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Abstract. We investigate to what extent we can descend the classification
of localizing, smashing and thick ideals in a presentably symmetric monoidal

stable ∞-category C along a descendable commutative algebra A. We establish
equalizer diagrams relating the lattices of localizing and smashing ideals of C

to those of ModA(C) and ModA⊗A(C). If A is compact, we obtain a similar

equalizer for the lattices of thick ideals which, via Stone duality, yields a
coequalizer diagram of Balmer spectra in the category of spectral spaces. We

then give conditions under which the telescope conjecture and stratification
descend from ModA(C) to C. The utility of these results is demonstrated in
the case of faithful Galois extensions in tensor triangular geometry.
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116481GB-I00, the Severo Ochoa and Maŕıa de Maeztu Program for Centers and Units of Excellence
in R&D (CEX2020-001084-M), and the CERCA Programme/Generalitat de Catalunya. DH is

supported by grant number TMS2020TMT02 from the Trond Mohn Foundation. NN and LP are
supported by the SFB 1085 Higher Invariants in Regensburg. BS is supported by NSF grant DMS-

1903429. Finally, we would like to thank the Hausdorff Research Institute for Mathematics for their

hospitality in the context of the Trimester program Spectral Methods in Algebra, Geometry, and
Topology funded by the Deutsche Forschungsgemeinschaft under Germany’s Excellence Strategy –
EXC-2047/1 – 390685813.

1



2 BARTHEL, CASTELLANA, HEARD, NAUMANN, POL, AND SANDERS

1. Introduction

Let C be a tensor triangulated (“tt”) category, i.e., a triangulated category equipped
with a compatible symmetric monoidal structure. There are a number of ways
we can study the tensor triangular geometry of C; for example, we could ask for
a classification of the thick ideals, a classification of the localizing ideals, or a
classification of the smashing ideals of C. One approach to achieving this is to find a
tensor triangulated functor F : C → D to a simpler tensor triangulated category D

and reduce the classification problems in C to those in D via descent methods.

One way to produce such functors is to work at the level of underlying ∞-categories
(i.e., assume C is a tt-∞-category) and consider the base change functor

F : C → ModA(C)

associated to a highly structured commutative algebra A in C. In fact, under mild
assumptions on C and D, any functor F : C → D whose right adjoint is conservative
is, up to equivalence, base change along a commutative algebra object in C (see
Proposition 6.10).

An important first step in understanding descent in tt-geometry was taken by
Balmer [Bal16], who studied extensions along separable commutative algebras.1

These are commutative algebras A in C whose multiplication µ : A⊗A → A has a
bimodule section. In order to state Balmer’s theorem, recall that the (radical) thick
ideals of an essentially small tt-category K are classified by a spectral topological
space Spc(K) called the Balmer spectrum. Then, given a separable commutative
algebra of finite degree A in K, Balmer shows that there is a coequalizer diagram of
topological spaces

(1.1) Spc(ModA⊗A(K)) Spc(ModA(K)) supp(A).

In particular, if A is descendable2 (Definition 7.1) then supp(A) = Spc(K) and this
coequalizer computes the spectrum of K itself.

In general, the assumptions in Balmer’s theorem that the algebra A is separable and
in some sense “small” (reflected by the assumption that A ∈ K) cannot be removed.
For example, the case where K is the category of K(2)-local dualizable spectra was
studied in detail by a subset of the authors in [BHN22]. Morava E-theory provides
a descendable algebra A in the bigger category of all K(2)-local spectra which is
not dualizable (i.e., is not contained in K) and [BHN22, Proposition 5.11] shows
that the analog of the above coequalizer is not a coequalizer of topological spaces,
but rather of spectral spaces. As that example amply demonstrates, coequalizers,
and more generally colimits, in spectral spaces can behave quite differently than
colimits in topological spaces; see also Example 4.1.

It is a classical result, essentially due to Stone, that the category of spectral spaces
is anti-equivalent to the category of distributive lattices. The above results, along
with previous work on the Balmer spectrum (for example [KP17]), suggest a lattice-
theoretic approach to the problem of descent in tt-geometry. This is the approach
we take in this paper.

1This does not require the ∞-categorical machinery due to the special nature of separable

algebras; see Remark 11.19 and [Bal11].
2Balmer uses the terminology nil-faithful.
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Throughout, we work in the context of a rigidly-compactly generated tt-∞-category C;
that is, a presentably symmetric monoidal stable ∞-category C whose homotopy
category is rigidly-compactly generated; see the precise definitions in Section 5. The
full subcategory of compact objects is denoted Cc (which, in examples, corresponds
to the K above). For example C could be the derived ∞-category D(R) of unbounded
chain complexes of R-modules for a commutative ring R. We study descent of the
following posets:

(a) The poset Locid(C) of localizing ideals of C.
(b) The poset Smashid(C) of smashing localizing ideals of C.
(c) The poset Thickid(Cc) of thick ideals of compact objects of C.

Correspondingly, we obtain the following results, which are obtained in Proposi-
tion 8.23, Corollary 9.11, and Theorem 10.7.

Theorem A. Let C be a rigidly-compactly generated tt-∞-category and A ∈ CAlg(C)
a descendable commutative algebra.

(a) There is a split equalizer of posets

Locid(C) Locid(ModA(C)) Locid(ModA⊗A(C)).

(b) There is an equalizer of posets

Smashid(C) Smashid(ModA(C)) Smashid(ModA⊗A(C)).

(c) If A is compact, then there is an equalizer of posets

Thickid(Cc) Thickid(ModA(C)
c) Thickid(ModA⊗A(C)

c).

Recall that one formulation of the telescope conjecture for tt-categories is that
the map σ : Thickid(Cc) → Smashid(C) given by J 7→ Locid(J) is bijective. In
Theorem 10.8 we deduce the following descent result for the telescope conjecture:

Theorem B. Let C be a rigidly-compactly generated tt-∞-category and A ∈ CAlg(C)
a compact descendable commutative algebra. If the telescope conjecture holds for
ModA(C), then it holds for C too.

For example, this theorem applies to the category of modules over the 2-local
connective spectrum of topological modular forms; see Example 10.9.

Inspired by Balmer’s descent result for separable commutative algebras, we also
investigate the Zariski frame of principal radical thick ideals. Translating our result
from frames back into topological spaces, we prove the following in Theorem 11.17:

Theorem C. Let C be a rigidly-compactly generated tt-∞-category and A ∈ CAlg(C)
a compact commutative algebra. Then the diagram induced by base change

Spc(ModA⊗A(C)
c) Spc(ModA(C)

c) supp(A)

is a coequalizer in the category of spectral spaces.

We note again that if A is descendable, then supp(A) = Spc(Cc), and so in this case
we obtain a coequalizer computing Spc(Cc).

In comparison to Balmer’s result (1.1), note that we have removed the requirement
that the commutative algebra is separable at the expense of having to work in the
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category of spectral spaces instead of topological spaces. As noted above, coequalizers
in spectral spaces and topological spaces need not agree. It is a consequence of
Balmer’s work that under the assumption that A is separable of finite degree the
two coequalizers do agree (see Remark 11.19).

Our next result involves descent for stratification in the sense of [BHS23]. We recall
that this is a condition that gives a classification of localizing ideals of C in terms of
subsets Spc(Cc). Partial results in this direction have been obtained in [BCHS23a].
Our results can be summarized as follows; the results given in the body of the
document (Theorem 12.12) are slightly stronger.

Theorem D. Let C be a rigidly-compactly generated tt-∞-category and let A ∈
CAlg(C) be descendable with base change functor FA : C → ModA(C). Suppose
that ModA(C) is stratified and Spc(ModA⊗A(C)

c) is weakly noetherian. Then the
following are equivalent:

(a) C is stratified.
(b) The identity Supp(FA(x)) = φ−1(Supp(x)) holds for all x ∈ C.
(c) The diagram induced by base change

Spc(ModA⊗A(C)
c) Spc(ModA(C)

c) Spc(Cc)

is a coequalizer in the category of sets.

As an application of this result, we prove that stratification satisfies a version of
Galois descent (Theorem 13.7).

Theorem E. Let A be a faithful G-Galois extension in a rigidly-compactly generated
tt-∞-category C where G is a finite group. Suppose that ModA(C) is stratified with
noetherian Balmer spectrum. Then C is also stratified with noetherian Balmer
spectrum given by Spc(ModA(C)

c)/G.

Using this and [BCH+23] we show in Example 13.11 that the category ModKOG
(SpG)

is stratified with noetherian spectrum Spc(ModKOG
(SpG)

c) ∼= Spec(R(G))/C2,
where KOG denotes real equivariant K-theory, and G is a finite group.

In the case of a Galois extension of commutative ring spectra, Theorem E admits
the following strengthening (Theorem 13.22):

Theorem F. Let A → B be a faithful G-Galois extension of commutative ring
spectra where G is a compact Lie group. If ModB is stratified with noetherian
Balmer spectrum, then so is ModA.

1.2. Set theoretic considerations. We fix three uncountable, strongly inaccessible
cardinals κ0 < κ1 < κ2 and corresponding universes Uκ0

∈ Uκ1
∈ Uκ2

. A set,
simplicial set, category, etc., will be said to be small if it is contained in Uκ0

; will
be said to be large if it is contained in the universe Uκ1 ; and will be said to be very
large if it is contained in the universe Uκ2 . We will say that a set, simplicial set,
category, etc., is essentially small if it is equivalent (in the appropriate sense) to a
small one.

Acknowledgements. We thank Scott Balchin for helpful conversations related
to this paper. We are also grateful to the organizers of the Abel Symposium on
Triangulated Categories in Representation Theory and Beyond for their invitation
to make a contribution to the proceedings.
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2. Split equalizers

We begin with some preliminary lemmas concerning split equalizers.

2.1. Definition. A fork diagram in a category C is a diagram

X0 X1 X2
f α

β

in which α ◦ f = β ◦ f . A split fork diagram is such a diagram equipped with two
additional arrows

X0 X1 X2
f

u

α

β

v

in which u ◦ f = id, v ◦ β = id and v ◦ α = f ◦ u.

2.2. Remark. Every split fork diagram

X0 X1 X2
f α

β

is an equalizer; see [ML98, Section VI.6]. In fact, a split fork diagram is an absolute
equalizer; that is, an equalizer which is preserved by all functors. We use split
equalizer as a synonym for split fork diagram.

2.3. Lemma. Consider a diagram of sets

X0 X1 X2

Y0 Y1 Y2

f α

β

i0

g

i1
γ

δ

i2

in which

(i) The top fork is split: there exists u : X1 → X0 and v : X2 → X1 such that
u ◦ f = id, v ◦ β = id and v ◦ α = f ◦ u;

(ii) i0 and i1 are injective;
(iii) f ◦ i0 = i1 ◦ g;
(iv) α ◦ i1 = i2 ◦ γ and β ◦ i1 = i2 ◦ δ.

Then the following are equivalent:

(a) The bottom fork in an equalizer;
(b) For all y1 ∈ Y1 such that γ(y1) = δ(y1), there exists y0 ∈ Y0 such that

u(i1(y1)) = i0(y0).

Proof. (a) ⇒ (b): If y1 ∈ Y1 is such that γ(y1) = δ(y1) then by (a) there exists
y0 ∈ Y0 such that g(y0) = y1. We claim that u(i1(y1)) = i0(y0) giving (b).
Since γ(y1) = δ(y1) then i2(γ(y1)) = i2(δ(y1) and so α(i1(y1)) = β(i1(y1)) by
condition (iv). Applying v to this identity and using that the fork is split we find

f(u(i1(y1))) = v(α(i1(y1))) = v(β(i1(y1))) = i1(y1).

Note that the right hand side can be rewritten as i1(y1) = i1(g(y0)) = f(i0(y0)) by
(iii). Note that f is injectve by (i) so we conclude that u(i1(y1)) = i0(y0) giving (b).

(b) ⇒ (a): Let y1 ∈ Y1 be such that γ(y1) = δ(y1). We need to show that there
exists unique y0 ∈ Y0 such that g(y0) = y1. Uniqueness follows from the fact that
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g is injective since the composite i1g = fi0 is so by combining (i) and (ii). Let us
construct such y0. From γ(y1) = δ(y1) and (iv) we deduce that α(i1(y1)) = β(i1(y1)).
Applying v to this and using the identities of the split fork we find that

(2.4) f(u(i1(y1))) = i1(y1)

as in the previous paragraph. By condition (b) there exists y0 ∈ Y0 such that
i0(y0) = u(i1(y1)). We claim that such y0 does the job, namely g(y0) = y1. Indeed

i1(g(y0)) = f(i0(y0)) = f(u(i1(y1)))
(2.4)
= i1(y1)

so we conclude by injectivity of i1. □

2.5. Lemma. Consider a diagram of sets

X0 X1 X2

Y0 Y1 Y2

f

r0 r1

α

β
r2i0

g

i1
γ

δ

i2

in which

(i) The top fork is an equalizer and γ ◦ g = δ ◦ g;
(ii) r0 ◦ i0 = id, r1 ◦ i1 = id, and r2 ◦ i2 = id;
(iii) i1 is bijective (hence with inverse r1);
(iv) f ◦ i0 = i1 ◦ g, α ◦ i1 = i2 ◦ γ and β ◦ i1 = i2 ◦ δ.

Then the following are equivalent:

(a) r0 is bijective;
(b) g ◦ r0 = r1 ◦ f ;
(c) The bottom fork is an equalizer.

Proof. (a) ⇒ (b): Using (ii) and (iv) we see that g = r1 ◦ i1 ◦ g = r1 ◦ f ◦ i0. Now
combining (ii)+(a) we conclude that r0 has inverse i0. So g◦r0 = r1◦f ◦i0◦r0 = r1◦f
as required.

(b) ⇒ (c): Given y1 ∈ Y1 such that γ(y1) = δ(y1) we need to show that there exists
a unique y0 ∈ Y0 such that g(y0) = y1. Note that g is injective since the composite
i1 ◦ g = f ◦ i0 is so by assumption. Therefore if it exists y0 is necessarily unique.
Note that i2(γ(y1)) = i2(δ(y1)) so by (iii) we see that α(i1(y1)) = β(i1(y1)). Since
the top diagram is an equalizer we find unique x0 ∈ X0 such that f(x0) = i1(y1).
We claim that y0 := r0(x0) does the job. Indeed

g(y0) = g(r0(x0))
(b)
= r1f(x0) = r1i1(y1)

(ii)
= y1.

(c) ⇒ (a): By condition (ii) it suffices to show that r0 is injective or equivalently
that i0 is surjective. So pick x0 ∈ X0; we will show that x0 is in the image of i0. By
assumption α ◦ i1 = i2 ◦ γ and β ◦ i1 = i2 ◦ δ so by precomposing with r1 and using
(iii) we find α = i2 ◦ γ ◦ r1 and β = i2 ◦ δ ◦ r1. Clearly r2(α(f(x0))) = r2(β(f(x0)))
so

γ(r1(f(x0))) = r2(i2(γ(r1(f(x0))))) = r2(α(f(x0)))

= r2(β(f(x0)))

= r2(i2(δ(r1(f(x0))))) = δ(r1(f(x0)))
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by inserting the identities for α and β. Then by (c) we find y0 ∈ Y0 such that
g(y0) = r1(f(x0)). We claim that i0(y0) = x0. Indeed f(i0(y0)) = i1(g(y0)) =
i1(r1(f(x0))) = f(x0) and by injectivity of f we conclude that i0(y0) = x0. □

3. Stone duality

We briefly recall some background material on lattices and Stone duality. Our main
reference is [Joh86] where the reader can find a more elaborate discussion.

