality in the
mean of X, and Y, can be tested by examining #,(k), the univariate standardized-
residual CCF. Under conditions similar to those of Theorem 1, it can be shown
that VﬁT(r};(kl), ..., Fedky)) converge to N(0, I,,) as T — oo, where kg, ..., ky,
are m different integers. Information on causation patterns in both the mean and
variance can be used to construct better models that describe the temporal
dynamics of the time-series data.

Second, the existence of any serial autocorrelation in ¢, and ¢, or in U, and
V, can affect the size of the proposed tests for causality in mean and variance.’®
The time-series model specified in the first stage should ‘accurately’ account for
serial autocorrelation in the data. The adequacy of the fitted model for explain-
ing serial correlation in the first and second moments can be statistically
determined by, for example, the Box—Pierce portmanteau statistics calculated
from standardized residuals and their squares (Box and Jenkins, 1976; McLeod
and Li, 1983).

Third., when the sample size T is small, the chi-square statistic S can be
modified to

k
SM = T Z W; fuv(i)zﬁ (14)
i=i
to attain a more accurate small-sample approximation to the y* distribution,
where w; = TAT — i) or (T + 2)AT —|i|) (Haugh, 1976; McLeod and Li,
1983). Note that Sy, 1s always larger than S. Alternatively, the statistic

sor'y |

k=—m

J 2
f,w(k—l—i)} . i=0,1,...,m—1, (15)
=0

L

suggested by Koch and Yang (1986), can be used to detect certain cross-
correlation patterns. See Koch and Yang for a more detailed discussion of the
S* statistic.

Fourth, the existence of causality in mean violates the independence assump-
tion and hence may affect the CCF test. Whether the causality in mean
(variance) has any potential effect on the test for causality in variance (mean)
depends on the model specification. For example, in a GARCH model, the
conditional variance is driven by the squared innovations. As the causality in
mean is associated with causality in the innovation term, it is likely that the
former can have an effect on the size of the causality-in-variance test. Its

®For instance, under the assumption that U, and V, are independent, the asymptotic variance of
rotk) k20,08 T3 72, p (D) poi)) . where p_(i) is the autocorrelation function of Z,.
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conditional mean, however, does not necessarily depend on the second moment
of the process. Hence the causality in variance may have a possible, but smaller,
effect on the causality-in-mean test. The conditional mean of a GARCH-in-
mean model, on the other hand, is a function of the conditional variance. In this
case the causality in variance is likely to have a potentially larger impact (cf.
GARCH models) on the causality-in-mean test. In Section 4 below two empiri-
cal examples shall be used to illustrate how causality in both the mean and
variance can be determined simultaneously.

The final remark pertains to the finite-sample properties of the proposed test.
Simulated (G)ARCH processes are used to investigate the size, power, and
sensitivity to deviations from the normality assumption. Sample sizes T = 50.
100, 300, and 500 are considered. The simulation results are based on 1,000
replications of each model and sample size combination. For brevity, we
summarize the simulation results here.”

The empirical sizes, generally, are in accordance with the asymptotic result.
When the sample size is small, say T = 50, the modified S,, statistic yields
a more accurate empirical size.® The persistence in variance, other than a unit-
root persistence, tends to have no effect on the size of the test. The simulation
results show that the CCF has the ability to identify causality and reveal useful
information on the causality pattern. It is further shown that the proposed test
has considerable power against the appropriate causality-in-variance alterna-
tive and is robust to nonsymmetric and leptokurtic errors.

4. Applications of the CCF test

We apply the CCF test to investigate the causal relations between 1) the daily
returns on the Japan Nikkei 225 stock index and the U.S. S&P 500 stock index,
and 2) the 15-minute returns on the S&P 500 index futures and the correspond-
ing returns on the underlying index. Daily data are obtained from Datastream
Inc., while the 15-minute data are constructed from June 1986 S&P 500 futures
contract provided by the Chicago Mercantile Exchange.

The widely-used MA(1) with GARCH(L, 1)-M process is employed to model
the stock returns, R,. It is given by’

Rr:¢0+¢1hz+ur+¢2u171y Ll,N./V(O,I’l,),
hi= 0o+ @ih + @2ul 1, (16)
"The complete simulation exercise is presented in Cheung and Ng (1994).

