Announcements 1/28/19

- Quizzes back on Wednesday.
- Today finish 4.5 & 4.6
- Sometime tomorrow I’ll post an exam study guide on the webpage.
- Wednesday Review, then start 4.7.
4.5: Graphs of Sine & Cosine Functions (CONTINUED)

* We finish our discussion on the graphs of Sine and cosine functions of the form

\[y = A \sin(Bx - C) + D \]

\[y = A \cos(Bx - C) + D \]

Last Time

* Amplitude = \(|A| \) \(\leftarrow \) Vertical Stretch/Shrink

* Period = \(\frac{2\pi}{B} \) \(\leftarrow \) Horizontal Stretch/Shrink (remember \(B > 0 \))

* Phase Shift = \(\frac{C}{B} \) \(\leftarrow \) Horizontal Shift
 \(C > 0 \) shift to right
 \(C < 0 \) shift to left

* One Cycle Interval = \(\left[\frac{C}{B}, \frac{C}{B} + \frac{2\pi}{B} \right] \) \(\leftarrow \)

Interval over which one cycle of the graph takes place.
* D corresponds to a **Vertical Shift** of the basic sine and cosine curves.

- If D > 0 → Vertical shift is D units up.
- If D < 0 → Vertical shift is D units down.

* Instead of oscillating about the x-axis (the horizontal line y=0), the graphs of the eqn’s.

\[y = A \sin(Bx - C) + D \]
\[y = A \cos(Bx - C) + D \]

oscillate about the horizontal line \(y = D \).

Example (Vertical Shift)

Determine the amplitude, period, phase shift and vertical shift of

\[y = -\frac{1}{2} \sin(\pi x + \pi) + 2 \]

and sketch the graph.
Here we have:

\[A = -\frac{1}{2} \]
\[B = \pi \]
\[C = -\pi \]
\[D = 2 \]

So that:

\[\text{Amplitude} = \frac{1}{2} \]
\[\text{Period} = \frac{2\pi}{\pi} = 2 \]
\[\text{Phase Shift} = -\frac{\pi}{\pi} = -1 \]
\[\text{Vertical Shift} = 2 \text{ (units up)} \]

And the graph of \(y = -\frac{1}{2} \sin(\pi x + \pi) + 2 \) completes one cycle over the interval:

\[\left[\frac{c}{B}, \frac{c}{B} + \frac{2\pi}{B} \right] = [-1, 1] \]
The five key points over the one cycle interval $[-1, 1]$ are

- $x = -1 \rightarrow (-1, 2)$
- $x = -\frac{1}{2} \rightarrow (-\frac{1}{2}, \frac{3}{2})$
- $x = 0 \rightarrow (0, 2)$
- $x = \frac{1}{2} \rightarrow (\frac{1}{2}, \frac{5}{2})$
- $x = 1 \rightarrow (1, 2)$
Key points

\[y = -\frac{1}{2} \sin(\pi x + \pi) + 2 \]

\((-1, 2)\) ✓

\((-\frac{1}{2}, 3\frac{1}{2})\) ✓

\((0, 2)\) ✓

\((\frac{1}{2}, 3\frac{1}{2})\) ✓

\((1, 2)\)
A How to use your Calculator to graph Trigonometric Functions:

- Make sure your Calculator is in Radian Mode.
- In WINDOW:
 - Set X_{min} & X_{max} based on how many cycles you'd like to graph.
 - Set X_{scale} based on the distance between the X-values in your key points.
 - Set Y_{min} & Y_{max} based on the amplitude and vertical shift.
 - Set Y_{scale} based on the Amplitude.
- Enter the equation in $Y = $

Let's see how to do this with our last example.
4.16: Graphs of Other Trig. Functions

Now we look at the graphs of tangent, cotangent, secant and cosecant functions.

Graph of the Tangent Function

\[y = \tan(x) \]
As x increases from 0 to $\frac{\pi}{2}$, $\tan(x)$ increases from 0 to ∞. As x decreases from 0 to $-\frac{\pi}{2}$, $\tan(x)$ decreases from 0 to $-\infty$.

