Announcements:
- You can turn HW 3 in next Tuesday if you want more time.
- HW 4 is still due next Thursday.
- If your score on the final is better than your score on the midterm it will replace it.

Outline for remaining lectures:
- today: continuous functions, Intermediate Value Theorem, Extreme Value Theorem, uniform continuity.
- next week: differentiable functions, Rolle’s Theorem, L’Hospital’s rule.
- Taylor expansions, Implicit function theorem.
- Last week: series, convergence tests, analytic functions.
- Final (comprehensive)

We picture functions \(f: \mathbb{R} \to \mathbb{R} \) by their graphs which are the pairs \(\{(x, f(x)) : x \in \mathbb{R} \} \subset \mathbb{R}^2 \).

\[f(a) \quad \text{is a graph}, \quad \$ \quad \text{is not a graph} \]

We often consider functions \(f: A \to \mathbb{R} \) which are only defined in some subset \(A \) of \(\mathbb{R} \).

How to define when the graph of \(f \) has no ‘jumps’?

\[\text{‘jumps'} \]
First we can say when \(f(x) \) gets close to some value \(L \) for \(x \) close enough to some value \(a \):

\[
L \text{ is the limit of } f \text{ as } x \text{ approaches } a \text{ if } \forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. } 0 < |x-a| < \delta \Rightarrow |f(x)-L| < \varepsilon.
\]

Definition is: \(\lim_{x \to a} f(x) = L \) or \(f(x) \to L \) (as \(x \to a \)).

Remark: With a limit we are interested in the behaviour of \(f \) for \(x \) near but not necessarily equal to \(a \), this allows us to take limits of functions which may not be defined at \(a \).

Example: \(\lim_{x \to 0} x \sin \left(\frac{1}{x} \right) = 0 \).

Prop (1) \(\lim_{x \to a} f(x) = L \) and \(\lim_{x \to a} g(x) = L' \Rightarrow \lim_{x \to a} (f(x)+g(x)) = L + L' \).

(2) \(\lim_{x \to a} f(x) = L \neq 0 \Rightarrow \lim_{x \to a} \frac{1}{f(x)} = \frac{1}{L} \).

(3) \(\lim_{x \to a} f(x) = L \) and \(\lim_{x \to a} g(x) = L' \Rightarrow \lim_{x \to a} g(f(x)) = L' \).

Proof: \(\lim_{x \to a} f(x) = L \iff \forall \text{ sequence } x_n \to a \text{ with } x_n \neq a \text{ we have } f(x_n) \to L \).

The function \(f: \mathbb{R} \to \mathbb{R} \) is continuous at \(a \) if \(\lim_{x \to a} f(x) = f(a) \). For \(A \subset \mathbb{R} \), \(f: A \to \mathbb{R} \) is continuous on \(A \) if for each \(a \in A \) and \(\varepsilon > 0 \), there is a \(\delta > 0 \) s.t.

\[
|x-a| < \delta \text{ and } x \in A \Rightarrow |f(x) - f(a)| < \varepsilon.
\]

Prop (1) If \(f(x) \) and \(g(x) \) are continuous on \(A \) then \(f(x) + g(x) \) and \(f(x)g(x) \) are also continuous on \(A \).

(2) If \(f(x) \neq 0 \) on \(A \) and \(f(x) \) is cts. on \(A \) then \(\frac{1}{f(x)} \) is cts. on \(A \).

(3) If \(f(x) \) is cts. on \(A \) and \(g(x) \) is cts. on \(f(A) \) then \(g(f(x)) \) is cts. on \(A \).
Examples: \(f(x) = cx \), \(f(x) = x^2 \) are continuous on \(\mathbb{R} \).

Remark: The notation/language hides a lot of information about the function. How does \(\delta \) depend on \(\varepsilon \)? How does \(\delta \) depend on \(a \)?

\[
f \text{ is uniformly continuous on } A \iff \forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. for any } x, a \in A \\
| x - a | < \delta \implies | f(x) - f(a) | < \varepsilon.
\]

Prop. Let \(f: A \to \mathbb{R} \) be continuous on \(A \) and \(A \) be a compact set. Then \(f \) is uniformly continuous on \(A \).

Proof (sketch): by continuity we get an open cover \(\{ B_{\delta_i}(a) : a \in A \} \) of \(A \) s.t. \(x \in B_{\delta_i}(a) \Rightarrow f(x) \in B_{\delta_j}(f(a)) \). Take a finite subcover \(B_{\delta_1}(a_1), \ldots, B_{\delta_n}(a_n) \) and set \(\delta = \min \{ \delta_1, \ldots, \delta_n \} \).