3.1. Lattices. A partial ordered set (A,≤) is a lattice if any two-element subset
{a, b} ⊆ A has a join (or least upper bound) a ∨ b, and a meet (or greatest
lower bound) a ∧ b. We also require that it contains a least element 0 and a
greatest element 1. A morphism of lattices f : A → B is a function satisfying
f(a ∧ a′) = f(a) ∧ f(a′) and f(a ∨ a′) = f(a) ∨ f(a′) for all a, a′ ∈ A, and also
f(0) = 0 and f(1) = 1. We denote the category of lattices by Lat.

3.2. Remark. Many authors do not require a lattice to have 0 and 1 and would
call the above notion a bounded lattice. We follow the terminology of [Joh86].

3.3. Remark. Any lattice morphism is necessarily order-preserving (since a ≤ a′

if and only if a ∨ a′ = a′) but not all order-preserving maps are lattice morphisms.
For example, let P be the power set of the two-element set {a, b} and let Q be
the totally-ordered set {0 < 1 < 2}. Then the cardinality map c : P → Q is order-
preserving but not a lattice morphism since c({a} ∨ {b}) = c({a, b}) = 2 and yet
c({a}) ∨ c({b}) = 1 ∨ 1 = 1.

3.4. Remark. According to the above remark, the forgetful functor Lat → Pos from
lattices to posets is faithful but not full. On the other hand, one readily checks that
if f : A → B is a bijective lattice morphism, then f−1 : B → A is a lattice morphism.
Hence, lattice isomorphisms coincide with bijective lattice morphisms. In particular,
the forgetful functors Lat → Pos and Lat → Set reflect isomorphisms.

3.5. Distributive lattices. A lattice (A,≤) is said to be distributive if

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

for all a, b, c ∈ A. There are a number of equivalent characterizations; see [Joh86,
I.1.5], [Bir67, Section I.6], and [BD74, Section II.5]. The distributive lattices form a
full subcategory DLat of the category of lattices Lat.

3.6. Coherent frames. A lattice A is complete if every subset S ⊆ A has both
a meet

∧
S and a join

∨
S in A. A frame is a complete lattice F in which finite

meets distribute over arbitrary joins:

a ∧
∨
s∈S

s =
∨
s∈S

(a ∧ s)

for any a ∈ F and S ⊆ F . A frame map is a lattice morphism that preserves
arbitrary joins. We denote the category of frames and frame maps by Frm. An
element c of a frame F is said to be finite if whenever c ≤

∨
s∈S s for some subset

S ⊆ F , there exists a finite subset K ⊆ S such that c ≤
∨
s∈K s. A frame F is

coherent if every element can be expressed as a join of finite elements and the finite
elements form a (distributive) lattice F f . This amounts to requiring that 1 is finite
and that the meet of two finite elements is finite. (See [Joh86, Section II.3].) A
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frame map is coherent if it takes finite elements to finite elements. We denote
the category of coherent frames and coherent frame maps by CFrm. By definition
we have a functor (−)f : CFrm → DLat which sends a coherent frame to its finite
elements.

3.7. Spectral spaces. A topological space is sober if it is T0 and every nonempty
irreducible closed set is the closure of a (unique) point. A spectral space is a quasi-
compact sober space in which the quasi-compact open subsets are closed under finite
intersection and form a basis for the topology. A spectral map between spectral
spaces is a continuous map for which the inverse image of any quasi-compact open
subset is quasi-compact. The category of spectral spaces and spectral maps is
denoted by Spec. We have a functor

Ω: Specop → CFrm

which sends a spectral space X to the coherent frame Ω(X) of open subsets of X.
Our terminology is due to [Hoc69]. Note that spectral spaces are called “coherent
spaces” in [Joh86] due to the following theorem:

3.8. Theorem (Stone duality). The functors

Ω: Specop → CFrm and (−)f : CFrm → DLat

are equivalences of categories.

Proof. See [Joh86, Corollary II.3.4]. □

3.9. Remark. In particular, we have an equivalence

(3.10) Specop
≃−→ DLat

which sends a spectral space X to the distributive lattice of quasi-compact open
subsets of X. We now describe a quasi-inverse to this equivalence:

3.11. The spectrum of a distributive lattice. A subset I of a distributive
lattice A is an ideal if:

• I is non-empty;
• if a ∈ I and b ∈ A are such that b ≤ a, then b ∈ I;
• for all a, b ∈ I, the element a ∨ b ∈ I.

Moreover I is prime if in addition it is a proper subset of A and satisfies:

• if a ∧ b ∈ I then either a ∈ I or b ∈ I.

The set of prime ideals of A is denoted by Spec(A). We endow this set with a
topology by taking as basis the subsets d(a) := {I ∈ Spec(A) | a ̸∈ I} for all a ∈ A.
We refer to Spec(A) as the spectrum of the distributive lattice A. Given a lattice
map f : A → B, we define a map Spec(f) : Spec(B) → Spec(A) by sending I to
f−1(I). One can check that this defines a functor

Spec: DLatop → Spec

which is quasi-inverse to the equivalence (3.10).
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3.12. Remark (Hochster duality). Every spectral space X can be equipped with a
“Hochster dual” spectral topology; see [Hoc69, Proposition 8]. Under the equivalence
Specop ∼= DLat this amounts to sending a distributive lattice to its opposite lattice
(which categorically amounts to taking the opposite category). Note that the
“Hochster dual topology” is called the “inverse topology” in [DST19].

3.13. Remark. The equivalence Specop ∼= DLat restricts to an equivalence be-
tween profinite spaces (a.k.a. “Stone spaces”) and Boolean lattices (a.k.a. “Boolean
algebras). This is the original manifestation of Stone duality from [Sto37].

Finally, we recall the following result:

3.14. Lemma. The forgetful functors Lat → Set, DLat → Set and Frm → Set create
all limits.

Proof. Johnstone [Joh86, I.3.8] defines a category to be algebraic if the forgetful
functor to sets is monadic and equationally presentable if its objects can be described
by (a proper class of) operations and equations. Note that Lat,DLat and Frm are
equationally presentable and so they admits all limits by [Joh86, Proposition I.3.8].
Also, Lat and DLat are algebraic by the discussion in [Joh86, I.3.7] whereas Frm
is algebraic by [Joh86, II.1.2]. It is only left to note that monadic functors create
limits; see for instance [ML98, Exercise 2, p. 142]. □

3.15. Remark. In contrast, the forgetful functor Spec → Set does not preserve
colimits. For example, under Stone duality, the one-point space corresponds to the
Boolean algebra 2 := {0 < 1}. The product of countably infinitely many copies of 2
in DLat corresponds under Stone duality to the Stone-Čech compactification βN
of the natural numbers. Thus, βN is the coproduct in Spec of countably infinitely
many copies of the one-point space. Since βN is uncountable, we deduce that the
forgetful functor Spec → Set does not preserve this infinite coproduct. The extent to
which Spec → Set and Spec → Top preserve colimits turns out to be highly relevant
for our questions. This is what we turn to next.

4. Spectral and topological coequalizers

Colimits in spectral spaces are in general different from colimits taken in the category
of topological spaces as the next example shows. Our aim is to describe conditions
under which the coequalizer of a diagram in spectral spaces and spectral maps is
homeomorphic to the topological coequalizer.

4.1. Example. This example is taken from [DST19, Example 10.2.9 (i)]. Recall that
finite spectral spaces are equivalent to finite posets; see [DST19, §1.1.16]. Under
this equivalence spectral maps coincide with monotonic maps. Then consider the
following diagram of finite posets:

{0, 1} {0 > 1}

{1 > 0}

The spectral pushout has only one point, whereas the topological pushout is indiscrete
with two points, which is not a T0-space.
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4.2. Spectral reflection. We now recall some properties of the spectral reflection
functor S : Top → Spec which has a unit denoted by SX : X → S(X) for each
X ∈ Top (following [DST19, §11] and [Sch17b]). This functor is the left adjoint of
the forgetful functor U : Spec → Top, and therefore it commutes with colimits (in
particular, with coequalizers).

It is worth recalling that the category of spectral spaces is not a full subcategory of
the category of topological spaces. This implies that even if X is a spectral space,
the unit SX : X → S(X) is not necessarily a homeomorphism. Nevertheless, the
behaviour of SX is well-understood.

4.3. Theorem (Schwartz). Let X be a topological space and let SX : X → S(X) be
its spectral reflection. Then

(a) SX is a quasi-homeomorphism onto its image.
(b) SX is injective if and only if X is T0.
(c) SX is a homeomorphism onto its image if and only if X is T0.
(d) The corestriction SX : X → SX(X) is the T0-reflection of X.
(e) SX is a homeomorphism if and only if X is a noetherian spectral space.
(f) SX is surjective if and only if the T0-reflection of X is a noetherian spectral

space.

Proof. These results are proved in [Sch17b]. Alternatively, see [DST19, Theorems
11.1.3 and 11.1.12, and §11.4.3]. □

4.4. T0-reflection. The fully faithful embedding of T0-spaces in Top also has a
left adjoint, which is quite simple to describe: The T0-reflection (or “Kolmogorov
quotient”) of a topological space X is the quotient X → KQ(X) := X/≡ by the

equivalence relation on X defined by x ≡ y iff {x} = {y}; cf. [DST19, §6.1.4]. In
particular it commutes with colimits and the unit X → KQ(X) is a homeomorphism
if X is a T0-space.

4.5. Lemma. The spectral reflection of a topological space coincides with the spectral
reflection of its T0-reflection:

X KQ(X)

S(X) S(KQ(X)).

SX

id

SKQ(X)

∼=

Proof. This is a routine exercise using the universal properties of the T0-reflection
and the spectral reflection, together with the fact that a surjective continuous map,
such as X → KQ(X), is an epimorphism in the category of topological spaces. □

4.6. Remark. Suppose we are given a coequalizer diagram

(4.7) Z Y T Spec
g

h

φS

in the category of spectral spaces (that is, Z, Y, g, h are spectral spaces and spectral
maps). We can also consider the following coequalizer in the category of topological
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spaces,

(4.8) UZ UY TTop.
Ug

Uh

φT

Both maps φS and φT are epimorphisms in Spec and Top respectively, and there-
fore surjective. Applying the forgetful functor to the diagram (4.7), we obtain a
comparison map p : TTop → UT Spec such that p ◦ φT = UφS .

4.9. Remark. In the situation of Remark 4.6, first note that p is surjective since
φS is so. Moreover, if φS is closed then so is the comparison map p: let K ⊆ TTop

be a closed subset; then p(K) = p(φT (φ
−1
T (K))) = φS(φ

−1
T (K)) is also closed.

In some favourable cases the comparison map is automatically a homeomorphism.

4.10. Proposition. In the situation of Remark 4.6, the following are equivalent:

(a) TTop is a spectral space and φT is a spectral map.
(b) The comparison map p : TTop → UT Spec is a homeomorphism.

Proof. By definition, there is a commutative diagram in the category of topological
spaces

UZ ⊔ UY UY

UY TTop

UT Spec.

(g,1)

(h,1) φT
φS

φT

φS

p

where the top square is a pushout. The fact that (a) implies (b) now follows
from [DST19, Corollary 10.2.6]. If (b) holds, then φS = p ◦ φT together with the
fact that φS is spectral implies that φT is also spectral. □

4.11. Remark. Since the spectral reflection commutes with colimits we obtain a
new coequalizer diagram

S(UZ) S(UY ) S(TTop)
S(Ug)

S(Uh)

S(φT )

in the category of spectral spaces. The spectral reflection induces a map from
T Spec to S(TTop) which is not necessarily a homeomorphism. That is, the spectral
coequalizer need not be the spectral reflection of the topological coequalizer.

4.12. Proposition. In the situation of Remark 4.6, suppose that Y and Z are
noetherian spectral spaces. Then the comparison map p : TTop → UT Spec is the
T0-reflection of TTop. Therefore, in this case, the map p is an homeomorphism if
and only if TTop is a T0-space.

Proof. Since Y and Z are noetherian spectral spaces, the coequalizer T Spec is also
a noetherian spectral space. Moreover, the spectral reflection is an isomorphism
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in Spec by Theorem 4.3. Then consider the following commutative diagram of
topological spaces:

Z Y TSpec

S(UZ) S(UY ) S(TTop)

g

h
SZ

∼= SY
∼=

φS

∃!θ∼=
S(g)

S(h)

S(φT )

We deduce θ : T Spec
∼=−→ S(TTop) is a homeomorphism, by uniqueness of coequalizers.

Moreover, since p ◦ φT = UφS , applying the forgetful functor to the first row in
the diagram we have the composite θ ◦ UφS = (θ ◦ p) ◦ φT = S(φT ) ◦ SY . But, the
naturality of the spectral reflection S(φT ) ◦ SY = STTop ◦ φT implies θ ◦ p = STTop

by uniqueness of the factorization. In other words, the map p can be identified, up
to homeomorphism, with the spectral reflection map TTop → S(TTop). The result
then follows from Theorem 4.3(d). □

4.13. Remark. The coequalizer in the category of spectral spaces is the spectral
quotient of Y by the equivalence relation generated by

{(f(z), g(z))|z ∈ Z} ⊆ Y × Y

see [DST19, Proposition 6.1.6]. For a discussion on quotients of spectral spaces
see [Far, §1.7] and also [Sch17a, Lemma 2.9]. Therefore it will suffice to give
conditions under which the spectral quotient agrees with the topological quotient.
This is what we discuss next.

4.14. Notation. Let X be a spectral space, R an equivalence relation on X and let
p : X → X/R be the quotient map. If A ⊆ X, we denote R−1(A) = p−1(p(A)), the
smallest R-invariant subset containing A. Note that R−1(x) = [x], the equivalence
class of x ∈ X. Let pS : X → X//R be the spectral quotient map. By the
universal property of the quotient space, there is a continuous comparison map
c : X/R → X//R making the following diagram commutative

(4.15)

X X//R

X/R.

pS

p c

4.16. Proposition. In the situation of Notation 4.14, assume that pS : X → X//R

is closed and p−1
S (pS(x)) ⊆ X a T1-space. If p−1

S (pS(x)) ⊆ R−1({x}) then the
comparison map c : X/R → X//R is an homeomorphism.

Proof. Note that all maps in the diagram (4.15) are surjective since pS and p are
so. Moreover c is closed because pS is closed by assumption (see Remark 4.9). It
remains to show injectivity of c. For that we will prove that p−1

S (pS(x)) = [x].