# However, for sample size 100 or larger, the Sy,-statistic tends to reject the null hypothesis too often.
“See, for example, French, Schwert, and Stambaugh (1987) and Hamao, Masulis, and Ng (1990).
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Table 1
Maximum-likelihood estimates of the GARCH(1, 1) and the MA(1)-GARCH(1, 1) models

Daily Daily 15-minute 15-minute
S&P 500 Nikket 225 S&P 500 S&P 500
Parameter index index index futures
bo 0.1043 0.1278 — 0.0002 0.0063
[0.0173] [0.0145] [0.0040] [0.0040]
(0.0259) (0.0197) (0.0041) (0.0038)
o2 0.1279 0.1169
[0.0228] {0.0336]
(0.0359) (0.0361)
Do 0.0796 0.0715 0.0048 0.0066
[0.0142] [0.0128] [0.0005] [0.0011]
(0.0511) (0.0265) {0.0029) (0.0017)
[N 0.7915 0.6237 0.6031 0.5920
[0.0230] [0.0350] [0.0369] [0.0485]
(0.1261) (0.1510) {0.1468) (0.0652)
[} 0.1483 0.3534 0.2789 0.2717
[0.0151] [0.0317] [0.0480] [0.0384]
(0.1447) (0.2389) (0.0827) (0.0566)
0(10) 7.3883 9.9079 10.8054 8.8185
Q2(10) 2.8688 5.0374 5.5098 5.9563
Log-likelihood —1794.14 — 1513.24 755.43 444.52

Asymptotic standard errors computed under the normality assumption are in square parentheses
and the Bollerslev—Wooldridge (1990) asymptotic standard errors are in round parentheses. Q(10)
and Q?(10) are the Box—Pierce portmanteau statistics for the first ten autocorrelations of standard-
ized residuals and their squares, respectively.

where u; is the unexpected return and 4, is the conditional variance. Preliminary
data analyses, however, show that not all parameters in model (16) are
significant. To avoid any spurious cross-correlation, we compare model (16)
with the following alternatives: (1) a GARCH(1, 1)-M model (i.e., model (16)
with ¢, = 0); (2) an MA(1) with GARCH(1, 1) model [i.e., model (16) with
¢, =0]; and (3) a GARCH(!, 1) model [i.e., model (16) with ¢; = ¢, = 0].
Based on the log-likelihood and the Akaike and Bayesian information criteria,
we select 1) a GARCH(I, 1) model for the returns on the daily S&P 500 index
and on the 15-minute index futures, and 2) a GARCH(l, 1) with an MA(1)
error for the returns on the daily Nikkei 225 index and on the 15-minute spot
index.

Table 1 presents maximum-likelihood estimates and diagnostic statistics
of the selected models. Standard errors based on the normality assumption
are given in square parentheses. Though the CCF test results presented below
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Table 2
Maximum-likelihood estimates of the GARCH(1, 1) and the MA(1)-GARCH(I, 1) models with
exogenous variables

Daily Daily 15-minute 1 S-minute
S&P 500 Nikkei 225 S&P 500 S&P 500
Parameter index index index futures
b0 0.0943 0.1022 0.0002 0.0018
[0.0179] [0.0136] [0.0009)] [0.0013]
(0.0256) {0.0179) (0.0010) (0.0013)
b, 0.0836 — 0.4960 —0.5392
[0.0213] [0.0387] [0.0292]
(0.0328) (0.0509) (0.0302)
¢s —0.1418
[0.0392]
(0.0416)
&y 0.0948 0.1993 0.5568 1.0680
[0.0244] [0.0159] [0.0275] [0.0317]
(0.0360) (0.0237) (0.0341) (0.0346)
Iy 0.1329 —0.1622
[0.0291] 0.0270]
(0.0289) (0.0505)
<y 0.0473
[0.0206]
{0.0198)
iy 0.0469
[0.0172]
(0.0168)
®o 0.0809 0.0360 0.0025 0.0046
[0.0142] [0.0128] [0.0003] [0.0005]
(0.0503) (0.0178) {0.0030) {0.0019)
o, 0.7927 0.7528 0.4454 0.3463
[0.0226] [0.02957 [0.0415] [0.0449]
(0.1259) {0.0498) (0.2277) (0.0230)
@ 0.1442 0.1407 0.1756 0.3267
[0.0147] [0.0197] [0.0418] [0.0448]
(0.1454) (0.0327) (0.0859) (0.2214)
o 0.0301 0.1626 0.1622
[0.0060] [0.0217] [0.029¢6]
{0.0171) (0.0393) (0.0571)
o010 5.1301 11.7226 10.7426 6.8108
Q2(10) 2.6066 8.1087 5.0261 7.0477
Log-likelihood — 1790.30 — 1400.86 1141.01 1051.88