The same behavior occurs at each value of x not in the domain of $y = \tan(x)$.

The graph of $y = \tan(x)$ has a vertical asymptote at each vertical line $x = \frac{\pi}{2} + n\pi$ for n an integer.

Since $\tan(x)$ increases and decreases without bound,

The range of $y = \tan(x)$ is $(-\infty, \infty)$.
Properties of the graph of \(y = \tan(x) \)

- The graph of \(y = \tan(x) \) completes one cycle over the interval \((-\frac{\pi}{2}, \frac{\pi}{2})\).

 The period of \(\tan(x) \) is \(\pi \)

- The key points on the graph of \(y = \tan(x) \) over the one cycle interval \((-\frac{\pi}{2}, \frac{\pi}{2})\) are

 \((-\frac{\pi}{4}, -1), (0, 0), (\frac{\pi}{4}, 1)\)

- From the identity \(\tan(x) = \frac{\sin(x)}{\cos(x)} \), we know that \(\tan(x) \) is not defined at values of \(x \) for which \(\cos(x) = 0 \). The domain of \(\tan(x) \) is all real numbers \(x \neq \frac{\pi}{2} + n \pi \) for \(n \) an integer.
A sketching the graph of a tangent function of the form

\[y = A \tan(Bx - C) \]

is similar to sketching the graph of \(y = A \sin(Bx - C) \).

In the case of tangent, \(A \) still corresponds to a vertical stretch/shrink. However, we do not call \(|A|\) the amplitude since \(\tan(x) \) increases and decreases without bound over every cycle.

\[\text{Period} = \frac{\pi}{B} \quad \text{if } B > 0 \]

\[\text{Phase Shift} = \frac{C}{B} \quad \text{if } C > 0 , \text{ to right} \]
\[\text{if } C < 0 , \text{ to left} \]

\[\text{One Cycle Interval} = \left(\frac{C}{B} - \frac{\pi}{2B}, \frac{C}{B} + \frac{\pi}{2B} \right) \]

\[\text{Found by solving the eqn:} \]
\[Bx - C = -\frac{\pi}{2} \]

\[\text{or equivalently:} \]
\[Bx - C = \frac{\pi}{2} \]
Example (Graphing Tangent Functions)

Determine the period, phase shift and one cycle interval of

\[y = -3 \tan \left(2x + \frac{\pi}{2} \right) \]

and sketch two cycles of the graph.

Here

\[A = -3 \]
\[B = 2 \]
\[C = -\frac{\pi}{2} \]

So

\[
\begin{align*}
\text{Period} &= \frac{\pi}{B} = \frac{\pi}{2} \\
\text{Phase shift} &= \frac{C}{B} = -\frac{\pi}{4} \\
\text{One cycle interval} &= \left(\frac{C}{B} - \frac{\pi}{2B}, \frac{C}{B} + \frac{\pi}{2B} \right) = \left(-\frac{\pi}{2}, 0 \right)
\end{align*}
\]
Let's determine the three key points of the graph of
\[y = -3 \tan(2x + \frac{\pi}{2}) \] over the one cycle interval \((-\frac{\pi}{2}, 0)\).

Again, we break the one cycle interval into 4 equal parts, but we exclude the endpoints:

- To do this, divide the period by 4, then add the result to the left endpoint \(-\frac{\pi}{2}\) three times consecutively.

\[
\frac{\text{Period}}{4} = \frac{\frac{\pi}{2}}{4} = \frac{\pi}{8}
\]

\[
-\frac{\pi}{2} + \frac{\pi}{8} = -\frac{3\pi}{8}
\]

\[
-\frac{3\pi}{8} + \frac{\pi}{8} = -\frac{\pi}{4}
\]

\[
-\frac{\pi}{4} + \frac{\pi}{8} = -\frac{\pi}{8}
\]
So the key points over the arc cycle interval are:

\[x = -\frac{3\pi}{8} \quad \longrightarrow \quad \left(-\frac{3\pi}{8}, 3 \right) \]

\[x = -\frac{\pi}{4} \quad \longrightarrow \quad \left(-\frac{\pi}{4}, 0 \right) \]

\[x = -\frac{\pi}{8} \quad \longrightarrow \quad \left(-\frac{\pi}{8}, -3 \right) \]

\[y = -3\tan \left(2x + \frac{\pi}{4} \right) \]

