1. (a) Use properties of inverse trig. functions to evaluate the expression

\[\sin^{-1}(\sin(3\pi)). \]

\[\sin^{-1}(\sin(3\pi)) = \sin(0) = 0 \]

Not 3\pi since 3\pi is not in the range of \(\sin^{-1}(x) \).

(b) Find the exact value of the expression (Hint: Sketch a right triangle.)

\[\cos(\arctan(2)). \]

Let \(\theta = \arctan(2) \):

\[\tan(\theta) = 2 \]

Since \(\tan(\theta) > 0 \) we know \(\theta \) is in QI.

By Pythagorean Thm:

\[c^2 = 2^2 + 1^2 \]

\[c = \sqrt{5} \]

\[\cos(\arctan(2)) = \frac{1}{\sqrt{5}} \]

2. A ship is 45 miles east and 30 miles south of port. The captain wants to sail directly back to port. What bearing should be taken?

N 56.31° W
3. Perform the subtraction and then use the fundamental identities to simplify the expression

\[\tan(x) - \frac{\sec^2(x)}{\tan(x)} \]

\[\tan(x) = \frac{\sec^2(x)}{\tan(x)} \]

\[\tan(x) \cdot \tan(x) = \frac{\sec^2(x)}{\tan(x)} \]

\[= \frac{\tan^2(x)}{\tan(x)} - \frac{\sec^2(x)}{\tan(x)} \]

\[= \tan^2(x) - \frac{\sec^2(x)}{\tan(x)} \]

\[\text{Pythagorean Identity: } \tan^2(x) + 1 = \sec^2(x) \]

\[\text{Quotient Identity: } \cot(x) = \frac{1}{\tan(x)} \]

\[= \frac{\tan^2(x) - \sec^2(x)}{\tan(x)} \]

\[= \frac{-1}{\tan(x)} \]

\[= -\cot(x) \]