Goal: understand some properties of the graph of f.

If f is differentiable at x_0 then the graph is like a line through:

$$f(x_0 + h) = f(x_0) + f'(x_0)h + o(h)$$

When $f'(x_0) = 0$, the formula (1) is not so useful without understanding the $o(h)$ term more.

![Graphs showing different cases](image)

To do this, we use higher derivatives of f.

If f is differentiable on (a, b) then $x \mapsto f''(x)$ is a function on (a, b) if f' is continuous, we call f a C^1 function. If f'' is differentiable we call f twice-differentiable and $f'' = (f''(x))' = f'''(x)$, the third derivative of f. Inductively set $f^{(n)}(x) = (f^{(n-1)}(x))' = \lim_{h \to 0} \frac{f^{(n-1)}(x+h) - f^{(n-1)}(x)}{h}$ is the n^{th} derivative of f. If $f^{(n)}$, $f^{(n+1)}$, ... exist, f is called n-times differentiable. If $f^{(n)}$ is continuous, f is called a C^n function.

If $f \in C^1$ then the f is called a C^0 or smooth function.

Example: $f(x) = (x^2 \sin(1/x)) \tanh(x)$ is differentiable but not C^1.

$x^{1/3}$ is C^1 but not $C^{1/2}$ at $x = 0$.

Polynomials are C^∞.
Polynomial Approximation Let \(f : (a, b) \to \mathbb{R} \) be \(n \)-times differentiable around \(x_0 \in (a, b) \). Then

\[
f(x_0 + h) = f(x_0) + f'(x_0)h + \ldots + \frac{f^{(n)}(x_0)}{n!}h^n + o(h^n)
\]

where \(\frac{o(h^n)}{h^n} \to 0 \) as \(h \to 0 \).

Proof: Use L'Hôpital's Rule.

Prop. If \(f'(x_0) = 0 \) and \(f''(x_0) > 0 \) then \(x_0 \) is a local minimum.

Taylor expansion Let \(f : (a, b) \to \mathbb{R} \) be \(n+1 \)-times differentiable around \(x_0 \in (a, b) \) and \(h > 0 \) s.t. \([x_0-h, x_0+h] \subset (a, b)\). Then

\[
f(x_0 + h) = f(x_0) + \ldots + \frac{f^{(n)}(x_0)}{n!}h^n + \frac{f^{(n+1)}(x_0 + \xi h)}{(n+1)!}h^{n+1}
\]

for \(\xi \in (x_0, x_0+h) \). Differentiate to get \(R(t) = -\frac{f^{(n)}(x_0+\xi h)}{n!}(h-t)^n \) and apply L'Hôpital to \(R(t) \) and \(h-n \),

Remark: We often change variables by \(x = x_0 + t \).

Examples: \(f(x) = x^3 \), \(f(x) = \sqrt{x} \), \(f(x) = e^x \).

Exercises: 1. If \(f'''(x_0) = 0 \), \(f''(x_0) = 0 \), \(f'(x_0) = 0 \), \(f(x_0) < 0 \), show that \(x_0 \) is a local maximum.

2. If \(a_0 + a_1 h + \ldots + a_n h^n + o(h^n) = b_0 + b_1 h + \ldots + b_n h^n + o(h^n) \) show \(a_i = b_i \).
3. Find Taylor expansion of \(f \), \(f' \) in terms of coefficients of the expansion for \(f \) and \(g \).

4. How many terms are needed in the Taylor expansion around 0 to approximate \(e \) to 2 decimal places?

5. Show if \(f \) is 2-times differentiable, then

\[
\lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} = f''(x).
\]

Newton's method:

\[x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \] should converge to a root of \(f \).

problems: (1) \(f' \) is zero at some \(x_0 \) (2) \(f' \) is bad at a root (\(f(a) = 0 \)) (3) \(f \) has no root (\(f(x) = e^x \)).

A criterion for convergence: Let \(f \) be \(C^1 \) on \([a, b] \) with a root \(x \in (a, b) \) and \(f' \neq 0 \) on \([a, b] \). Then \(\exists \) a \(\delta \) such that \(x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \) converges to \(x \).

proof: Show \(g(x) = x - \frac{f(x)}{f'(x)} \) is a contraction mapping near \(x \), so use Taylor's to get \(|x_{n+1} - x'| \leq C |x_n - x'| \).

\(x^2 + y^2 = 1 \) is locally a graph. Each point has a neighborhood whose

\(x+y = 1 \) is locally a graph. Each point has a neighborhood whose

\(x^2 + y^2 = 1 \) is locally a graph. Each point has a neighborhood whose

\(x+y = 1 \) is locally a graph. Each point has a neighborhood whose

\(x^2 + y^2 = 1 \) is locally a graph. Each point has a neighborhood whose

\(x+y = 1 \) is locally a graph. Each point has a neighborhood whose

\(x^2 + y^2 = 1 \) is locally a graph. Each point has a neighborhood whose

\(x+y = 1 \) is locally a graph. Each point has a neighborhood whose

\(x^2 + y^2 = 1 \) is locally a graph. Each point has a neighborhood whose

\(x+y = 1 \) is locally a graph. Each point has a neighborhood whose

\(x^2 + y^2 = 1 \) is locally a graph. Each point has a neighborhood whose
Implicit function theorem: Let $f: \mathbb{R}^2 \to \mathbb{R}$ be C^2 such that $f(x_0, y_0) = 0$, $\frac{df}{dy}(x_0, y_0) \neq 0$. Then $\exists \delta > 0$ and $g: (x_0 - \delta, x_0 + \delta) \to \mathbb{R}$ such that $f(x, g(x)) = 0$ and $g(x_0) = y_0$.