* Now use the key points to sketch the graph of \(y = -3\tan \left(2x + \frac{\pi}{4} \right) \) over the arc cycle interval \((-\frac{\pi}{2}, 0\)), then sketch more cycles by extending in either direction.
Key Points

\[y = -3 \tan \left(2x + \frac{\pi}{2} \right) \]

\[\left(-\frac{3\pi}{8}, 3 \right) \]

\[\left(-\frac{\pi}{4}, 0 \right) \]

\[\left(-\frac{\pi}{6}, -3 \right) \]

\[y \]

\[x \]
Example (Graphing a Cosine Function)

Determine the Amplitude, period, phase shift and vertical shift of

\[y = 3 \cos(x + \pi) - 1 \]

And graph One cycle.

Amplitude = 3

Period = \(2\pi\)

Phase shift = \(-\pi\)

Vertical shift = \(-1\) (1 unit down)

One cycle interval = \([-\pi, \pi]\)

\[\checkmark \]
Key Points on \((-\pi, \pi]\)

\[
\text{Period} = \frac{2\pi}{4} = \frac{\pi}{2}
\]

- \(x = -\pi \rightarrow (-\pi, 0)
- \(x = -\frac{\pi}{2} \rightarrow (-\frac{\pi}{2}, -1)
- \(x = 0 \rightarrow (0, -1)
- \(x = \frac{\pi}{2} \rightarrow (\frac{\pi}{2}, -1)
- \(x = \pi \rightarrow (\pi, 0)
\]
$y = 3 \cos(x + \pi) - 1$
Properties of the graph
of \(y = \cot(x) \)

- One cycle of the graph of \(y = \cot(x) \) occurs over the interval \((0, \pi)\).
- The period of \(y = \cot(x) \) is \(\pi \).
- The key points of the graph of \(y = \cot(x) \) over one cycle are \((\pi/4, 1), (\pi/2, 0), (3\pi/4, -1)\).
- The domain of \(y = \cot(x) \) is all real numbers except
 \[x \neq n\pi \quad \text{for } n \text{ an integer} \]
- The vertical asymptotes of the graph of \(y = \cot(x) \) are the vertical lines
 \[x = n\pi \quad \text{for } n \text{ an integer} \]
- The range of \(y = \cot(x) \) is \((-\infty, \infty)\).
Graph of the Cotangent Function

using the identity \[\cot(x) = \frac{\cos(x)}{\sin(x)} \]

and similar reasoning as in the case of \(y = \tan(x) \) we find:

\[y = \cot(x) \]
When graphing a cotangent function

\[y = A \cot(Bx - C) \]

\[\rightarrow \text{period} = \frac{\pi}{B} \quad \text{←} \quad B > 0 \]

\[\rightarrow \text{phase shift} = \frac{C}{B} \quad \text{←} \quad C > 0, \text{ right} \quad C < 0, \text{ left} \]

\[\rightarrow \text{one cycle interval} = \left(\frac{C}{B}, \frac{C}{B} + \frac{\pi}{B} \right) \]

\[\text{Found by solving the eqn.} \quad Bx - C = 0 \]

\[\text{Found by solving the eqn.} \quad Bx - C = \pi \]

Example (Graphing a Cotangent Function)

Determine the period, phase shift and one cycle period of

\[y = 2 \cot\left(\frac{x}{3}\right) \]

and graph two cycles.
Here

\[A = -2 \]
\[B = \frac{1}{3} \]
\[c = 0 \]

So we know

\[
\begin{align*}
\text{period} &= \frac{\pi}{B} = 3\pi \\
\text{phase shift} &= \frac{c}{B} = 0 \\
\text{one cycle interval} &= (0, 3\pi)
\end{align*}
\]

