Differentiable functions (Rudin ch. 5, Exercise 3)

Let \(f: \mathbb{R} \to \mathbb{R} \) be differentiable at \(x_0 \in \mathbb{R} \), if the limit

\[
\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0)
\]

then \(f'(x_0) \in \mathbb{R} \) is called the derivative of \(f \) at \(x_0 \).

Remark: It is equivalent to rewrite \((*)\) as

\[
f(x_0 + h) = f(x_0) + h f'(x_0) + o(h)
\]

where \(o(h) \) stands for some function with \(\frac{o(h)}{h} \to 0 \) as \(h \to 0 \).

We call \(f: (a, b) \to \mathbb{R} \) differentiable on \((a, b)\) if \(f \) is differentiable at each \(x_0 \in (a, b) \).

Examples: \(f(x) = x^2 \) is differentiable on \(\mathbb{R} \), \(f(x) = x^{1/2} \), \(f(x) = 1/|x| \) are not differentiable at \(x = 0 \).

Prop. (1) If \(f \) is differentiable at \(x_0 \) then \(f \) is continuous at \(x_0 \).

(2) If \(f \) and \(g \) are differentiable then so are \(f + g \), \(fg \), \(f g \) with derivative \(f'(x) + g'(x), \ f(x) g'(x) + f'(x) g(x), \ f'(g(x)) g'(x) \) resp. \(\square \)

The function \(f \) has a local maximum at \(x_0 \) if there is some \(\delta > 0 \) s.t. \(f(x) \leq f(x_0) \) for all \(x \in B_\delta(x_0) \). Likewise a local minimum at \(x_0 \) if \(f(x) \geq f(x_0) \) for all \(x \in B_\delta(x_0) \).

Prop. (4) Suppose \(f \) has a local maximum or local minimum at \(x_0 \) and \(f \) is differentiable at \(x_0 \). Then \(f'(x_0) = 0 \).

(2) Suppose \(f'(x_0) > 0 \). Then \(f \) is increasing near \(x_0 \).

(3) Suppose \(f'(x_0) < 0 \) then \(f \) is decreasing near \(x_0 \).
Rolle's Theorem Let \(f : [a, b] \rightarrow \mathbb{R} \) be continuous on \([a, b]\) and differentiable on \((a, b)\) with \(f(a) = f(b) \). Then \(\exists \, c \in (a, b) \) s.t. \(f'(c) = 0 \). □

Mean Value Theorem Let \(f : [a, b] \rightarrow \mathbb{R} \) be cont. on \([a, b]\) and diff. on \((a, b)\), then

\[
\frac{f(b) - f(a)}{b - a} = f'(c)
\]

for some \(c \in (a, b) \).

L'Hôpital's Rule: Let \(f, g : (a, b) \rightarrow \mathbb{R} \) be differentiable with

\[
\lim_{x \to a} \frac{f'(x)}{g'(x)} = L \quad \text{and} \quad \lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0.
\]

Then \(\lim_{x \to a} \frac{f(x)}{g(x)} = L \). □

Exercises:

1. Show \(\lim_{x \to a} f(x) = \lim_{h \to 0} f(a + h) \).

2. Show product rule.

3. Show \(f(x) = \frac{1}{x} \) is differentiable on \((0, \infty)\).

4. Is \(f(x) = \begin{cases} x \sin \left(\frac{1}{x} \right) & x \neq 0 \\ 0 & x = 0 \end{cases} \) differentiable at \(x = 0 \)?

5. Show \(f(x) = \text{const.} \) is differentiable on \(\mathbb{R} \).

6. Suppose \(f'(x) = 0 \) for all \(x \in \mathbb{R} \), show \(f \) is constant.

7. Suppose \(f \) is differentiable on \(\mathbb{R} \) and \(\lim_{x \to \infty} f'(x) = 0 \).

Show that \(\lim_{x \to \infty} f(x+1) - f(x) = 0 \).

Recall \(x \in \mathbb{R} \) is called a **Liouville number** if for each \(n \in \mathbb{N} \), there exists \(\frac{a_n}{b_n} \in \mathbb{Q} \) (with \(b_n > 1 \)) s.t. \(|x - \frac{a_n}{b_n}| < \frac{1}{b_n^2} \).

Theorem: Liouville numbers are transcendental.

Proof:

1. Show if \(x \) is a root of \(a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 \in \mathbb{Q}[x] \) then \(\exists A > 0 \) s.t. \(|x - \frac{a_n}{b_n}| > \frac{A}{b_n^n} \forall \frac{a_n}{b_n} \in \mathbb{Q} \). □

Example: \(\alpha = \frac{1}{10} + \frac{1}{10^2} + \frac{1}{10^3} + \frac{1}{10^4} + \cdots \) is Liouville (and so transcendental).
Is there a continuous function that has a derivative nowhere?

Hard to draw:

As a limit of functions:

How to take limits of continuous functions and have the limit function be cts:

The sequence of functions $f_n : [0, 1] \to \mathbb{R}$ converges pointwise to $f : [0, 1] \to \mathbb{R}$ if for each $x \in [0, 1]$, $f_n(x) \to f(x)$.

Example: $f_n(x) = x^n$ converges pointwise to $f(x) = \begin{cases} 0 & x \in (0, 1) \\ 1 & x = 1 \end{cases}$, not cts!

Set $C([0,1]) = \{ f : [0, 1] \to \mathbb{R} : f \text{ is cts.} \}$ and $\| f - g \| = \sup_{x \in [0,1]} | f(x) - g(x) |$.

The sequence of functions $f_n \in C([0,1])$ converges uniformly to $f : [0, 1] \to \mathbb{R}$ if $\forall \varepsilon > 0, \exists N$ such that $\| f_n - f \| < \varepsilon$ for $n \geq N$.

Thus, $C([0,1])$ with $\| \cdot \|$ is complete (every Cauchy sequence converges) and if f_n converges uniformly to f then $f \in C([0,1])$.

This theorem can be used to show nowhere differentiable functions exist.