HW5. Due Thursday 7/27

1. Suppose \(f : \mathbb{R} \to \mathbb{R} \) is differentiable at \(x_0 \). Show that \(\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x-x_0} = \lim_{h \to 0} \frac{f(x_0+h)-f(x_0)}{h} \).

2. Suppose \(f : \mathbb{R} \to \mathbb{R} \) satisfies \(|f(x) - f(y)| \leq (x - y)^2 \) for all \(x, y \in \mathbb{R} \). Show that \(f \) is constant

3. Suppose \(f, g \) are differentiable on \(\mathbb{R} \) with \(f'(x) = g'(x) \) for all \(x \in \mathbb{R} \). Show that \(f(x) = g(x) + c \) for some constant \(c \in \mathbb{R} \).

4. If \(C_i \in \mathbb{R} \) are some numbers with \(C_0 + \frac{C_1}{2} + \ldots + \frac{C_{n-1}}{n} + \frac{C_n}{n+1} = 0 \) show there exists some \(x \in (0, 1) \) s.t. \(C_0 + C_1x + \ldots + C_nx^n = 0 \).

5. Show that \(f_n(x) = x^n : [0, 1] \to \mathbb{R} \) converge pointwise to a discontinuous function on [0, 1].

6. Let \(f \) be \(n \) times differentiable around \(x_0 \) with \(n \) odd. Suppose \(f^{(1)}(x_0) = f^{(2)}(x_0) = \ldots = f^{(n-1)}(x_0) = 0 \) and \(f^{(n)}(x_0) > 0 \). Show that \(f \) is increasing on some neighborhood of \(x_0 \).

7. Suppose \(f \) is differentiable on \((a, b) \) and \(f'(x) \neq 0 \) on \((a, b) \). Show that either \(f'(x) > 0 \) for all \(x \in (a, b) \) or \(f'(x) < 0 \) for all \(x \in (a, b) \). (note, we are not assuming \(f' \) is continuous)

8. Let \(f : (a, b) \to \mathbb{R} \) have \(f'(x) > 0 \) for all \(x \in (a, b) \).
 (a) Show that \(f \) is invertible on \((a, b) \).
 (b) Show that the inverse of \(f \), \(f^{-1} \) is differentiable on \(f((a, b)) \)

9. Let \(f \) be \(C^n \) on the interval \((a, b) \) and \(f^{(n)}(x) \neq 0 \) for all \(x \in (a, b) \). Show \(f \) has at most \(n \) zeroes in \((a, b) \).
 (as a corollary we can deduce that a polynomial of degree \(n \) has at most \(n \) roots)

10. Let \(f \) be \(C^2 \) on \((a, b) \) with \(f'(x) \neq 0 \) for all \(x \in (a, b) \) and suppose \(f \) has a root \(r \in (a, b) \) (so \(f(r) = 0 \)).
 Take \(x_0 \in (a, b) \) and define the sequence \(x_n \) recursively by \(x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \). We showed in class that this sequence goes to \(r \), so remains in \([r - \delta, r + \delta] \subset (a, b) \) for some \(\delta > 0 \).
 By evaluating the first degree Taylor expansion around \(x_n \):
 \[f(x) = f(x_n) + f'(x_n)(x - x_n) + \frac{f''(q)}{2}(x - x_n)^2 \]
 at \(x = r \), deduce that \(|x_{n+1} - r| \leq C(x_n - r)^2 \) for some constant \(C \).