We have inclusions [x] ⊆ p−1
S (pS(x)) ⊆ R−1({x}). Let y ∈ p−1

S (pS(x)). Then

there exists z ∈ {x} with [y] = [z]; in particular pS(z) = pS(y) = pS(x). Since

p−1
S (pS(x)) ⊆ X is a T1-space, {x} ∩ p−1

S (pS(x)) = {x} implies that z = x. Finally,
[y] = [x]. □
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4.17. Corollary. In the situation of Remark 4.6, let R be the equivalence relation
generated by the coequalizer diagram. Assume that φS is closed and that φ−1

S (φS(y))

is a T1-space for all y ∈ Y . If φ−1
S (φS(y)) ⊆ R−1({y}) for all y ∈ Y then the

comparison map c : TTop → UT Spec is an homeomorphism.

Proof. Combine Remark 4.13 with Proposition 4.16. □

4.18. Example. Let X = Spec(Z)1 ⊔ Spec(Z)2 be the disjoint union of two copies
of Spec(Z) with the equivalence relation generated by (p)1 ∼ (p)2 if p ≠ 0. Note
that [(0)1]R ̸= [(0)2]R but ClR((0)1) = ClR((0)2) = X. The topological quotient
is not T0, and the spectral quotient is Spec(Z). The fibers of p0 are discrete,
and the spectral quotient map p0 is closed, but p−1

0 (p0((0)1)) = {(0)1, (0)2} and

(0)2 ̸∈ R−1({(0)1}) = X \ {(0)2}. Note also that R−1({(0)1}) ⊆ X is not closed.

5. Triangulated categories and higher categories

We now turn to the world of derived algebra and describe the types of (higher)
categories we aim to study. We also take this opportunity to recall various definitions,
notation and terminology.

5.1. Definition. A tt-category is a triangulated category equipped with a compatible
closed symmetric monoidal structure in the sense of [HPS97, Appendix A]. We
denote the internal hom by hom and the dual functor by D := hom(−,1).

5.2. Definition. Let T be a tt-category.

(a) A thick subcategory of T is a (full, replete) triangulated subcategory which
is thick (i.e., closed under direct summands).

(b) A thick ideal of T is a thick subcategory I ⊆ T such that T ⊗ I ⊆ I; that is,
if a ∈ T and b ∈ I, then a⊗ b ∈ I.

(c) A radical thick ideal of T is a thick ideal I ⊆ T with the property that if
a ∈ T satisfies a⊗k ∈ I for some k ≥ 1, then a ∈ I.

(d) We write thick⟨E⟩, thickid⟨E⟩, and
√
E for the thick subcategory, thick ideal,

and radical thick ideal generated by a collection of objects E ⊆ T.

5.3. Definition. Let T be a tt-category.

(a) We say that x ∈ T is dualizable if for all y ∈ T, the canonical map Dx⊗ y →
hom(x, y) is an isomorphism in T.

(b) We say that T is rigid if every object of T is dualizable.
(c) We denote the full subcategory of dualizable objects by Td. It is a rigid

tt-subcategory of T.

5.4. Remark. If T is rigid, then any thick ideal is radical; see [Bal07, Prop. 2.4].

5.5. Definition. A big tt-category is a tt-category T which admits coproducts.

5.6. Definition. Let T be a big tt-category.

(a) A localizing subcategory of T is a thick subcategory which is closed under
coproducts.

(b) A localizing ideal of T is a thick ideal which is closed under coproducts.
(c) We write loc⟨E⟩ and locid⟨E⟩ for the localizing subcategory and localizing

ideal generated by a collection of objects E ⊆ T.
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5.7. Definition. Let T be a big tt-category.

(a) An object x ∈ T is compact if HomT(x,−) : T → Ab preserves coproducts.
(b) We denote the full subcategory of compact objects by Tc. It is a thick

triangulated subcategory of T.
(c) We say that T is compactly generated if there exists a set G ⊆ Tc such that

loc⟨G⟩ = T.
(d) We say that T is rigidly-compactly generated if Tc = Td and T is compactly

generated.

5.8. Remark. For a set of compact objects G ⊆ Tc, the following statements are
equivalent:

(a) loc⟨G⟩ = T;
(b) For any t ∈ T, if homT(G, t) = 0 then t = 0;
(c) For any t ∈ T, if HomT(Σ

ng, t) = 0 for all g ∈ G and n ∈ Z, then t = 0.

5.9. Remark. A fundamental result of Neeman [Nee92, Lemma 2.2] asserts that if
G ⊆ Tc is a set of compact objects then loc⟨G⟩ ∩ Tc = thick⟨G⟩.
5.10. Definition. A tt-functor F : T → S between tt-categories is a (strong) sym-
metric monoidal exact functor. Such a functor always restricts to a tt-functor
Td → Sd between the subcategories of dualizable objects. This is because (strong)
symmetric monoidal functors preserve dualizable objects. This latter fact is most
easily seen using the characterization of dualizable objects in terms of evaluation
and coevaluation maps; see, e.g., [LMSM86, Proposition III.1.9]. For brevity, a
coproduct-preserving tt-functor between big tt-categories will be called a geometric
functor.

We also need to introduce the ∞-categorical analogues of the previous definitions.

5.11. Definition. A big tt-∞-category is a presentable, symmetric monoidal, stable
∞-category C whose tensor ⊗ commutes with colimits in each variable. We note
that any such C is automatically closed symmetric monoidal. A tt-∞-functor is a
symmetric monoidal exact functor. The very large ∞-category of big tt-∞-categories
and colimit-preserving tt-∞-functors is denoted by CAlg(PrLst).

5.12. Remark. The homotopy category Ho(C) of a big tt-∞-category has the
canonical structure of a big tt-category; see [Lur17, Chapter 1]. Many of the
invariants and properties we are interested in concerning C are really invariants and
properties of Ho(C). For example, we can speak of thick subcategories of C (which
are precisely the stable subcategories which are closed under retracts), thick ideals,
localizing ideals, and so on. Also, an object x ∈ C dualizable iff it is dualizable as
an object of Ho(C); see [Lur17, Section 4.6.1].

5.13. Remark. A tt-∞-functor F : C → D of big tt-∞-categories preserves colimits
if and only if F preserves coproducts; see [Lur17, Proposition 1.4.4.1(2)]. This
latter condition is also equivalent to the induced tt-functor Ho(C) → Ho(D) of big
tt-categories preserving coproducts.

5.14. Lemma. Let C be a big tt-∞-category. The following are equivalent for an
object x ∈ C:

(a) the functor HomC(x,−) : C → S to the ∞-category of spaces preserves filtered
colimits;
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(b) the functor homC(x,−) : C → Sp to the ∞-category of spectra preserves
filtered colimits;

(c) the functor homC(x,−) : C → Sp preserves coproducts;
(d) the functor Hom∗

Ho(C)(x,−) : Ho(C) → Ab into abelian groups preserves
coproducts.

Proof. Recall that Ω∞ homC ≃ HomC. Thus (b) implies (a) since Ω∞ preserves
filtered colimits. For the reverse implication, let {yi} be a filtered system of objects
in C, and consider the canonical map homC(x, lim−→

yi) → lim
−→

homC(x, yi). This is

an equivalence if and only if Ω∞ homC(x,Σ
n lim

−→
yi) → lim

−→
Ω∞ homC(x,Σ

nyi) is

an equivalence for all n ∈ Z. Using Ω∞ homC ≃ HomC again, we conclude that
(a) implies (b). Note that the functor homC(x,−) : C → Sp is exact. Then (b) is
equivalent to (c) by [Lur17, Proposition 1.4.4.1(2)]. Finally (c) is equivalent to (d)
since we have a natural equivalence πn homC(x,−) = HomHo(C)(x,Σ

−n(−)); see
[Lur17, Notation 1.1.2.17]. □

5.15. Remark. Recall that an object x ∈ C which satisfies Condition (a) of
Lemma 5.14 is called compact. It then follows from the same lemma that x
is compact in C if and only if x is a compact object of Ho(C) in the sense of
Definition 5.7(a). Writing Cc for the subcategory of compact objects, we then have
Ho(Cc) = Ho(C)c.

5.16. Remark. We say that a big tt-∞-category C is compactly generated or
rigidly-compactly generated when Ho(C) is so.

It is also convenient to have a “small” version of the definition:

5.17. Definition. Let Catperf∞ denote the large ∞-category of essentially small,
idempotent complete stable ∞-categories and exact functors.

• A tt-∞-category is a commutative algebra object in Catperf∞ . In concrete
terms, a tt-∞-category is an essentially small, idempotent complete, stable
∞-category equipped with a symmetric monoidal structure whose tensor is
exact in each variable. This is coherent with our previous terminology, as a
big tt-∞-category in the sense of Definition 5.11 is a tt-∞-category in the
present sense.

• The large ∞-category of tt-∞-categories and tt-∞-functors is denoted by
CAlg(Catperf∞ ).

• A tt-∞-category C is rigid if Ho(C) is rigid (Definition 5.3(b)).

5.18. Example. If C is a rigidly-compactly generated tt-∞-category, then Cc = Cd

is a rigid tt-∞-category.

6. Projection formulas and base change

We begin this section by discussing the projection formula for an adjunction of
tt-categories. We then introduce the ∞-category of modules over a commutative
algebra object and discuss various properties of the associated base change functor.

6.1. Definition. Let F : T → S be a tt-functor which admits a right adjoint U . We
say that the projection formula holds if the canonical natural transformation

(6.2) U(s)⊗ t → U(s⊗ F (t))
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defined in [BDS15, (2.6)] is an isomorphism for all s ∈ S and t ∈ T. In this case,
UF ≃ U(1)⊗− is an isomorphism of monads [BDS15, Lemma 2.8].

6.3. Lemma. Let F : T → S be a tt-functor between big tt-categories which admits a
right adjoint U .

(a) If T is generated by dualizable objects (that is, T = loc⟨Td⟩) and U preserves
coproducts then the projection formula holds.

(b) If U preserves coproducts then F preserves compact objects.
(c) If T is compactly generated and U is conservative and preserves coproducts

then S = loc⟨F (Tc)⟩.

Proof. (a): This is extracted from the work of [BDS16]. The projection formula (6.2)
is always an isomorphism when the object t is dualizable [FHM03, Proposition 3.12].
For a fixed s ∈ S, (6.2) is — under our hypothesis that U preserves coproducts — a
natural transformation of coproduct preserving exact functors T → T. Hence the
collection of objects on which it is an isomorphism is a localizing subcategory of T.
It contains the dualizable objects as noted, hence is everything under the hypothesis
that T is generated by dualizable objects.

(b): See the proof of [Nee96, Theorem 5.1].

(c): This is standard and follows from part (b) and Remark 5.8. □

6.4. Corollary. Let F : T → S be a tt-functor between big tt-categories which admits
a right adjoint U which is conservative and preserves coproducts. Then:

(a) If T is compactly generated then so is S.
(b) If T is rigidly-compactly generated then so is S.

Proof. Part (a) follows from Lemma 6.3. Moreover, it implies that if T is rigidly-
compactly generated then S is generated by a set of compact and dualizable objects.
Then to prove part (b) we need to show that Sc = Sd. Since 1S = F (1T) is compact,
this follows from [HPS97, Theorem 2.1.3(d)]. □

6.5. Corollary. Let F : T → S be a tt-functor between big tt-categories which admits
a right adjoint U which is conservative and preserves coproducts. If T is rigidly-
compactly generated and U(1S) is compact, then U preserves compact objects.

Proof. Consider the thick subcategory S0 :=
{
s ∈ Sc

∣∣U(s) ∈ Tc
}

⊆ Sc. By
Lemma 6.3(b), F preserves compactness. Hence 1S = F (1T) is compact and is
thus contained in S0 since U(1S) is compact by hypothesis. It remains to prove
that S0 is a thick ideal of Sc. By Lemma 6.3(c), S = loc⟨F (Tc)⟩. Since F preserves
compactness, Remark 5.9 then implies Sc = thick⟨F (Tc)⟩. It follows that S0 is a
thick ideal of Sc if and only if F (Tc)⊗ S0 ⊆ S0. The latter is true by invoking the
projection formula (Lemma 6.3(a)). □

We will mostly use the following special case of the previous results.

6.6. Proposition. Let F : T → S be a geometric functor between rigidly-compactly
generated tt-categories. Then:

(a) F admits a right adjoint U ;
(b) U itself admits a right adjoint;
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(c) F preserves compact objects;
(d) The projection formula holds.

If in addition U is conservative and U(1S) is compact, then U preserves compact
objects.

Proof. This is [BDS16, Corollary 2.14 and Proposition 2.15]. The final claim follows
from Corollary 6.5. □

6.7. Recollection. Let C be a big tt-∞-category and consider A ∈ CAlg(C). As
discussed in [Lur17, Section 4.5] there is a big tt-∞-category ModA(C) of A-module
objects internal to C. Extension-of-scalars (or base change) provides a tt-∞-functor
FA : C → ModA(C) (see [Lur17, Theorems 4.5.2.1 and 4.5.3.1]) which admits a
right adjoint “forgetful functor” UA : ModA(C) → C. To ease the notation we will
often drop the subscript A and simply write F and U for these functors. The
forgetful functor is conservative (i.e., reflects equivalences) and preserves all colimits
[Lur17, Corollary 4.2.3.5]. These two facts have a number of consequences as follows:

6.8. Lemma. Let C be a big tt-∞-category and let A ∈ CAlg(C).

(a) The base change functor FA : C → ModA(C) preserves the subcategories of
dualizable objects and compact objects.

(b) If C is generated by dualizable objects (that is, C = loc⟨Cd⟩) then the projection
formula holds for the base change functor FA.

(c) If C is compactly generated, say by G ⊆ Cc, then ModA(C) is compactly
generated by FA(G). Moreover, ModA(C)

c = thick(FA(C
c)).

(d) If C is rigidly-compactly generated, then ModA(C) is also rigidly-compactly
generated.

Proof. This follows from Lemma 6.3 and Corollary 6.4. □

6.9.Remark. Let C be a rigidly-compactly generated big tt-∞-category and consider
A ∈ CAlg(C). It follows from Proposition 6.6 that if A is compact (as an object
of C) then UA : ModA(C) → C preserves compact objects.

6.10. Proposition. Let F : C → D be a colimit-preserving tt-∞-functor between
rigidly-compactly generated tt-∞-categories whose right adjoint U is conservative.
Then F is extension-of-scalars with respect to U(1D) ∈ CAlg(C): There is an
equivalence of tt-∞-categories D ∼= ModU(1D)(C) under which F : C→D is identified
with C → ModU(1D)(C).

Proof. Apply [MNN17, Proposition 5.29]. Note that the required conditions are
satisfied by Proposition 6.6. □

We briefly recall the relative version of the base change functor.

6.11. Recollection. Let C be a big tt-∞-category and let f : A → B be a morphism
in CAlg(C). By [Lur17, Corollary 4.2.3.2], there is an induced restriction functor
U : ModB(C) → ModA(C) which is conservative and preserves all small (co)limits
by [Lur17, Corollary 4.2.3.7(2)]. This restriction functor admits a symmetric
monoidal left adjoint given by M 7→ B ⊗A M ; see [Lur17, Proposition 4.6.2.17 and
Remark 4.5.3.2].
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6.12. Corollary. Let C be a rigidly-compactly generated tt-∞-category and let
f : A → B be a morphism in CAlg(C). There is an equivalence of tt-∞-categories

ModB(C) ≃ ModU(B)(ModA(C))

under which FU(B) : ModA(C) → ModU(B)(ModA(C)) identifies with the extension-
of-scalars functor ModA(C) → ModB(C).

