Chapter 3 - Polynomial and Rational Functions.

3.1 Polynomial Functions and Models

Definition: A polynomial function is is a function of the form

\[f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0, \]

where \(a_n, a_{n-1}, \ldots, a_0 \) are constants and \(n \) is a nonnegative integer.

Notation: coefficients, leading term, leading coefficient, constant term, degree, standard form, smooth function

Definition: A power function is is a function of the form \(f(x) = ax^n \), where \(a \) is a constant and \(n > 0 \) is an integer.

examples: even power functions vs. odd power functions

Definition: The number \(r \) is a zero (or root) of a function \(f \) in case \(f(r) = 0 \). If \(r \) is a zero of \(f \), then the following statements are equivalent:

1. \(r \) is a zero of the function \(f \).
2. \((r, 0) \) is an \(x \)-intercept of the graph of \(f \).
3. \(x - r \) is a factor of \(f \).
4. \(r \) is a solution to the equation \(f(x) = 0 \).

Definition: If \((x - r)^m \) is a factor of a polynomial \(f \), and \((x - r)^{m+1} \) is not a factor of \(f \), then \(r \) is called a zero of multiplicity \(m \) of \(f \).

Graphing aids: If \(r \) is a zero of even multiplicity, then the sign of \(f \) does not change on either side of \(x = r \), and the graph of \(f \) touches the \(x \)-axis at \(r \). If \(r \) is a zero of odd multiplicity, then the sign of \(f \) changes on either side of \(x = r \), and the graph of \(f \) crosses the \(x \)-axis at \(r \).

Turning points: points at which a graph changes direction (yielding local maximum and local minimum points). A polynomial of degree \(n \) has at most \(n - 1 \) turning points.

End behavior: For large values of \(x \) (either positive or negative) the graph of the function \(f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \) behaves like the graph of \(f(x) = a_n x^n \).