See notes to Table 1.
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are robust to distributional assumptions, inferences about the GARCH param-
eter estimates may be sensitive to deviations from normality. Hence we also
report the Bollerslev and Wooldridge (1990) standard errors, shown in the
round parentheses, that are robust to nonnormality in dynamic models.'® The
Bollerslev—-Wooldridge standard errors are generally larger than those based on
the normality assumption, but the results are qualitatively the same. The
Box-Pierce portmanteau statistics for the first ten autocorrelations of the
resulting standardized residuals and squared-standardized residuals, ¢(10) and
Q*(10), are not significant at conventional levels. Thus, the selected models
adequately describe the first two moments.

Sample cross-correlations of the resulting standardized and squared stand-
ardized residuals are reported in panel A of Table 3.!! The ‘lag’ refers to the
number of periods the Nikkei 225 index data lag the S& P 500 index or the index
futures data lag the underlying spot index. The lead is given by a negative lag.
Given that the Japanese and U.S. stock markets operate in different time zones,
the observed returns at the same time period would not be synchronized. Thus,
any significant correlation between the two indexes on the same calender day,
defined as a lag-zero cross-correlation, should be interpreted as evidence of the
Nikkei 225 index causing the S&P 500 index. Similar interpretation applies to
the 15-minute S&P 500 futures returns and its underlying spot index. Much
existing evidence has shown that, as a result of nonsynchronous trading, the
spot S&P 500 index tends to slightly lag the true value of the 500 composite
stocks. Thus, a significant cross-correlation at lag 0 should be appropriately
interpreted as evidence of the spot S&P 500 index causing the index futures.

As seen in Table 3, the cross-correlation of standardized residuals reveals
evidence of feedback in the mean of these two pairs of financial price series. The
causation pattern in daily stock returns is of lag 1 in both directions. For
the 15-minute return data, the current spot index return is affected by past
index futures returns up to four lags. Two different causality-in-variance pat-
terns are found in these data. Although there exists no evidence of feedback, the
daily U.S. stock index causes the daily Japanese stock index in variance. In
contrast, there appears feedback in variances of the 15-minute stock index and
futures returns.

Based on the sample cross-correlation causation patterns, we reconstruct the
respective time-series models by adding the relevant and significant exogenous
variables (i.., the other market index’s lagged return or lagged squared return)
to the original GARCH-type models. The augmented models are then estimated,

'"Note that the consistency of these parameter estimates does not depend on the normality
assumption in Eq. (16); see Weiss (1986).

"7 (k) and ¥,(k) with larger (absolute) values of k are not significant and. hence, are not reported.
For detailed results. see Cheung and Ng (1994).
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Table 3
Cross-correlation in the levels and squares of standardized residuals resulting from the models
reported in Tables | and 2