Proof. Apply Proposition 6.10 to the base change functor ModA(C) → ModB(C). □

7. Descendable algebras

We start by recalling some definitions and results from [Mat16a, Section 3], [Mat15b]
and [MNN17], which are partly inspired by [Bal16]. From now on, let C be a (big)
tt-∞-category.

7.1. Definition. A commutative algebra A ∈ CAlg(C) is descendable if the thick
ideal generated by A is all of C: thickid⟨A⟩ = C. More generally, we say that a
map of commutative algebras f : A → B is descendable if B is descendable as a
commutative algebra in ModA(C).

7.2. Lemma. If A ∈ CAlg(C) is descendable then

thickid⟨x⟩ = thickid⟨x⊗A⟩
for all x ∈ C.

Proof. The hypothesis 1 ∈ thickid⟨A⟩ implies x ∈ thickid⟨x⊗A⟩ by a standard
thick subcategory argument. Hence, thickid⟨x⟩ ⊆ thickid⟨x⊗A⟩. The reverse
inclusion is immediate. □

7.3.Corollary. If A ∈ CAlg(C) is descendable then the base change functor FA : C →
ModA(C) is conservative.

7.4. Remark. For an arbitrary A ∈ CAlg(C), consider the base change adjunction

FA : C ⇄ ModA(C) : UA.

Complete the unit η : 1 → A to an exact triangle

(7.5) W
ξ−→ 1

η−→ A → ΣW.

Then FA(ξ) = 0 in ModA(C) so that FA(A) ≃ ΣFA(W ) ⊕ 1A in ModA(C) and
A⊗A ≃ (ΣA⊗W )⊕A in C.

7.6. Lemma. Let C be a rigidly-compactly generated tt-∞-category. For an arbitrary
A ∈ CAlg(C), we have

thickid⟨UA(x)⟩ = thickid⟨UA(x)⊗A⟩
for any x ∈ ModA(C).

Proof. This follows from Remark 7.4. If x ∈ ModA(C) is arbitrary, then x is a
summand of x⊗FA(A). Hence UA(x) is a summand of UA(x⊗FA(A)) ≃ UA(x)⊗A,
where the last equivalence is the projection formula (see Lemma 6.8). Hence
thickid⟨UA(x)⟩ = thickid⟨UA(x)⊗A⟩. □

7.7. Proposition. For A ∈ CAlg(C), the following are equivalent:
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(a) A is descendable;
(b) The base change functor FA : C → ModA(C) is nil-faithful: if f is a morphism

in C such that FA(f) = 0 (i.e., f ⊗A = 0), then f is tensor-nilpotent.

Proof. This is essentially contained in the work of Balmer [Bal16,Bal18]; see also
[Mat16a, Proposition 3.27]. As observed in [Bal18, Proposition 2.10],

thickid⟨A⟩ =
{
z ∈ C

∣∣ ξ⊗n ⊗ z = 0 for some n ≥ 1
}

where ξ : W → 1 is the morphism in (7.5). Thus, A is descendable if and only if
the morphism ξ is tensor-nilpotent. In particular, note that ξ ⊗A = 0, that is, ξ is
tensor-nilpotent on its cone. Hence (b) implies (a). Conversely, suppose f : x → y
is a morphism in C such that A⊗ f = 0. From

W ⊗ x x A⊗ x ΣW ⊗ x

W ⊗ y y A⊗ y ΣW ⊗ y

W⊗f f A⊗f=0

ξ⊗y

we see that f factors through ξ ⊗ y. If A is descendable, then ξ is tensor-nilpotent
and this readily implies that f is tensor-nilpotent too. □

7.8. Proposition. Let C be a rigidly-compactly generated tt-∞-category. For any
A ∈ CAlg(C), let

φ : Spc(ModA(C)
c) → Spc(Cc)

denote the map on Balmer spectra induced by extension-of-scalars.

(a) If A is descendable, then φ is surjective.
(b) If A is compact and φ is surjective, then A is descendable.

Proof. For (a): If A is descendable then FA : C → ModA(C) is conservative by
[Mat16a, Proposition 3.19]. Hence φ is surjective by [BCH+23, Corollary 2.26]; a
generalization to arbitrary families of geometric functors will be given in [BCHS23b].

For (b): If A is compact then the restriction functor UA preserves compact objects
(Remark 6.9). Hence the image of φ is supp(A) by [Bal18, Theorem 1.7]. Since φ is
surjective, supp(A) = Spc(Cc). By the classification of (radical) thick ideals of Cc,
this implies that 1 is contained in the (radical) thick ideal of Cc generated by A. In
particular, 1 ∈ thickid⟨A⟩. □

7.9. Remark. It is natural to wonder whether part (b) of Proposition 7.8 holds
without the assumption that A is compact; in other words, whether the surjectivity
of φ characterizes descendable algebras. This is not true in general, as the following
two counterexamples demonstrate.

7.10. Example. Let R be a commutative ring and let I ⊆ R be a nil ideal that is not
nilpotent; for example, let R = C[x1, x2, x3, . . .]/(x1, x

2
2, x

3
3, . . .) and I = (x1, x2, . . .).

Now consider the extension-of-scalars functor D(R) → D(R/I) induced by the
quotient map R → R/I. On Balmer spectra, this induces a homeomorphism
Spec(R/I) ∼= Spec(R) but R/I ∈ D(R) is not descendable [BS17b, Example 11.21].

7.11. Example. For another counterexample, let R be the valuation domain which
is called A in [Kel94]. Let k := R/m be its residue field and let Q denote its field of
fractions. As shown by Bazzoni–Šťov́ıček (see [BŠ17a, Example 5.24]), R → Q× k
induces a conservative (non-finite) smashing localization D(R) → D(Q× k) which
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is surjective on Balmer spectra. However the idempotent algebra Q × k is not
descendable. (Note that an idempotent algebra f is descendable if and only if
f = 1.) This example also shows that the conservativity of A⊗− does not imply
that A is descendable, i.e., the converse of Corollary 7.3 does not hold.

7.12. Construction. Given A ∈ CAlg(C), we can form a cosimplicial object in C

CB•(A) = {A ⇒ A⊗A→→
→
. . .} ∈ Fun(∆,C)

called the cobar construction on A. Then the sequence of partial totalizations

Totn(CB
•(A)) = lim

[i]∈∆,i≤n
Ai+1

naturally arranges into a tower, whose inverse limit is given by the totalization
Tot(CB•(A)). The cobar construction extends to an augmented cosimplicial object

CB•
aug(A) = {1 → A ⇒ A⊗A→→

→
. . .} ∈ Fun(∆+,C)

where ∆+ is the augmented simplex category of finite ordered sets.

7.13. Proposition. Suppose that A ∈ CAlg(C) is descendable. Then for all x ∈ C

and any exact functor F : C → D where D is a stable ∞-category, the augmented
cosimplicial object

F (x⊗ CB•
aug(A)) : ∆+ → D

is a limit diagram. That is, the natural morphism

ηx : F (x) → Tot(F (x⊗A) ⇒ F (x⊗A⊗A)→→
→ · · · )

is an equivalence in D.

Proof. This is proved in [Mat18, Proposition 2.12] but we recall the argument
for future reference. We start by noting that if x = A ⊗ y, then the augmented
cosimplicial object x⊗ CB•

aug(A) admits an “extra degeneracy” or splitting [Lur17,
Definition 4.7.2.2] which is induced by the multiplication map of A. It then follows
from [Lur09, Lemma 6.1.3.16] that the functor F (x⊗ CB•

aug(A)) is a limit diagram.
In other words ηx is an equivalence if x = A⊗ y. Since the class of x for which ηx
is an equivalence is thick, it follows that ηx is an equivalence for all x ∈ thickid⟨A⟩.
Since A is descendable we have thickid⟨A⟩ = C. □

Recall the following useful characterization of descendable commutative algebras.

7.14. Proposition ([Mat16a, Proposition 3.20]). Consider A ∈ CAlg(C). Then A
is descendable if and only if the Tot-tower {Totn(CB•(A))}n≥0 is pro-constant and
convergent to 1 (i.e., CB•

aug(A) is a limit diagram).

This enables us to characterize dualizable descendable algebras internally in Cd:

7.15. Lemma. The following are equivalent for A ∈ CAlg(C):

(a) A is dualizable and descendable in C;
(b) A is dualizable and descendable in Cd;
(c) A is dualizable and supp(A) = Spc(Cd).
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Proof. Recall that Cd is a symmetric monoidal subcategory of C so (b) implies (a).
Conversely, suppose that A is dualizable and descendable in C. Then by Proposi-
tion 7.14 the Tot-tower {Totn(CB•(A))}n≥1 ∈ Tow(C) is pro-constant and conver-
gent to 1. Since A is dualizable, CB•(A) defines a cosimplicial object in Cd and so
the resulting Tot-tower belongs to Tow(Cd) ⊆ Tow(C). This remains pro-constant
and convergent to 1 ∈ Cd so A is descendable in Cd by Proposition 7.14. For
the equivalence between (b) and (c), note that for any dualizable object A ∈ Cd,
thickid⟨A⟩ = Cd is equivalent to 1 ∈ thickid⟨A⟩. Moreover, since Cd is rigid, the
thick ideal generated by A is the same as the radical thick ideal generated by A.
So by the classification of radical thick ideals, 1 ∈ thickid⟨A⟩ is equivalent to
supp(1) ⊆ supp(A). □

Next we show how we can use descendability to detect compact objects.

7.16. Proposition. Let C be a big tt-∞-category which is generated by dualizable
objects. If A ∈ CAlg(C) is descendable then FA : C → ModA(C) reflects compactness:
If x ∈ C is such that FA(x) is compact in ModA(C) then x is compact in C.

Proof. This is essentially [Mat16a, Proposition 3.28]. We repeat the argument here
for completeness. For any set of objects {zi}, we need to show that the map⊕

i

HomC(x, zi) → HomC(z,
∐
i

zi)

is an isomorphism. Consider the collection U of objects y such that⊕
i

HomC(x, y ⊗ zi) → HomC(x, y ⊗
∐
i

zi)

is an isomorphism. We would like to show that it contains 1. The collection U
forms a thick subcategory. Using the FA ⊣ UA adjunction and the projection
formula (Lemma 6.3), one checks that it contains UA(s) for every s ∈ ModA(C).
Hence it contains A⊗ C. That is, it contains thick⟨A⊗ C⟩ = thickid⟨A⟩, and hence
contains 1. □

We finish this section by recalling the following result on descent theory.

7.17. Proposition ([Mat16a, Proposition 3.22]). Let C ∈ CAlg(PrLst) and consider
A ∈ CAlg(C) descendable. Then the base change adjunction FA : C ⇄ ModA(C) :UA
is comonadic. In particular, the canonical map

C → Tot(ModA(C) ⇒ ModA⊗A(C))→→
→ · · · )

is an equivalence.

8. Descent for localizing ideals

The goal of this section is to establish a descent strategy for classifying localizing
ideals; see Proposition 8.23 below. This will be used in Section 12 to deduce a
descent result for stratification.

8.1. Definition. For a big tt-category T, we denote by Locid(T) the (large) poset
of localizing ideals of T ordered by inclusion.
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8.2. Remark. Given two big tt-categories T and S, and any functor F : T → S, we
define a map

F∗ : Locid(T) → Locid(S)

by sending a localizing ideal L ⊆ T to the localizing ideal generated by F (L) ⊆ S,
that is F∗(L) := locid⟨F (L)⟩. If L = locid⟨ti | i ∈ I⟩ is generated by a set of objects,
it is tempting to claim that F∗(L) = locid⟨F (L)⟩ is equal to locid⟨Fti | i ∈ I⟩. Note
that we always have the containment F∗(L) ⊇ locid⟨Fti | i ∈ I⟩ but in general this
might not be an equality. The next result shows that we do have such an equality
under some mild conditions on F :

8.3. Lemma. Let F : T → S be a functor between big tt-categories. Suppose the
preimage F−1 preserves localizing ideals. Then

locid⟨F (E)⟩ = locid⟨F (Locid(E))⟩
for any collection of objects E ⊆ T.

Proof. The ⊆ inclusion is immediate. For the reverse inclusion, observe that
F−1(locid⟨F (E)⟩ is a localizing ideal by hypothesis. Since it contains E, we conclude
that it contains locid⟨E⟩. Hence F (locid⟨E⟩) is contained in locid⟨F (E)⟩ and we are
done. □

8.4. Remark. It follows from Lemma 8.3 that if F : T → S and G : S → R are
functors and G−1 preserves localizing ideals, then (G ◦ F )∗ = G∗ ◦ F∗.

8.5. Remark. The conclusion of Lemma 8.3 says that F∗(locid⟨E⟩) = locid⟨F (E)⟩
for any collection of objects E ⊆ T. In this case, we say that F∗ can be “defined on
generators”.

8.6. Example. Let F : T → S be a geometric tt-functor between big tt-categories.
Then F−1 preserves localizing ideals and so F∗ can be “defined on generators”.

8.7. Lemma. Let F : T → S be a geometric tt-functor between rigidly compactly
generated tt-categories. If its right adjoint U : S → T is conservative then U−1

preserves localizing ideals. Hence we have

U∗(locid⟨E⟩) = locid⟨U(E)⟩
for any collection of objects E ⊆ S.

Proof. Recall from Proposition 6.6 that the right adjoint U preserves coproducts.
Hence if L ⊆ T is a localizing ideal then U−1(L) is a localizing subcategory
of S. The conservativity of U implies (Lemma 6.3(c)) that S = loc⟨F (Tc)⟩, hence
S ⊗ U−1(L) ⊆ U−1(L) if and only if F (Tc) ⊗ U−1(L) ⊆ L. But this follows from
the projection formula (Proposition 6.6). □

8.8. Example. Let A ∈ CAlg(C) be a commutative algebra in a rigidly-compactly
generated tt-∞-category C. Lemma 8.7 applies to the baschange functor FA : C →
ModA(C) since the right adjoint UA is conservative.

8.9. Lemma. Let F : T → S be a geometric functor between rigidly-compactly
generated tt-categories. Suppose its right adjoint U is conservative. Then:

(a) For any s ∈ S, we have U(s) ∈ locid⟨U(1S)⟩.
(b) For any s ∈ S, we have U(s) ∈ locid⟨U(1S)⊗ U(s)⟩.
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(c) For any localizing ideal L ⊆ T, we have an equality

locid⟨U(1S)⊗ L⟩ = locid⟨U(S) ∩ L⟩.

Proof. For part (a) just observe that s ∈ locid⟨1S⟩ hence U(s) ∈ U(locid⟨1S⟩) ⊆
locid⟨U(1S)⟩ by Lemma 8.7. Now consider part (b). Note that U(1S) ⊗ U(s) ≃
UFU(s) by the projection formula. We complete the counit of the adjunction (F,U)
to a triangle

FU(s)
ϵ−→ s

χ−→ z → ΣFU(s).