Proof: Let $K(x, y) = y - \frac{f(x, y)}{\frac{df}{dy}(x_0, y_0)}$. Show K is a contraction mapping near (x_0, y_0).

Example: 1. $x^2 + y^2 = 1$ has $\frac{df}{dy} = 2y \neq 0$ at any point $(1, 0)$.

2. Differential equation and periodic orbits.

$p(x) - x = 0 \iff$ periodic orbits.
A series is an infinite sum \(a_1 + a_2 + \ldots = \sum_{n=1}^{\infty} a_n \) for some sequence \((a_n) \). The series converges if \(\sum a_n \) converges and diverges otherwise.

Examples: \(\sum r^n \) for odd \(r \), \(\sum_{n=1}^{\infty} \frac{1}{n^2} \) converges, \(\sum_{n=0}^{\infty} r^n \) diverges.

Methods to test if a series converges or not:

- If \(a_n \geq 0 \) for all \(n \), then \(S_n \) is an increasing sequence. Hence \(\sum a_n \) converges if \(S_n \) is bounded above.

- (Cauchy criterion) \(\sum a_n \) converges if \(\forall \epsilon > 0 \), \(\exists N \) s.t. \(|\frac{a_m}{a_n}| < \epsilon \) for \(m > n \), \(k > 0 \).

- If \(\sum a_n \) converges then \(a_n \to 0 \).

- (Comparison test) If \(\sum a_n \) converges and \(|a_n| \leq b_n \) for \(n \) sufficiently large, then \(\sum b_n \) converges.
 If \(\sum b_n \) diverges and \(a_n \geq b_n \) for \(n \) sufficiently large, then \(\sum a_n \) diverges.

- (Root test) If \(\lim_{n \to \infty} |a_n|^{1/n} < 1 \) then \(\sum a_n \) converges.
 If \(\lim_{n \to \infty} |a_n|^{1/n} > 1 \) then \(\sum a_n \) diverges.

- (Ratio test) If \(\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} < 1 \) then \(\sum a_n \) converges.
 If \(\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} > 1 \) for all \(n \), \(\sum a_n \) diverges.

- (Leibniz test) If \(a_0 > a_1 > a_2 > \ldots \to 0 \) and \(a_n \to 0 \) then \(\sum_{n=0}^{\infty} (-1)^n a_n \) converges.
The series $\sum a_n$ converges absolutely if $\sum |a_n|$ converges.

Algebra with series:

1. If $\sum a_n = a$ and $\sum b_n = b$ then $\sum a_n + b_n = a + b$.
2. If $a_n \rightarrow 0$ and $c > 0$ then $\sum c a_n = c \sum a_n$.
3. If $\sum a_n$ converges absolutely and $\sum b_n = b$ then $\sum c a_n = c \sum a_n$ where $c_n = \sum_{k=0}^{n} a_{n-k} b_k$.

Exercises:

1. If $\lim \frac{a_n}{b_n} = c \neq 0$ and $a_n, b_n > 0$ show $\sum a_n$ converges if $\sum b_n$ converges.

2. $\sum \frac{n!}{n^n}, \sum \frac{1}{n^2}, \sum \frac{n}{n^2 - 5n^2}, \sum \frac{1}{n+3^n}, \sum \frac{1}{2^n - n}$

3. If $q_n = \frac{(-1)^n}{n^{1/3}}$. Does it converge absolutely?

Hint: $\sum q_n$. Does it converge conditionally?

How does changing the order of terms affect the sum?

$s = \sum (-1)^n$. Then $\exists s = s + \frac{1}{2} s$ is a rearrangement of $\sum (-1)^n$. But $s + \frac{1}{2} s$ converges to s. Therefore, if $\sum a_n$ converges and $\sum b_n$ does not converge then for any $c \in \mathbb{R}$, there exists a rearrangement $\sum a_{\sigma(n)} = c$.

Thus, if $\sum a_n$ converges absolutely then $\sum a_{\sigma(n)} = \sum a_n$ for any rearrangement.
for $f \in C^\infty$ we may write

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n + \frac{f^{(n)}(x_0)}{(n-1)!} (x-x_0)^{n-1}.$$

we'll take $x_0 = 0$ - why? For which x does it make sense to write

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n ?$$

Then: if $|f^{(n)}(y)| \leq M$ for all $n \in \mathbb{N}$ and $y \in (-R, R)$ then for each $x \in (-R, R)$

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n.$$

Such functions are called **analytic** about x_0.

Examples:
1. $e^x = \sum \frac{x^n}{n!}$ a \mathbb{R}
2. $\frac{1}{1-x} = \sum x^n \quad \text{on} \quad (-1, 1)$
3. $f(x) = \begin{cases} e^{-\frac{1}{x}}, & x > 0 \ 0, & x \leq 0 \end{cases}$ is not analytic about 0.
4. $f(x) = \int_{0}^{\infty} \frac{e^{-t}}{1+t} dt$ **\text{11}**

For example, it's known infinitely many primes with $\zeta(1) = \infty$.

- Abel sums.