Daily S&P 500 and Nikkei 225 15-minute S&P 500 index and
indexes futures data
Lag k Fotk) Fuelk) Fre (k) Fue(K)
Panel A
-5 —0.0036 —0.0129 0.0710 0.0097
-4 —0.0264 0.0360 0.0116 —0.0107
-3 0.0170 00113 - 0.0109 —0.0178
-2 0.0292 0.0555* 0.0074 —0.0264
-1 0.2981* 0.5143* — 0.0284 0.0109
0 0.0670* 0.0430 0.6069* 0.4187*
1 —0.0023 0.0067 0.3204* 0.1916*
2 0.0202 0.0087 0.0221 — 0.0055
3 0.0057 - 0.0078 0.0512* 0.0347
4 0.0259 — 0.0062 0.0602* 0.0218
5 —0.0317 — 0.0062 —0.0079 —0.0136
Panel B
-5 0.0053 —0.0244 0.0415 —0.0143
-4 0.0327 0.0040 — 0.0585* —0.0146
-3 0.0102 0.0084 0.0220 0.0298
-2 0.0318 0.0150 0.0263 0.0029
-1 0.0145 0.0393 0.0306 0.0242
0 - 0.0177 0.0088 0.0101 — 0.0088
1 0.0027 0.0130 0.0035 0.0567*
2 0.0123 0.0257 —0.0336 — 0.0209
3 0.0185 — 0.0207 0.0149 0.0153
4 0.0151 — 0.0187 —0.0264 —0.0348
5 —0.0329 —0.0015 — 0.0153 — 0.0056

Notes: F.(k) and #,..(k) are the cross correlations of standardized residuals and squared-standardized
residuals computed from the models reported in Tables 1 and 2. k is the number of periods the
Nikkei 225 index lags the S&P 500 index or the stock futures lags the underlying spot index
quotation. "*" indicates significance at the 5% level.

compared, and evaluated. For the daily S&P 500 index, the resulting model is
R, = o +u + & RE,
hi= @0+ @ih . + @rul . (17

where R, and R are the returns on the daily S&P 500 index and Nikkei 225
index. The model selected for the Nikkei index 1s

Rr* = (]50 + 1y, +¢2“r—1 + é]Rl—l’
hi= @0+ @ih— + @aul- + 6R},. (18)
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The specifications for two 15-minute stock index/futures series are
Ri=do+ t+dat, 1+ Psu 2+ & RE 1+ EHRE 5+ GRE 5 + LR,
hi= @0 + @ih 1 + @2uf - + 6RF?,, (19
for the spot index, and
R¥ =¢o +u + ¢pouy + &R+ SR -y,
he= 0o + @1h 1\ + @aui_ + OR?, (20)

for the futures index, where R, and R} are the 15-minute returns on the spot and
futures index series.'?

Table 2 reports maximume-likelihood estimates of these models. According to
both the normality-based and the Bollerslev—Wooldridge standard errors, the
added explanatory variables are significant. And none of the Q(10) and Q?(10)
statistics are significant at conventional levels. The maximum log-likelihood
values of all four cases have improved, with the most pronounced increase in the
15-minute financial price series. The estimated regressions suggest that the
causal relationship between the two 15-minute return series is stronger and
more intricate. This result is consistent with the notion that information is better
measured using higher-frequency data.

The sample CCFs of the resulting residuals from Eqgs. (17) to (20) are reported
in panel B of Table 3. Unlike those in panel A, the cross-correlation in the levels
and squares of the standardized residuals from the daily stock return models is
weak. However, there are two cross-correlation coefficients from the 15-minute
data models that are significant at the 5% level. The significance of ¥,.( — 4) may
be attributable to the type I error as the same estimate is not significant in panel
A. Although £,.(1) in panel B is still significant, the magnitude has dramatically
reduced by 70% as compared to that reported in panel A. The remaining
evidence of causality may be driven by factors not already captured by these two
return series. Overall, Egs. (17) to (20) explain a large proportion of the causal
relationship in these series, suggesting that the CCF method is useful in deter-
mining causality in the variance.

5. Conclusions

In this paper we propose a statistical test for causality in the variance that is
robust to the distributional assumption. The test entails fitting a univariate