Note that U(ϵ) is a split epimorphism (by the unit-counit equations), hence the
map U(χ) : U(s) → U(z) is zero. In particular, the triangle splits after applying U ,
so that U(s) is a direct summand of UFU(s) ≃ U(1S)⊗U(s). This proves part (b).
Consider part (c). If U(s) ∈ L then U(1S)⊗ U(s) ∈ U(1S)⊗L. Hence, we have an
inclusion

locid⟨U(S) ∩ L⟩ ⊆ locid⟨U(1S)⊗ L⟩.
On the other hand, observe U(1S)⊗ L = UF (L) ⊆ U(S) ∩ L. □

8.10. Definition. We say that a localizing ideal L ⊆ T is generated by objects from S

if L = locid⟨U(S) ∩ L⟩. Bear in mind part (c) of Lemma 8.9.

8.11. Lemma. Assuming the right adjoint U is conservative, the following are
equivalent:

(a) Every localizing ideal of T is generated by objects from S.
(b) T = locid⟨U(S)⟩.
(c) 1T ∈ locid⟨U(1S)⟩.

Proof. (a) ⇒ (b) is evident. (b) ⇒ (c) follows from part (c) of Lemma 8.9 applied to
L := T. (c) ⇒ (a) also follows from Lemma 8.9: For any t ∈ T, t ∈ locid⟨U(1S)⊗ t⟩,
hence L ⊆ locid⟨U(1S)⊗ L⟩, which is then an equality. □

8.12. Notation. We write Locid(F : T ↑ S) for the (large) poset of localizing ideals
of T generated from S. Note that it contains a largest element locid⟨U(S)⟩.

The following is a generalization of a result of Mathew [Mat15b, Proposition 6.3].

8.13. Proposition. Let F : T → S be a coproduct-preserving tt-functor between
rigidly-compactly generated tt-categories whose right adjoint U is conservative. The
map

F∗ : Locid(F : T ↑ S) → Locid(S)

is split injective in the category of posets, where the splitting is induced by the right
adjoint U . In particular, if 1T ∈ Locid(U(1S)) then we have a split injection

F∗ : Locid(T) → Locid(S)

in the category of posets.

Proof. Let L = locid⟨U(1S)⊗ L⟩ be a localizing ideal generated from objects of S;
see Lemma 8.9(c). Note that F∗ and U∗ can be defined on generators by Example 8.6
and Lemma 8.7. By Remark 8.4 it suffices to verify that (UF )∗(L) = L. Since L is
generated from object of S this translates to verifying that locid⟨(UF )(U(1S)⊗ L)⟩ =
locid⟨U(1S)⊗ L⟩. By the projection formula, which holds by Proposition 6.6, we
have (UF )(U(1S)⊗ L) = U(1S)⊗ U(1S)⊗ L. The required claim follows from the
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fact that locid⟨U(1S)⊗ U(1S)⟩ = locid⟨U(1S)⟩. One containment is clear and the
other follows from Lemma 8.9(c). For the final claim apply Lemma 8.11. □

8.14. Example. Let C be a rigidly-compactly generated tt-∞-category and let
A ∈ CAlg(C) be descendable. Then the map

F∗ : Locid(C) → Locid(ModA(C))

is split injective in the category of posets.

8.15. Remark. The studious reader will notice that some of these results only
depend on A ∈ CAlg(C) having the property that 1 ∈ locid⟨A⟩. We might call
such an algebra “weakly descendable”. Note, if A is compact then it is weakly
descendable if and only if it is descendable.

8.16. Remark. Our goal is to enhance the split injection of Example 8.14 to a split
equalizer. To this end, we recall some results about base change functors:

8.17. Proposition. Let A ∈ CAlg(C) and suppose that the unit map f : 1 → A
admits a descendable retraction, i.e., a map r : A → 1 in CAlg(C) which is descend-
able and such that r ◦ f = id. Then the base change F : C → ModA(C) induces an

isomorphism F∗ : Locid(C)
∼−→ Locid(ModA(C)).

Proof. We note that by Corollary 6.12, we have C = Mod1(C) ≃ Mod1(ModA(C)).
Then base change along r and f induce maps

F∗ : Locid(C) → Locid(ModA(C)) and R∗ : Locid(ModA(C)) → Locid(C)

which satisfies R∗ ◦ F∗ = Id (since r is a retraction for f together with Remark 8.4).
In particular, we see that R∗ is surjective. Since r is descendable, Example 8.14
shows that the map

R∗ : Locid(ModA(C)) → Locid(C)

is also injective. So R∗ is bijective, with inverse F∗. □

8.18. Example. Let R be a commutative ring spectrum and X a finite connected
CW complex. Then the map C∗(X;R) → R given by evaluation at a basepoint is
descendable by [Mat16a, Proposition 3.36]. This gives a retraction for the canonical
algebra map R → C∗(X;R). Therefore Loc(ModR) ≃ Loc(ModC∗(X;R)).

8.19. Example. Let R be a connective commutative ring spectrum which is
n-truncated so that πi(R) = 0 for all i > n. Suppose that we have a ring map
π0(R) → R which is the identity on π0 (for example this always holds if R is a
graded commutative ring). Then the canonical truncation map τ≤0 : R → π0(R) is
descendable by [Mat16a, Proposition 3.34] and this is a retraction for π0(R) → R.
It follows that Loc(Modπ0(R)) ≃ Loc(ModR). If π0(R) is noetherian, then we can
classify the localizing subcategories of Modπ0(R) and hence that of ModR even
though π∗(R) might not be noetherian.

8.20. Notation. Consider A ∈ CAlg(C) and let f : 1 → A denote the unit map.
Then we have ring maps g := f⊗1A : 1⊗A → A⊗A and h := 1A⊗f : A⊗1 → A⊗A.
Extending scalars along these rings maps provides functors

C ModA(C) ModA⊗A(C).
F

G

H
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Restricting scalars along f : 1 → A and g : A → A⊗A define functors U and V as
depicted below

C ModA(C) ModA⊗A(C).
F

U

G

V

8.21. Remark. Note that for all A-modules M ∈ ModA(C), we have a natural
equivalence (V ◦H)(M) ≃ (F ◦U)(M). This is because (V ◦H)(M) = (A⊗A)⊗AM
with A-module structure coming from the right factor of A⊗A. The left factor of
A⊗A is used for calculating the tensor with M .

8.22. Remark. The algebra morphisms g : A → A⊗A and h : A → A⊗A are both
descendable. Indeed if µ : A⊗A → A is the multiplication map, then gµ = 1A = fµ
so A is a retract of A⊗A in ModA(C).

8.23. Proposition. Let C be a rigidly-compactly generated tt-∞-category and let
A ∈ CAlg(C). Then the diagram induced by base change

Locid(F : C ↑ ModA(C)) Locid(ModA(C)) Locid(ModA⊗A(C)).
F∗

G∗

H∗

is a split equalizer of posets.

Proof. We will show that the fork is split in the category of posets. In other words
we show that there exist U∗ and V∗ as in the diagram below

Locid(C ↑ ModA(C)) Locid(ModA(C)) Locid(ModA⊗A(C)).
F∗

U∗

G∗

H∗

V∗

such that U∗ ◦ F∗ = 1 and V∗ ◦ G∗ = 1 and V∗ ◦ H∗ = F∗ ◦ U∗. The equations
immediately imply that F∗ is an equalizer of H∗ and G∗ (recall Remark 2.2).

Recall that g = F (f) : A⊗ 1 → A⊗A is descendable in ModA(C) (Remark 8.22).
Note also that ModA⊗A(ModA(C)) ≃ ModA⊗A(C) by Corollary 6.12. Therefore
by Proposition 8.13 the functors F∗ and G∗ admit sections U∗ and V∗ which are
induced by restricting of scalars along f and g respectively. Thus U∗ ◦ F∗ = 1 and
V∗ ◦G∗ = 1.

It is only left to show that V∗ ◦H∗ = F∗ ◦U∗. Let L ⊆ ModA(C) be a localizing ideal.
Then we find that (F∗◦U∗)(L) = locid⟨F (U(L))⟩ and (V∗◦H∗)(L) = locid⟨V (H(L))⟩
by Remark 8.4. To conclude we only need to note that there is a natural equivalence
(V ◦H)(M) ≃ (F ◦ U)(M) for all A-module M as discussed in Remark 8.21. □

8.24. Example. If A is descendable then we obtain a split equalizer of posets:

Locid(C) Locid(ModA(C)) Locid(ModA⊗A(C)).
F∗

G∗

H∗

It is worth making the following relative version explicit.

8.25. Corollary. Let A → B be a morphism in CAlg(C). If B is descendable over A,
then the diagram induced by base change

Locid(ModA(C)) → Locid(ModB(C)) ⇒ Locid(ModB⊗AB(C))

is a split equalizer of sets (hence an equalizer of posets).
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Proof. Using Corollary 6.12 we can rewrite the fork as

Locid(ModA(C)) → Locid(ModB(ModA(C))) ⇒ Locid(ModB⊗AB(ModA(C))).

Now this is a split equalizer of sets by Proposition 8.23. Note that descendabil-
ity of A → B ensures that all localizing ideals of ModA(C) are generated from
ModB(ModA(C)); see Lemma 8.11. □

8.26. Example. Consider a commutative ring spectrum A with πi(A) = 0 for
all i > 0 and i ≪ 0, and with π0(A) = k a field. Then the map A → k is
descendable by [Mat18, Example 3.5] and so we get an injective map Loc(ModA) →
Loc(Modk) = {0,Modk}. This is clearly surjective and hence bijective.

9. Descent for smashing ideals

In this section we show how one can use a descendable commutative algebra to
classify smashing ideals. First we recall a few important definitions and results.

9.1. Definition. Let T be a big tt-category. A localization functor L : T → T is
said to be smashing if L preserves coproducts. By [HPS97, Definition 3.3.2] we
have L ≃ L1⊗− as functors T → T. A localizing ideal I of T is smashing if there
exists a smashing localization LI : T → T such that ker(L) = I. We denote by
Smashid(T) the (large) poset of smashing ideals of T ordered by inclusion. For a
big tt-∞-category C, we set Smashid(C) := Smashid(Ho(C)).

We recall the following result.

9.2. Theorem. Let T be a rigidly-compactly generated tt-category. Then the col-
lection of smashing ideals Smashid(T) is a frame with meet and join given by
I ∧ I′ = I ∩ I′ and I ∨ I′ = loc⟨I ∪ I′⟩ respectively.

Proof. Krause [Kra00, Theorem 4.9] showed that the collection of smashing subcat-
egories form a set if Tc satisfies a weak form of Brown’s representability theorem
which the author calls condition (B). This is always satisfied by [Kra10, Theo-
rem 5.1.1]. Balmer–Krause–Stevenson [BKS20, Theorem 1.1] then showed that
Smashid(T) forms a frame with join and meet as given above; see also [BKS20, Re-
mark 5.12]. □

9.3. Definition. Let T be a big tt-category. We say that a map λ : 1 → E is
an idempotent object in T if the induced map λ ⊗ E : 1 ⊗ E → E ⊗ E is an
isomorphism. We denote by Idem(T) the (large) poset of isomorphism classes of
idempotent objects in T with partial order given by: [λ : 1 → E] ≤ [λ′ : 1 → E′] if
and only if there is a morphism λ → λ′ in T1/. For a big tt-∞-category C, we set
Idem(C) := Idem(Ho(C)).

9.4. Theorem. Let T be a big tt-category. Then the posets Smashid(T) and Idem(T)
are isomorphic via the maps: I 7→ LI1 and A 7→ ker(A⊗− : T → T).

Proof. This is [BF11, Theorem 3.5]. We note that the authors assume their tt-
categories are rigidly-compactly generated but this is not used in the proof of the
cited result. □

We now discuss the corresponding notion of idempotent algebras in the world of
∞-categories.
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9.5. Definition. Let C be a big tt-∞-category. We say that A ∈ CAlg(C) is an
idempotent algebra if the map η⊗A : A → A⊗A is an equivalence. This is equivalent
to the multiplication map µ : A⊗A → A being an equivalence. We let CAlgidem(C)
denote the full subcategory of CAlg(C) spanned by the idempotent algebras. We
say A ≤ A′ if and only if there exists a map of commutative algebras h : A → A′ if
and only if A′ ≃ A⊗A′; cf. [BKS20, Proposition 2.4].

9.6. Proposition. For a big tt-∞-category C the mapping spaces of CAlgidem(C)
are either empty or contractible. Furthermore we have equivalences of ∞-categories

N(Smashid(C)) ≃ N(Idem(C)) ≃ CAlgidem(C).

Proof. Lurie [Lur17, Proposition 4.8.2.9] shows that there is a fully faithful functor

CAlgidem(C) → C1/, A 7→ (η : 1 → A)

whose essential image is the collection of maps λ : 1 → E such that λ ⊗ E is an
equivalence. Let us write E for this essential image. In the proof of the cited result,
Lurie also proves that the mapping spaces of CAlgidem(C) (and hence also of E)
are either empty or contractible. Therefore by [Lur09, Proposition 2.3.4.18] these
categories are equivalent to 0-categories which in turn can be identified with posets
by [Lur09, Example 2.3.4.3]. Now it is easy to see that E ≃ N(Idem(C)). For the
last equivalence we apply Theorem 9.4. □

9.7. Notation. We write Ĉat∞ for the ∞-category of large ∞-categories and P̂oset
for the ∞-category of large posets. This latter ∞-category is in fact a 1-category in
the sense of [Lur09, Definition 2.3.4.1].

9.8. Construction. Let G : C → D be a tt-functor between big tt-∞-categories.
Then the assignment A 7→ GA defines a functor G∗ : CAlgidem(C) → CAlgidem(D).
Note that we also get an ordering-preserving map between the corresponding posets
since A⊗A′ ≃ A′ implies G(A)⊗G(A′) ≃ G(A′) asG is (strong) symmetric monoidal.
Functoriality for the poset of smashing ideals is slightly more mysterious. However
we can use the isomorphism with the poset of idempotent commutative algebras to
deduce that F∗ : Smashid(C) → Smashid(D) sends I to ker(G(LI1)⊗− : D → D).
Therefore we have well-defined functors

Smashid: CAlg(PrLst) → P̂oset and CAlgidem : CAlg(PrLst) → Ĉat∞

and a natural isomorphism ξ : N(Smashid) ≃ CAlgidem.

9.9. Corollary. The functor CAlgidem : CAlg(PrLst) → Ĉat∞ preserves all limits.

Similarly, the functor Smashid: CAlg(PrLst) → P̂oset preserves all limits.