Now find the

To graph \(y = 2 \cot \left(\frac{x}{3} \right) \) find the three key points over the one cycle interval \((0, 3\pi)\)

\[
\begin{align*}
\text{at } x &= \frac{3\pi}{4} \\
\text{at } x &= \frac{3\pi}{2} \\
\text{at } x &= \frac{9\pi}{4}
\end{align*}
\]

\[
\begin{align*}
(3\pi, 2) \\
(3\pi, 0) \\
(9\pi, -2)
\end{align*}
\]
Key points of $y = 2 \cot(3x)$:

- $\left(\frac{3\pi}{4}, 2\right)$
- $\left(\frac{3\pi}{2}, 0\right)$
- $\left(\frac{9\pi}{4}, -2\right)$
The Graphs of Cosecant $\&$ Secant Functions

To sketch the graphs of $y = \csc(x)$ $\&$ $y = \sec(x)$, we can use the graphs of $y = \sin(x)$ $\&$ $y = \cos(x)$.

Because of the reciprocal identities

\[
\csc(x) = \frac{1}{\sin(x)} \quad \text{and} \quad \sec(x) = \frac{1}{\cos(x)}
\]

At a given value of x, the corresponding y-coordinate on the graph of $\csc(x)$ is the reciprocal of the y-coordinate on the graph of $\sin(x)$.

When $\sin(x) = 0$, $\csc(x)$ is undefined. And we get vertical asymptotes.

At a given value of x, the corresponding y-coordinate on the graph of $\sec(x)$ is the reciprocal of the y-coordinate on the graph of $\cos(x)$.

When $\cos(x) = 0$, $\sec(x)$ is undefined. And we get vertical asymptotes.
y = csc(x)

Period: \(2\pi\)

Range: \((-\infty, -1] \cup [1, \infty)\)

Domain: All real numbers except \(x \neq n\pi\) for \(n\) an integer.

Vertical Asymptotes:
At vertical lines \(x = n\pi\), \(n\) an integer.
\[y = \sec(x) \]

Period: \(2\pi \)

Domain: All real numbers \(x \neq \frac{\pi}{2} + n\pi \), \(n \) an integer

Range: \((-\infty, -1] \cup [1, \infty) \)

Vertical Asymptotes

Vertical lines \(x = \frac{\pi}{2} + n\pi \), \(n \) an integer
Example (Graphing Cosecant functions)

Sketch two cycles of the graph of

\[y = 2 \csc(2x - \pi) \]

* Begin by sketching the graph of

\[y = 2 \sin(2x - \pi) \]

Here we have:

- \(A = 2 \)
- \(B = 2 \)
- \(C = \pi \)

So we get:

- Amplitude = \(|A| = 2\)
- Period = \(\frac{2\pi}{B} = \pi \)
- Phase Shift = \(\frac{C}{B} = \frac{\pi}{2} \)

One Cycle = \([\frac{\pi}{2}, \frac{3\pi}{2}]\)

Interval
The key points on the graph of $y = 2 \sin(2x - \pi)$ over the one-cycle interval $\left[\frac{\pi}{4}, \frac{3\pi}{2} \right]$ are:

- $\frac{\pi}{4}$

- $x = \frac{\pi}{2} \rightarrow (\frac{3\pi}{4}, 2)$

- $x = \frac{3\pi}{4} \rightarrow (\frac{3\pi}{4}, 2)$

- $x = \pi \rightarrow (\frac{5\pi}{4}, -2)$

- $x = \frac{5\pi}{4} \rightarrow (\frac{5\pi}{4}, -2)$

- $x = \frac{3\pi}{2} \rightarrow (\frac{3\pi}{2}, 0)$

- $x = \frac{5\pi}{2} \rightarrow (\frac{3\pi}{2}, 0)$

Now sketch two cycles of $y = 2 \sin(2x - \pi)$.

From this we can determine the graph of $y = 2 \csc(2x - \pi)$.
Key points of $y = 2 \sin(2x - \pi)$

- $\left(\frac{3\pi}{4}, 2\right)$
- $\left(\pi, 0\right)$
- $\left(\frac{5\pi}{4}, -2\right)$
- $\left(\frac{3\pi}{2}, 0\right)$

Asymptotes at zeros of $y = 2 \sin(2x - \pi)$

$y = 2 \csc(2x - \pi)$