- Show that \(x, y \in A \) with \(|x - y| < \delta \) implies \(x, y \in B_{\delta_i}(a_i) \) for some \(i \).
- Use triangle inequality to show \(|f(x) - f(y)| < \varepsilon \). \(\Box \)

Examples: \(f(x) = cx \) is uniformly continuous on \(\mathbb{R} \), \(f(x) = x^2 \) is not uniformly continuous on \(\mathbb{R} \).

Exercises:

1. Show \(\lim_{x \to 1} x^2 = 1 \).

2. If \(f, g: \mathbb{R} \to \mathbb{R} \) are cts and \(f(x) = y(x) \) for all \(y \in \mathbb{R} \), show \(f(x) = g(x) \) for all \(x \in \mathbb{R} \).

3. Show \(f(x) = \frac{1}{x} \) is continuous on \((0, \infty) \). Is it uniformly continuous?

4. Find a function on \([0, 1] \) that is continuous and bounded, but not uniformly continuous.

5. Is \(f(x) = \begin{cases} 0 & x \in \mathbb{Q} \\ x & x \notin \mathbb{Q} \end{cases} \) continuous at \(0 \)?
Intermediate Value Theorem: If \(f : [a,b] \to \mathbb{R} \) is cts. with \(f(a) < 0 < f(b) \) then
\[
\exists c \in (a,b) \text{ s.t. } f(c) = 0.
\]

Proof (sketch): Set \(U = \{ x \in [a,b] : f(x) < 0 \text{ for } x \in [a,b] \} \) and take \(c = \sup U \). Show \(f(c) = 0 \) using the following Lemma:

Lemma: If \(f \) is continuous at \(x_0 \) and \(f(x_0) > 0 \) then \(\exists \delta > 0 \text{ s.t. } f(B_{\delta}(x_0)) > 0 \).

Extreme Value Theorem: If \(f : [a,b] \to \mathbb{R} \) is cts. then \(\exists c \in [a,b] \) s.t.
\[
f(c) \geq f(x) \text{ for all } x \in [a,b].
\]

Proof (sketch): Set \(U = \{ x \in [a,b] : f \text{ is bounded on } [a,u] \} \), show \(\sup U = b \) using the following Lemma:

Lemma: If \(f \) is cts. at \(x_0 \) then \(\exists \delta > 0 \text{ s.t. } f \text{ is bounded on } B_{\delta}(x_0) \).

This shows \(f \) is bounded, it remains to show the maximum = \(f(c) \) for some \(c \).

Set \(y = \sup \{ f(x) : x \in [a,b] \} \) has \(y \geq f(x) \text{ for all } x \in [a,b] \).

Then \(g(x) = \frac{1}{y - f(x)} \) is cts. on \([a,b]\) and is bounded, use this to contradict that \(y \) is the least upper bound of \(\{ f(x) : x \in [a,b] \} \).

Exercises:

1. If \(f : [a,b] \to \mathbb{R} \) has \(f(a) > C > f(b) \) then \(f(c) = C \) for some \(c \in (a,b) \).
2. Find counterexamples to the IVT/EVT if \(f \) is not cts.
3. Find a counterexample to the EVT if \(f : (a,b) \to \mathbb{R} \).
4. Show the IVT does not hold for \(f(x) = \frac{1}{x^2 + 1} : \mathbb{Q} \to \mathbb{Q} \) (only consider rational \#s).
5. \(f : [a,b] \to \mathbb{R} \text{ cts. } \Rightarrow \exists c \in [a,b] \text{ s.t. } f(c) \leq f(x) \forall x \in [a,b] \).
6. \(f(a) < g(a) \) and \(f(b) > g(b) \) and \(f, g : [a,b] \to \mathbb{R} \text{ cts. } \Rightarrow f(c) = g(c) \text{ for some } c \in (a,b) \).
7. \(f : [a,b] \to [0,1] \text{ cts. } \Rightarrow f(c) = c \text{ for some } c \in [0,1] \).
8. How many continuous functions are there with \(f(x)^2 = x^2 \) ?
9. If \(f : \mathbb{R} \to \mathbb{R} \) is continuous and \(f(x) \geq 0 \forall x \), what can you say about \(f \)?