Proof. Recall that a commutative algebra object in C is a functor Fin∗ → C satisfying
the Segal conditions (which assert that certain maps into a product are equivalences).
As limits in functor categories are calculated pointwise we see that the canonical map
Fun(Fin∗, limi Ci) → limi Fun(Fin∗,Ci) is an equivalence. Thus to prove the first
claim it suffices to check that a limit of idempotent algebras is again an idempotent
algebra. This can be checked pointwise. This holds as limits preserves equivalences
and commute with products. The second claim follows from the first one using the
equivalence ξ : N Smashid ≃ CAlgidem and the fact that the nerve functor creates
limits since it is conservative and commutes with all limits. □
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9.10. Remark. Corollary 9.9 can also be deduced from recent work of Aoki [Aok23]
which shows that the functor Smashid(−) is a right adjoint and hence preserves all
limits.

As an application we obtain the following result:

9.11.Corollary. Let C be a big tt-∞-category and consider A ∈ CAlg(C) descendable.
Then the diagram induced by base change

Smashid(C) → Smashid(ModA(C)) ⇒ Smashid(ModA⊗A(C)).

is an equalizer of posets.

Proof. By Proposition 7.17 we know that C ≃ lim•∈∆ ModA⊗•+1(C) and so by the
previous result we get that Smashid(C) ≃ lim•∈∆ Smashid(ModA⊗•+1(C)). Note

that Smashid(ModA⊗•+1(C))) defines a cosimplicial object in P̂oset. Applying [HP22,

Proposition A.1] to the 1-category P̂oset gives

Smashid(C) ≃ Tot1(Smashid(ModA⊗•+1(C)))

which proves the claim. □

10. Descent for thick ideals and the telescope conjecture

We now turn to thick ideals of compact objects and their relation to our previous
results on smashing and localizing ideals. We will show, in particular, that the
telescope conjecture descends along a compact descendable commutative algebra.

10.1. Notation. Let T be a rigidly-compactly generated tt-category. We write
Thickid(Tc) for the poset of thick ideals of the category of compact objects Tc.

10.2. Remark. If I ⊆ Tc is a thick ideal of compact objects, then the localizing sub-
category loc⟨I⟩ ⊆ T is automatically a localizing ideal of T; cf. [BHS23, Remark 1.3]
or [HPS97, Lemma 1.4.6]. Thus locid⟨I⟩ = loc⟨I⟩. In particular, a localizing ideal
of T is compactly generated as a localizing ideal if and only if it is compactly
generated as a localizing subcategory.

10.3. Theorem (Miller–Neeman). Let T be a rigidly-compactly generated tt-category.
Then the assignment I 7→ loc⟨I⟩ defines split injective maps

σ : Thickid(Tc) → Locid(T) and σ : Thickid(Tc) → Smashid(T).

The splitting sends a smashing or localizing ideal L to L ∩ Tc.

Proof. The localizing subcategory loc⟨I⟩ generated by a thick ideal of compact
objects I is automatically a localizing ideal (Remark 10.2). The theory of finite
localizations establishes that it is a smashing ideal; see [HPS97, §3.3]. The claim
then follows from the assertion that the following composite

Thickid(Tc) Smashid(T) Locid(T) Thickid(Tc)

I loc⟨I⟩ L L ∩ Tc

⊆

is the identity. In other words, loc⟨I⟩∩Tc = I as established by Neeman (Remark 5.9).
See also [HPS97, Theorem 3.3.3] or [Gre19, Theorem 8.1]. □
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10.4. Definition. We say that the telescope conjecture holds for T if the map
σ : Thickid(Tc) → Smashid(T) is bijective.

10.5. Remark. Given a tt-functor F : T → S which preserves compact objects, we
obtain an inclusion-preserving map

F c∗ : Thickid(Tc) → Thickid(Sc)

given by I 7→ thickid⟨F (I)⟩.
10.6. Example. Let C be a rigidly-compactly generated tt-∞-category and consider
A ∈ CAlg(C). The extension of scalars functor C → ModA(C) preserves compact
objects by Lemma 6.8, so we obtain a map

F c∗ : Thickid(Cc) → Thickid(ModA(C)
c).

10.7. Theorem. Let C be a rigidly-compactly generated tt-∞-category and let A ∈
CAlg(C) be descendable and compact. The diagram

Thickid(Cc) Thickid(ModA(C)
c) Thickid(ModA⊗A(C)

c)
F c

∗

Gc
∗

Hc
∗

induced by base change (Notation 8.20) is an equalizer of posets.

Proof. As the forgetful functor from posets to sets creates limits, it suffices to show
that the diagram is an equalizer of sets. Consider the following diagram

Locid(C) Locid(ModA(C)) Locid(ModA⊗A(C))

Thickid(Cc) Thickid(ModA(C)
c) Thickid(ModA⊗A(C)

c).

F∗
H∗

G∗

σ

F c
∗

σA

Hc
∗

Gc
∗

σA⊗A

where the vertical maps are those of Theorem 10.3 and hence injective. One
readily checks that the diagram commutes using Remark 10.2 and Example 8.6.
The top fork is a split equalizer by Proposition 8.23 and the hypothesis that A is
descendable. Recall from the proof that a section for F∗ is induced by the forgetful
functor U : ModA(C) → C. Therefore we are in the situation of Lemma 2.3 and the
bottom fork is an equalizer precisely if for any thick ideal J ⊆ ModA(C)

c satisfying
Hc

∗(J) = Gc
∗(J), the localizing ideal locid⟨U(J)⟩ ⊆ C is compactly generated. This

is evidently the case if U preserves compact objects (recall Remark 10.2) and this
follows from the assumption that A is compact (Corollary 6.5). □

10.8. Theorem. Let C be a rigidly-compactly generated tt-∞-category and let A ∈
CAlg(C) be descendable and compact. If the telescope conjecture holds for ModA(C),
then it holds for C too.

Proof. We apply Corollary 9.11 and Theorem 10.7 and get a commutative diagram
of equalizers

Smashid(C) Smashid(ModA(C)) Smashid(ModA⊗A(C))

Thickid(Cc) Thickid(ModA(C)
c) Thickid(ModA⊗A(C)

c).

σ σ ≃ σ

The vertical arrows are always split injective by Theorem 10.3. The result now
follows from Lemma 2.5. □
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10.9. Example. Localized at the prime 2 there is a ring map tmf → tmf1(3).
Following Hopkins and Mahowald, Matthew [Mat16b] showed that there is a 2-local
finite complex with torsion-free homology DA(1) and an equivalence of tmf -modules
tmf ∧ DA(1) ≃ tmf1(3) so the map tmf → tmf1(3) is finite (i.e., tmf1(3) is a
compact tmf -module). By the thick subcategory theorem, the thick subcategory
that DA(1) generates contains the (2-local) sphere so tmf → tmf1(3) is descendable.
We know that π∗(tmf1(3)) = Z(2)[v1, v2] with generators in degree 2 and 6 so [DS16,
Corollary 1.4] implies that Modtmf1(3) is stratified by π∗(tmf1(3)) and the telescope
conjecture holds for Modtmf1(3). It then follows from Theorem 10.8 that the telescope
conjecture holds for Modtmf too.

11. Descent for Balmer spectra

We recall a few facts about the Balmer spectrum following [KP17] rather than the
standard reference [Bal05].

Recall the notion of a radical thick ideal from Definition 5.2.

11.1. Definition. Let T be an essentially small tt-category.

(a) Let RadThickid(T) denote the partially ordered set of radical thick ideals
of T ordered by inclusion. This is a coherent frame by [KP17, Theorem 3.1.9]

with lattice operations given by I∧ I′ = I∩ I′ and I∨ I′ =
√
I ∪ I′. The finite

elements are the principal radical thick ideals, i.e., those of the form
√
a for

some a ∈ T. We denote by RadThickid(T)f the distributive lattice of finite
elements.

(b) The Balmer spectrum Spc(T) is the spectral space associated to the distribu-
tive lattice (RadThickid(T)f )op via Stone duality; see Theorem 3.8.

11.2. Remark. Recall that if T is rigid, then any thick ideal is radical. In this
case we will simply write Thickid(T) for the coherent frame of thick ideals, and
Thickid(T)f for the associated distributive lattice of finite elements.

11.3. Theorem. The spectral space Spc(T) defined above is isomorphic to the spectral
space defined in [Bal05].

Proof. By [KP17, Corollary 3.4.2] the Balmer spectrum defined in [Bal05] is the
Hochster dual of Spec(RadThickid(T)f ). But the Hochster dual in the category of
distributive lattices is the opposite lattice (Remark 3.12). □

11.4. Remark. Note that the distributive lattice (RadThickid(T)f )op is isomorphic
to the lattice of quasi-compact open subsets of the Balmer spectrum Spc(T) via√
a 7→ supp(a)c.

Let us give a more concrete description of the meet operation in the distributive
lattice Thickid(T)f :

11.5. Lemma. For any a, b ∈ T, we have
√
a ∧

√
b =

√
a⊗ b.

Proof. Under Stone duality, the Balmer spectrum of T corresponds to the distributive
lattice (RadThickid(T)f )op. In particular, by Remark 11.4, we have an isomorphism
of distributive lattices between (RadThickid(T)f )op and the distributive lattice of
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quasi-compact open sets, Ω(Spc(T))f , under which
√
a corresponds to supp(a)c.

Thus
√
a ∧

√
b in RadThickid(T)f corresponds to

supp(a)c ∪ supp(b)c = (supp(a) ∩ supp(b))c = (supp(a⊗ b))c.

Hence
√
a ∧

√
b =

√
a⊗ b. □

11.6. Definition. If Y ⊆ Spc(T) is a Thomason subset, then it corresponds to
the radical thick ideal of T given by TY :=

{
a ∈ T

∣∣ supp(a) ⊆ Y
}
. We denote by

RadThickid(T;Y ) the poset of radical thick ideals of T contained in TY , ordered by
inclusion. Note that this is a subframe of RadThickid(T). If T is rigid, we simplify
the notation to Thickid(T;Y ) as all thick ideals are radical.

11.7. Lemma. If Y ⊆ Spc(T) is a closed Thomason subset, then RadThickid(T;Y )
is a coherent frame.

Proof. We need to establish that the greatest element 1 = TY is finite and that the
meet of two finite elements is again finite. By [Bal05, Proposition 2.14], there exists
z ∈ T such that supp(z) = Y so TY =

√
z is finite. That the meet of two finite

elements is again finite follows immediately from Lemma 11.5. □

11.8. Remark. From another perspective, a Thomason closed subset Y ⊆ Spc(T)
is a spectral subspace (see [DST19, Theorem 2.1.3]) and RadThickid(T;Y )f is
the corresponding distributive lattice. The inclusion Y ⊆ Spc(T) amounts to the
map RadThickid(T)f → RadThickid(T;Y )f given by intersecting with TY , in other
words

√
a 7→

√
a ∩ TY =

√
a⊗ z where supp(z) = Y .

11.9. Definition. A support theory on T is a pair (L, d) where L is a distributive
lattice and d : obj(T) → L is a map satisfying:

(1) d(0) = 0 and d(1) = 1;
(2) d(Σa) = d(a) for all a ∈ T;
(3) d(a⊕ b) = d(a) ∨ d(b) for all a, b ∈ T;
(4) d(a⊗ b) = d(a) ∧ d(b) for all a, b ∈ T;
(5) If a → b → c → Σa is an exact triangle in T, then d(b) ≤ d(a) ∨ d(c).

A morphism of supports from (L, d) to (L′, d′) is a lattice homomorphism which is
compatible with d and d′.

11.10. Proposition. Let T be an essentially small tt-category. Define a function as
follows

d : obj(T) → RadThickid(T)f , a 7→
√
a.

Then the pair (RadThickid(T)f , d) is the initial support theory on T.

Proof. See [KP17, Theorem 3.2.3]. □

11.11. Remark. Let F : T → T′ be a tt-functor between essentially small tt-
categories. Then one readily checks that the assignment a 7→

√
Fa is a support

theory for T. (The key observation is that the intersection of principal radical
thick ideals is given by the tensor-product; see the proof of [KP17, Lemma 3.2.2].)
Therefore by Proposition 11.10 we get a homomorphism of distributive lattices

F∗ : RadThickid(T)f → RadThickid(T′)f ,
√
a 7→

√
Fa.

Under Stone duality, this corresponds to the spectral map Spc(F ) : Spc(T′) →
Spc(T) given by P 7→ F−1(P′).
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11.12. Example. Let C be a rigidly-compactly generated tt-∞-category and consider
A ∈ CAlg(C). Recall that the extension-of-scalars functor F = A⊗− : C → ModA(C)
preserves compact objects by Lemma 6.8. Therefore we obtain a map of distributive
lattices

F c∗ : Thickid(Cc)f → Thickid(ModA(C)
c)f

√
a 7→

√
Fa

11.13. Remark. If G : T → T′ is any functor, then the assignment

G∗ : RadThickid(T) → RadThickid(T′), I 7→
√
G(I)

is a well-defined function, but in general it won’t be a frame morphism, nor will it
preserve finite elements. However, if we assume that G−1 preserves radical thick
ideals, then we obtain a well-defined map of sets

G∗ : RadThickid(T)f → RadThickid(T′)f ,
√
a 7→

√
Ga

between distributive lattices; cf. Lemma 8.3.

11.14. Example. Let F : T → S be a geometric tt-functor between rigidly-compactly
generated tt-categories. Suppose that the right adjoint U is conservative and U(1S)
is compact. Then U preserves all compact objects (by Corollary 6.5) and we claim
that U−1 preserves (radical) thick ideals of compact objects. Hence the right adjoint
provides a well-defined map of sets between the distributive lattices

U c
∗ : Thickid(Sc)f → Thickid(Tc)f .

To prove the claim let J ⊆ Tc be a thick ideal. Then U−1(J) is a thick subcategory,
since U is an exact functor. The conservativity of the right adjoint U implies that
Sc = thick⟨F (Tc)⟩ by Lemma 6.3(c). By the projection formula, F (Tc)⊗ U−1(J) ⊆
U−1(J). Hence thick⟨F (Tc)⟩ ⊗ U−1(J) ⊆ U−1(J).

11.15. Lemma. Let F : T → S be a geometric tt-functor between rigidly-compactly
generated tt-categories. Suppose the right adjoint U is conservative and U(1S) is
compact. Then the image imφ = supp(U(1)) of the induced map

φ : Spc(Sc) → Spc(Tc)

is Thomason closed and the map of distributive lattices

F c∗ : Thickid(Tc; imφ)f → Thickid(Sc)f

is split injective in the category of sets, with section induced by U .

Proof. First note that the image of the induced map on Balmer spectra coincides with
the Thomason closed set supp(U(1)) by [Bal18, Theorem 1.7]. By Example 11.12
and Example 11.14 we have maps of sets

Thickid(Tc)f
F c

∗−−→ Thickid(Sc)f
Uc

∗−−→ Thickid(Tc)f .

The composite maps the radical thick ideal
√
a ∈ Thickid(Tc)f to the radical thick

ideal generated by U(F (a)) = U(1S)⊗ a. Thus the image of this composite lies in
Thickid(Tc, imφ)f and the composite

Thickid(Tc; imφ)f ↪→ Thickid(Tc)f
Uc

∗◦F
c
∗−−−−→ Thickid(Tc, imφ)f .

is the identity since
√
a =

√
U(1S)⊗ a when supp(a) = supp(U(1S) ⊗ a) =

supp(U(1S)) ∩ supp(a), that is, when supp(a) ⊆ imφ. □
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11.16. Example. Let C be a rigidly-compactly generated tt-∞-category and let
A ∈ CAlg(C) be a compact commutative algebra. Then the map of distributive
lattices

F c∗ : Thickid(Cc; supp(A))f → Thickid(ModA(C)
c)f

is split injective in the category of sets.