'2The inclusion of additional terms in these modified specifications is determined by the sample
cross-correlation reported in panel A of Table 3. the parameter significance, and the Box—Pierce
diagnostic statistic. For example, for model (18). we also included the R?. , term in the h, equation.
However, this variable turned out to be insignificant. Also note that the inclusion of additional
lagged terms in models (19) and (20) was dictated by the Box—Pierce diagnostic statistics.
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model that incorporates both changing variances and means to each time series
and computing cross-correlations of the squares of resulting standardized resid-
vals. Under the null hypothesis of no causality in variance, the sample cross-
correlation is shown to have an asymptotic normal distribution. Monte Carlo
results suggest that the proposed test has good empirical size and power
properties and is robust to nonnormal errors. The two empirical examples using
financial prices illustrate that the proposed causality test provides constructive
information on the temporal dynamics and the interaction of two time series.
Our analysis has some implications for future research. First, although this
involves a complex experimental design, it is worthwhile to compare the CCF
test with a likelihood-ratio test, a Wald test, and the other distribution-free tests
(e.g., Bollerslev and Wooldridge, 1990; Wooldridge, 1990) using, say, Monte
Carlo methods. Second, as a natural extension of the current univariate ap-
proach, it would be of interest to develop a causality-in-variance test in a multi-
variate framework. This can be a very challenging task in view of the uncertainty
associated with the dynamics and the potential interaction in any pair of
time-series observations. Thus, the information extracted using the CCF
method may be exploited to build the appropriate multivariate specification.

Appendix: Proof of Theorem 1

The argument is similar to that used in Haugh (1976) and McLeod and Li
(1983). First, we establish the result

g a()ut'(k)
/T =( (1), v, el Al
T ‘ Al € (A1
Consider 0, ;€ 0, 5,
Oc,(k -
") =T 'Y (PNGi-ih (A2)
8Os jlo =0 .
where
U’l = b 2
P = o Z (P.\-,i.j{(Xr—i*llx.r‘l)"'%§}~ (A.3)
X ti=1
a@x i(()x.h)
i A4
an o af),\'.h.j ( )
go-x =V — L (A.5)

Note that the highest order of ¢ in p, is 4. Under the null hypothesis of
independence, p, and ¢, _, are independent. Then the assumptions of stationarity
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and existence of the eighth moments imply that (e.g.. Hannan, 1970)

JT [M} — AN(0, ¢2), (A.6)
where 62 is a product of autocorrelations of p, and ¢, _,. Hence,
[ acuv(k) \
/T = (" ,(1). AT
N 00 o o) (A7)
Next, consider 0, , ;€ 0, ,,
acul‘(k -
B TS 0 (A3)
x.u, g =g 1
where
—2X, —u,,) &
gz:(hl“'u') z b X1, (A9)
x,t i=1
a¢x i(()x u)
o= A10
d).\.l.} aex.u.j ( )

The highest order of ¢, in ¢, is less than 4 and g, is independent of ¢, , under the
null. Thus,

/’? a(‘ur(k)
AV

= ,(1). (A.11)

With the same argument

//_ acuv(k)
Ve

= (1) (A.12)

yow j|th=0

for 0, . €0, .. W = u h Hence, we have the result (A.1).
With (A.1), Theorem 1 can be proved as follows. Expanding ¢,,(k) about the
true parameter vector 6°,

— — — A ek
Ttk = Tk + /(0 — ooy e
o0 |o=po
A ek (k) 5
/T(O— 8°y — 0°), A.13
T oy St \M*w ) (A1)

where [|(° — 0*| < [|§° — |. Since 0 is consistent by assumption,

(0 — 0°) = o ,(1). (A.14)



Y-W. Cheung. L.K. Ng ; Journal of Econometrics 72 (1996) 33-48 47

(A.14) and the boundedness of /Tdc2.(k)/00,30; imply
AV J

= [ A 3 “ur k
\/’/ T(A'lu'(k) = \// T(‘uzr(k) + \//ﬁT(() —0° )/ a(—ae(__) + “p (1) (Als)
=0

Further, the second term on the right-hand side of (A.15) is «,(1) by (A.1) and
(A.14). Hence,

\/'/?éut‘(k) = \//?Cuu(k) + (,,(1) (Al6)
Now, for k # k',

T 20 (k) e k) = (T k) + (1) (/T ewnlk) + (1))

= T (k)e (k') + o ,p(1). (A.17)

Using a similar technique, we can show that
Caul0) = €4, (0) + (1), (A.18)
Crp(0) = €, (0) + ¢ ,(1). (A.19)

Note that ¢,,(0) and ¢,,.(0) converge to the variances of U, and V,, respectively.
Applying the Slutsky theorem and Cramer-Rao device (e.g., Rao, 1973), 7,,.(k)
and r,.(k) have the same asymptotic distribution and

—

\/T(”:m'(kl )s Sees fztu(kM)) - N(O' I"‘) =
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