We are finally ready to prove our descent result for Balmer spectra.

11.17. Theorem. Let C be a rigidly-compactly generated tt-∞-category. Let A ∈
CAlg(C) be a compact commutative algebra with support supp(A) ⊆ Spc(Cc). Then
the diagram induced by base change (Notation 8.20)

Spc(ModA⊗A(C)
c) Spc(ModA(C)

c) supp(A)
Spc(Hc

∗)

Spc(Gc
∗)

Spc(F c
∗ )

is a coequalizer of spectral spaces.

Proof. As before note that any ideal in Cc is radical by Remark 5.4 and that the
solid diagram of distributive lattices

Thickid(Cc; supp(A))f Thickid(ModA(C)
c)f Thickid(ModA⊗A(C)

c)f
F c

∗

Gc
∗

Uc
∗

Hc
∗

V c
∗

is well-defined by Example 11.12. We will show that this fork is split in the category
of sets and so in particular is an equalizer. It then follows from Lemma 3.14 that
the above is a limit diagram in DLat. Stone duality will then provide the colimit
diagram in the statement of the Corollary.

As for localizing ideals (see Proposition 8.23) we need to construct maps U c
∗ and V c

∗ as
depicted in previous display such that U c

∗ ◦F c∗ = 1, V c
∗ ◦Gc

∗ = 1 and V c
∗ ◦Hc

∗ = F c∗ ◦U c
∗ .

Recall that g = F (f) : A⊗ 1 → A⊗A is descendable in ModA(C) (Remark 8.22).
Note also that ModA⊗A(ModA(C)) ≃ ModA⊗A(C) by Corollary 6.12. Therefore
by Example 11.16 the functors F c∗ and Gc

∗ admit sections U c
∗ and V c

∗ which are
induced by restricting of scalars along f and g respectively. Thus U c

∗ ◦ F c∗ = 1 and
V c
∗ ◦Gc

∗ = 1.

It is only left to show that V c
∗ ◦ Hc

∗ = F c∗ ◦ U c
∗ . This reduces to checking that

thickid⟨V H(M)⟩ = thickid⟨FU(M)⟩ for all compact A-modules M . In fact there
is an equivalence (V ◦H)(M) ≃ (F ◦ U)(M) for all A-module M as discussed in
Notation 8.20. The result then follows. □

Under additional assumptions on the commutative algebra, one can show that the
spectral coequalizer is in fact a coequalizer in the category of topological spaces:

11.18. Theorem (Balmer). Let C be a rigidly-compactly generated tt-∞-category.
Let A ∈ CAlg(C) be descendable, compact and separable of finite tt-degree. Then the
diagram induced by base change

Spc(ModA⊗A(C)
c) Spc(ModA(C)

c) Spc(Cc)
Spc(Hc

∗)

Spc(Gc
∗)

Spc(F c
∗ )

is a coequalizer of topological spaces.
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Proof. Note that supp(A) = Spc(Cc) as A is descendable. Then the result follows
from [Bal16, Theorem 3.14]. □

11.19. Remark. Strictly speaking, in [Bal16] Balmer works entirely at the level
of tensor triangulated homotopy categories and considers categories of modules in
those homotopy categories. (The main result of [Bal11] shows that the category
of modules over a separable ring object in a tensor triangulated category admits
a unique structure of triangulated category which is compatible with the original
one.) If A ∈ CAlg(C) is a highly structured separable commutative algebra, we can
invoke the results of [DS18] (see [DS18, Corollary 1.11] and [San22, Proposition 3.8])
to conclude that Ho(ModA(C)) ∼= ModHoA(HoC) where HoA ∈ CAlg(HoC) is the
induced commutative separable algebra in the homotopy category. The coequalizer
in Theorem 11.18 can then be identified with the coequalizer in [Bal16, Theorem 3.6].
On the other hand, Balmer’s theorem holds without assuming the tensor triangulated
categories have an underlying model.

11.20. Remark. One can contemplate an alternative approach to Theorem 11.18 by
starting from Theorem 11.17 and then exhibiting conditions on A which guarantee
that the spectral and topological coequalizers agree: If R is the equivalence relation
on Spc(ModA(C)

c) given by the coequalizer, then the hypotheses of Corollary 4.17 are

satisfied. Balmer [Bal16, Lemma 3.8] shows that φ−1(φ(P)) ⊆ R−1({P}) and the fact
that φ−1(φ(P)) ⊆ Spc(ModA(C)

c) is a T1-space is proved in [Bal16, Lemma 3.10(a)].
Thus the topological and spectral coequalizers are homeomorphic.

12. Descent for stratification

In this section we will work with a rigidly-compactly generated tt-category T whose
Balmer spectrum of compact objects Spc(Tc) is weakly noetherian (see [BHS23,
Definition 2.3]). We will follow [BHS23,BCHS23a] for notation and terminology.
Under these assumptions there is a well-defined notion of support for objects of T,

Supp(t) :=
{
P ∈ Spc(Tc)

∣∣ gP ⊗ t ̸= 0
}
⊆ Spc(Tc),

which lies in the Balmer spectrum of compact objects and which is defined using
certain ⊗-idempotent objects gP ∈ T; see [BHS23, Section 2]. This notion of support
extends to a map

(12.1) Supp: Locid(T) → P(Spc(Tc)), L 7→ Supp(L) =
⋃
X∈L

Supp(X)

where P denotes the (contravariant) power set functor. This map is split surjective
with section given by

L(−) : P(Spc(Tc)) → Locid(T), Y 7→ LY = {t ∈ T | Supp(t) ⊆ Y };
see [BHS23, Lemma 3.4]. We recall the following result.

12.2. Theorem ([BHS23, Theorem A]). Let T be a rigidly-compactly generated
tt-category with Spc(Tc) weakly noetherian. Then the following are equivalent:

• The map in (12.1) is bijective.
• The local-to-global-principle holds for T and for each P ∈ Spc(Tc), the
localizing ideal locid⟨gP⟩ is a minimal localizing ideal of T.

If these conditions hold we say that T is stratified.
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12.3. Remark. Our goal is to study the extent to which stratification descends
along a base change functor. Such “descent results” for stratification have already
been studied in the literature, e.g., in [BCHS23a, §§15–17] and we begin by recalling
some results from that work. Let F : T → S denote a geometric functor between
rigidly-compactly generated tt-categories and write

φ : Spc(Sc) → Spc(Tc)

for the induced map on Balmer spectra. Recall that F has a right adjoint U which
in turn has a right adjoint V .

12.4. Proposition ([BCHS23a]). Let F : T → S be a geometric functor between
rigidly-compactly generated tt-categories with weakly noetherian spectra. Consider
the following conditions:

(a) 1T ∈ locid⟨U(1S)⟩;
(b) V is conservative;
(c) F is conservative;
(d) φ is surjective.

Then (a) ⇒ (b) ⇒ (c) ⇒ (d). If T is stratified or if U(1S) is compact then all four
conditions are equivalent.

Proof. Implication (a) ⇒ (b) is [BCHS23a, Remark 13.24], (b) ⇒ (c) is [BCHS23a,
Proposition 13.21], and (c) ⇒ (d) is [BCHS23a, Corollary 13.19]. Finally, (d) ⇒ (a)
if T is stratified or if U(1S) is compact by [BCHS23a, Corollary 14.24] and [BCHS23a,
Proposition 13.33], respectively. □

12.5. Remark. If F : T → S is not conservative then intuitively there is no reason to
expect us to be able to descend stratification from S to T. Thus, for there to be any
hope for us to conclude that T is stratified, intuitively we expect that the equivalent
conditions of Proposition 12.4 must hold. From this point of view, “descendability”
(or at least “weak descendability”) is a natural hypothesis.

12.6. Proposition ([BCHS23a]). Let F : T → S be a geometric functor between
rigidly-compactly generated tt-categories with weakly noetherian spectra. Suppose
1T ∈ locid⟨U(1S)⟩. If the local-to-global principle holds for S, then it holds for T,
too.

Proof. This is [BCHS23a, Proposition 15.1]; cf. [BCHS23a, Remark 15.4]. □

12.7. Proposition. Let F : T → S be a geometric functor between rigidly-compactly
generated tt-categories with weakly noetherian spectra. Assume S is stratified. The
following are equivalent:

(a) T is stratified and φ is surjective.
(b) 1T ∈ locid⟨U(1S)⟩ and the identity

Supp(F (t)) = φ−1(Supp(t))

holds for all t ∈ T.

Proof. (a) ⇒ (b): This follows from Proposition 12.4 and [BCHS23a, Cor. 14.19].

(b) ⇒ (a): The hypothesis 1T ∈ locid⟨U(1S)⟩ implies that φ is surjective by
Proposition 12.4 and that the local-to-global principle holds for T by Proposition 12.6.
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Let P ∈ Spc(Tc) and suppose 0 ̸= t ∈ locid⟨gP⟩. Then Supp(t) = {P} and
hence Supp(F (t)) = φ−1(Supp(t)) = φ−1({P}) = Supp(F (gP)) by hypothesis and
[BCHS23a, Remark 13.7]. Since S is stratified, this implies F (gP) ∈ locid⟨F (t)⟩
which implies UF (gP) ∈ locid⟨t⟩ by [BCHS23a, (13.4)]. This establishes gP ∈
locid⟨t⟩ since 1T ∈ locid⟨U(1S)⟩ implies gP ∈ locid⟨UF (gP)⟩. □

12.8. Corollary. Let F : T → S be a geometric functor between rigidly-compactly
generated tt-categories with weakly noetherian spectra. Suppose that S is stratified
and 1T ∈ locid⟨U(1S)⟩. The following are equivalent:

(a) T is stratified.
(b) The identity Supp(F (t)) = φ−1(Supp(t)) holds for all t ∈ T.

12.9. Remark. Our goal is to provide a third equivalent condition for stratification
to descend in the case when F is base change along a descendable algebra; see
Theorem 12.12 below. We need some preparatory lemmas.

12.10. Lemma. Let F : T → S be a geometric functor between rigidly-compactly
generated tt-categories with weakly noetherian spectra. Suppose that the local-to-global
principle holds for S. Then the following diagram is commutative:

Locid(T) Locid(S)

P(Spc(Tc)) P(Spc(Sc)).

F∗

L(−)

P(φ)

L(−)

Proof. Let Y ⊆ Spc(Cc) be a subset so P(φ)(Y ) = φ−1(Y ). Going around the
top we obtain F∗(LY ) = locid⟨F (t) | Supp(t) ⊆ Y ⟩ while going around the bottom
we obtain Lφ−1(Y ) =

{
s ∈ S

∣∣ Supp(s) ⊆ φ−1(Y )
}
. The former is contained in

the latter by [BCHS23a, Remark 14.13]. Conversely, as explained in the proof of
[BCHS23a, Proposition 15.1], the local-to-global principle for S implies that

locid⟨F (gP)⟩ = locid⟨gQ | Q ∈ φ−1({P})⟩
for any P ∈ Spc(Tc). Thus, if s ∈ S is such that Supp(s) ⊆ φ−1(Y ), then s ∈
locid⟨s⊗ gQ | Q ∈ φ−1(Y )⟩ ⊆ locid⟨gQ | Q ∈ φ−1(Y )⟩ = locid⟨F (gP⟩ | P ∈ Y ). □

We also need the following simple observation.

12.11. Lemma. The contravariant power set functor P : Setop → Set preserves and
detects limits.

Proof. Firstly, we claim that P is conservative. Let f : X → Y be a map of
sets such that P(f) : P(Y ) → P(X) is bijective. Since P(f)(∅) = ∅ and P(f) is
injective, we deduce that P(f)({y}) ̸= ∅ for all y ∈ Y . Thus, f is surjective. For
injectivity, suppose that there exists x0, x1 ∈ X such that f(x0) = f(x1). Then
P(f)−1({x0}) = {f(x0)} = {f(x1)} = P(f)−1({x1}) and so x0 = x1 by injectivity
of P(f)−1. Therefore f is injective and so bijective. We also note that the functor
P preserves all limits as we have a natural equivalence P(−) ≃ Set(−, {0, 1}).
Because P is conservative, it follows that it also detects limits. □

12.12. Theorem. Let C be a rigidly-compactly generated tt-∞-category and let
A ∈ CAlg(C) be descendable. Let FA : C → ModA(C) denote the base change
functor. Suppose that the following hold:
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(i) The Balmer spectra of Cc and ModA⊗A(C)
c are weakly noetherian.

(ii) ModA⊗A(C) satisfies the local-to-global principle.
(iii) ModA(C) satisfies the minimality condition.

Then ModA(C) is stratified and the following are equivalent:

(a) C is stratified.
(b) The identity Supp(FA(t)) = φ−1(Supp(t)) holds for all t ∈ C.
(c) The diagram induced by the base changed functors

(12.13) Spc(ModA⊗A(C)
c) ⇒ Spc(ModA(C)

c) → Spc(Cc)

is a coequalizer of sets.

Proof. Extension of scalars along the multiplication map m : A ⊗ A → A gives a
functor M : ModA⊗A(C) → ModA(C). This in turn induces a map Spc(M∗) between
Balmer spectra which by functoriality splits both Spc(H∗) and Spc(G∗) (in the
notation of Notation 8.20). It then follows that Spc(ModA(C)

c) is a retract of the
weakly noetherian spectral space Spc(ModA⊗A(C)

c), so is itself weakly noetherian
by [BHS23, Remark 2.6]. Therefore all Balmer spectra considered in the theorem
are weakly noetherian.

Recall that FA(A) = A⊗ A is descendable in ModA(C) by Remark 8.22 and that
ModA⊗A(ModA(C)) ≃ ModA⊗A(C) by Corollary 6.12. Applying Proposition 12.6
to the descendable algebra A⊗A ∈ CAlg(ModA(C)) shows that the local-to-global
principle holds for ModA(C) since we are assuming that ModA⊗A(C) satisfies the
local-to-global principle. Hence ModA(C) is stratified because ModA(C) satisfies the
minimality condition by hypothesis. The equivalence of (a) and (b) then follows
from Corollary 12.8, although an alternative proof will also be obtained below.

Now, we apply Lemma 2.5 to the diagram

Locid(C) Locid(ModA(C)) Locid(ModA⊗A(C))

P(Spc(Cc)) P(Spc(ModcA)) P(Spc(ModcA⊗A))

F∗

Supp Supp

G∗

H∗

SuppL(−)

P(φ)

L(−)

P(ψ)

P(ξ)

L(−)

where the maps are induced by the extension of scalars functors. Condition (i)
holds by Proposition 8.23. Condition (ii) holds as discussed at the beginning of this
section. Condition (iii) holds since ModA(C) is stratified. Finally, condition (iv)
holds by applying Lemma 12.10 to the two horizontal fork diagrams, using that both
ModA(C) and ModA⊗A(C) satisfy the local-to-global principle. Consider a fourth
statement:

(d) The diagram

P(Spc(Cc)) P(Spc(ModA(C)
c)) P(Spc(ModA⊗A(C)

c))
P(φ) P(ψ)

P(ξ)

is an equalizer of sets.

Then Lemma 2.5 tells us that (a), (c) and (d) are all equivalent. The fact that (c)
and (d) are equivalent then follows from Lemma 12.11. □
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12.14. Corollary. Let C be a rigidly-compactly generated tt-∞-category and let
A ∈ CAlg(C) be descendable. Suppose the spectrum of ModA⊗A(C) is noetherian
and that ModA(C) satisfies the minimality condition. Then the three conditions
(a)–(c) of Theorem 12.12 are equivalent. Furthermore, Spc(Cc) is noetherian.

Proof. As in the beginning of the proof Theorem 12.12, ModA⊗A(C) is an extension
by a descendable algebra in ModA(C). Thus we have surjections

Spc(ModA⊗A(C)
c) → Spc(ModA(C)

c) → Spc(Cc).

Since the domain space is noetherian, so are the other two spaces. Finally recall
that the local-to-global principle holds if the spectrum is noetherian ([BHS23,
Theorem 3.22]) so we invoke Theorem 12.12. □

12.15. Remark. If the descendable algebra A ∈ CAlg(C) is compact then the
diagram (12.13) is a coequalizer of spectral spaces by Theorem 11.17 but recall that
this does not necessarily mean that it is a coequalizer of topological spaces or sets.
We have a commutative diagram

(12.16)

Spc(ModA⊗A(C)
c) Spc(ModA(C)

c) Spc(Cc)

TTop

φ

p

which relates the spectral coequalizer Spc(Cc) and the topological coequalizer TTop.
Note that the map φ is closed and surjective by [BCHS23a, Remark 13.26] and
Remark 6.9, and it follows (Remark 4.9) that the comparison map p is also closed
and surjective.

12.17. Corollary. In the situation of Theorem 12.12, assume that the descendable
algebra A ∈ CAlg(C) is compact and that φ : Spc(ModA(C)

c) → Spc(Cc) has discrete
fibers. Then (12.13) is a coequalizer of topological spaces.

Proof. Bearing in mind Proposition 7.8, stratification descends from ModA(C) to C

by quasi-finite descent [BCHS23a, Theorem 17.16]. Hence, Theorem 12.12 implies
that (12.13) is a coequalizer of sets. It follows that the comparison map p : TTop →
Spc(Cc) from the topological coequalizer to the spectral coequalizer is a continuous
bijection, hence a homeomorphism since it is a closed map (Remark 12.15). □

12.18. Example. Suppose we are in the situation of Theorem 12.12 but assume in
addition that A is compact and separable of finite tt-degree. Then condition (c) in
the theorem is satisfied by Theorem 11.18 so we can descend stratification. In other
words, we can descend stratification along a surjective compact separable extension
(cf. Proposition 12.4). This provides a different perspective on descent results along
finite étale extensions; see [San22] and [BHS23, Section 6].

13. Faithful Galois extensions

In this section we show that stratification descends along faithful Galois extensions.
We first study faithful G-Galois extensions for a finite group G in a general big
tt-∞-category C, and then specialize to faithful G-Galois extensions of commutative
ring spectra. In this second case we allow G to be a compact Lie group.

Let us start by discussing the finite group case.
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13.1. Definition. Let C be a big tt-∞-category and let G be a finite group. Con-
sider a commutative algebra object with G-action A ∈ Fun(BG,CAlg(C)). The
∞-category ModA(C) inherits an action of G and for any M ∈ ModA(C) and
g ∈ G, we let g.M ∈ ModA(C) denote the image of M under the isomorphism
g : ModA(C) ≃ ModA(C). Informally, g.M has underlying object given by M but
with module structure given by

A⊗M
g⊗M−−−→ A⊗M → M.

The G-action on A induces a G-action on the lattices of thick, localizing and
smashing ideals of ModA(C). Given a localizing ideal L ⊆ ModA(C), we have

g.L = locid⟨g.M | M ∈ L⟩
and similarly for thick and smashing ideals. We say that L is G-invariant if g.L = L

for all g ∈ G. We write

LocidG(ModA(C)) ThickidG(ModA(C)
c) SmashidG(ModA(C))

for the posets of G-invariant localizing, thick and smashing ideals respectively.

13.2. Definition. Let C be a big tt-∞-category and let G be a finite group. A
faithful G-Galois extension in C is a commutative algebra object with G-action
A ∈ Fun(BG,CAlg(C)) such that:

(a) The natural map 1 → AhG is an equivalence.
(b) The natural map A ⊗ A →

∏
GA is an equivalence (informally given by

a⊗ a′ 7→ (g 7→ a · (ga′))).
(c) A⊗− : C → C is conservative.

13.3. Proposition. Let A be a faithful G-Galois extension in a rigidly-compactly
generated tt-∞-category C. Then A is compact and descendable in C.

Proof. It is dualizable (and hence compact) by [Mat16a, Proposition 6.14] and
descendable by [Mat16a, Theorem 3.38]. □

13.4. Proposition. Let A be a faithful G-Galois extension in a rigidly-compactly
generated tt-∞-category C. Then base change induces an isomorphism of posets

Locid(C) ≃ LocidG(ModA(C))

Thickid(Cc) ≃ ThickidG(ModA(C)
c)

Smashid(C) ≃ SmashidG(ModA(C)).

If the telescope conjecture holds for ModA(C), then it holds for C too.

Proof. This is a consequence of our descent results and the fact that any faithful
G-Galois extension is descendable and compact. Let us expand the argument for lo-
calizing ideals. Since A is Galois, we have a natural identification A⊗A ≃

∏
GA. Un-

winding the definition we see that the two canonical maps ModA(C) ⇒ ModA⊗A(C)
correspond to

ϕ0, ϕ1 : ModA(C) ⇒ Mod∏
G A

(C)

given by

(13.5) ϕ0(M) =
∏
G

M and ϕ1(M) =
∏
g∈G

g.M.
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Therefore we have an equalizer

Locid(C) → Locid(ModA(C)) ⇒ Locid(Mod∏
G A

(C))

induced by the maps ϕ0 and ϕ1 and the usual base change functor. This means that
L ∈ Locid(ModA(C)) is in Locid(C) precisely if

locid⟨ϕ0(M) | M ∈ L⟩ = locid⟨ϕ1(M) | M ∈ L⟩.

This is clearly equivalent to L = locid⟨g.M | g ∈ G M ∈ L⟩, namely to L being
G-invariant. A similar proof gives the claim for thick and smashing ideals. The
final claim on the telescope conjecture follows from Theorem 10.8. □

13.6. Proposition. Let A be a faithful G-Galois extension in a rigidly-compactly
generated tt-∞-category C. The diagram induced by base change

Spc(ModA⊗A(C)
c) ⇒ Spc(ModA(C)

c) → Spc(Cc)

is a coequalizer in the category of topological spaces. Furthermore, there is a canonical
homeomorphism Spc(Cc) ∼= Spc(ModA(C)

c)/G.

Proof. This can be deduced from work of Pauwels on quasi-Galois theory; see [Pau17,
Theorem 9.1]. Here we give a different proof using point-set topology. Under the
identification A⊗A ≃

∏
GA, we can rewrite the above fork as

∐
G Spc(ModA(C)

c) Spc(ModA(C)
c) Spc(Cc)

Spc(ϕ1)

Spc(ϕ0)

φ

where ϕ0 and ϕ1 are as in (13.5). By Theorem 11.17 this fork is a coequalizer
diagram in the category of spectral spaces. We note that the coequalizer in the
category of topological spaces is given by Spc(ModA(C)

c)/G. Therefore we have a
commutative diagram∐

G Spc(ModA(C)
c) Spc(ModA(C)

c) Spc(Cc)

Spc(ModA(C))/G.

Spc(ϕ1)

Spc(ϕ0)

φtop

φ

p

It follows from Proposition 4.10 that the comparison map p is a homeomorphism
provided that Spc(ModA(C)

c)/G is a spectral space and the map φtop is spectral.
This follows from [Far, Example 1.7.2] (see also [Sch17a, Lemma 2.10]). □

13.7. Theorem. Let A be a faithful G-Galois extension in a rigidly-compactly
generated tt-∞-category C. Suppose that ModA(C) is stratified with noetherian
Balmer spectrum. Then C is also stratified with noetherian Balmer spectrum given
by Spc(ModA(C)

c)/G.

Proof. By assumption, the conditions of Corollary 12.14 are satisfied (note that
Spc(ModA⊗A(C)

c) ≃
∐
G Spc(ModA(C)

c) is noetherian). Then, Proposition 13.6
shows that (c) of Theorem 12.12 holds, which is equivalent to C being stratified. □

In fact, we can descend a stronger notion of stratification along a faithful Galois
extension.
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13.8. Definition. We say that a rigidly-compactly generated tt-∞-category is
cohomologically stratified if C is stratified and Balmer’s comparison map [Bal10,

Definition 5.1] ρ : Spc(Cc) → Spech(π∗ HomC(1,1)) is a homeomorphism.

13.9. Remark. Suppose that C is a noetherian tt-category in the sense of [BCH+23,
Definition 2.9]. Then C is cohomologically stratified if and only if C is stratified
by the action of the graded ring End∗C(1) in the sense of Benson, Iyengar, and
Krause [BIK11]; see [BCH+23, Remark 2.20] and [Zou23]. Therefore we always have
implications:

BIK-stratified cohomologically stratified stratified.
+Noether.

13.10. Proposition. Let A be a faithful G-Galois extension in a rigidly-compactly
generated tt-∞-category C. Suppose that ModA(C) is cohomologically stratified. Then
so is C.

Proof. For any X ∈ C we let π∗X := π∗ HomC(1, X). There is a descent spectral se-
quence with E2-term H∗(G;π∗(A)) converging to π∗(1). By [Mat16a, Corollary 4.4]
the descent spectral sequence collapses at a finite stage with a horizontal vanishing
line.

To see that C is cohomologically stratified, consider the edge homomorphism
α : π∗(1) → π∗(A)

G of the descent spectral sequence, whose kernel is a nilpo-
tent ideal [Mat16a, Theorem 4.5]. Because every element in positive filtration of the
descent spectral sequence is of |G|-torsion, we deduce that for every y ∈ π∗(A)

G,
there exists k > 0 such that yk is in the image of α (compare [Mat15a, Lemma 4.9]).
In other words, the map α is an N -isomorphism, and so induces a homeomorphism
α∗ : Spech((π∗(A)

G)) ∼= Spech(π∗(A))/G → Spech(π∗(1)) on Zariski spectra, for
example by the graded version of [MNN19, Proposition 3.24].

By naturality of Balmer’s comparison map we obtain the commutative diagram dis-
played in Figure 1. Here we have used that the homeomorphism Spc(ModA(C)

c) →

Spc(ModA(C)
c)/G

Spc(ModA(C)
c) Spc(Cc)

Spech(π∗A)/G

Spech(π∗A) Spech(π∗(1))

ρ ∼ ρ

∼

α∗

∼

∼

φ

Figure 1. Compatibility of comparison maps

Spech(π∗(A)) is compatible with the G-action, which follows again from naturality

of the comparison map. This diagram shows that ρ : Spc(Cc) → Spech(π∗(1)) is a
homeomorphism, as required. □
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13.11. Example. Let G be a finite group, and letKUG andKOG denote the complex
and real forms of equivariant K-theory, and ModKUG

(SpG) and ModKOG
(SpG)

the corresponding category of modules in the category SpG of G-spectra. The
equivariant complexification map KOG → KUG is a faithful C2-Galois extension
in SpG by [MNN17, Theorem 9.17]. It is shown in [BCH+23, Theorem 8.12] that
ModKUG

(SpG) is stratified with noetherian Balmer spectrum given by Spec(RU(G)),
the Zariski spectrum of the complex representation ring of G. Then Theorem 13.7
applies to show that ModKOG

(SpG) is also stratified with Balmer spectrum given
by Spec(RU(G))/C2

∼= Spec(RU(G)C2). Note that

ρ : Spc(ModKUG
(SpG)

c) → Spech(πG∗ (KUG)) ∼= Spech(RU(G)[β±1])

is a homeomorphism in this case [BCH+23, Remark 2.6 and Lemma 8.11], so descent
for cohomological stratification implies that

ρ : Spc(ModKOG
(SpG)

c) → Spech(πG∗ (KOG))

is also a homeomorphism.

13.12. Example. Let En be Morava E-theory and Gn the Morava stabilizer group.
For any finite subgroup G ⊆ Gn we have a faithful G-Galois extension EhG

n → En
by [HMS17, Proposition 3.6]. Since ModEn is cohomologically stratified by [DS16,
Theorem 1.1], so is ModEhG

n
.

13.13. Remark. In the previous section we discussed faithful G-Galois extensions
in a general big tt-∞-category. We now specialize to faithful G-Galois extensions of
commutative ring spectra following [Rog08].

13.14. Definition. Let G be a topological group having the homotopy type of a
finite CW complex (for example, a compact Lie group) and let B ∈ Fun(BG,CAlgA).
Then A → B is a faithful G-Galois extension if the following hold:

(a) The canonical map A → BhG is an equivalence;
(b) The canonical map h : B ⊗A B → Hom(G+, B) adjoint to

B ⊗A B ⊗G+
B⊗act−−−−→ B ⊗A B

µ−→ B

is an equivalence;
(c) B ⊗A − : ModA → ModA is conservative.

13.15. Remark. Let A → B be a faithful G-Galois extension of commutative ring
spectra. The same argument as in Proposition 13.3 shows that A → B is finite and
descendable.

13.16. Notation. Let G be a compact Lie group. Write Ge for the identity
component of G; it is a normal subgroup with quotient G/Ge = π0G. Note that
π0G is a finite group.

13.17. Lemma. The normal subgroup Ge ⊆ G is allowable in the sense of [Rog08,
Definition 7.2.1].

Proof. We have to verify three conditions:

(a) The collapse map G ×Ge EGe → G/Ge induces a stable equivalence on
suspension spectra;

(b) the projection map G → G/Ge admits a section up to homotopy;



DESCENT IN TENSOR TRIANGULAR GEOMETRY 43

(c) Ge is stably dualizable.

For (a) it is enough to note that G decomposes as a disjoint union of orbits of Ge so
the collapse map is an equivalence even before passing to spectra. To construct the
section in (b), it suffices to pick a point in each connected component of G. The
resulting map π0G → G splits the projection up to homotopy. Finally, condition (c)
follows from [Rog08, Example 3.4.2]. □

13.18. Lemma. Suppose f : A → B is a faithful G-Galois extension of commutative
ring spectra. Then f is a composite of faithful Galois extensions

A
π0G−−−→ BhGe

Ge−−→ B

where the label of the arrow indicates the corresponding Galois group.

Proof. This follows from Rognes’ forward Galois correspondence [Rog08, Theo-
rem 7.2.3] applied to K = Ge, which is an allowable normal subgroup of G by
Lemma 13.17. □

13.19. Proposition. Let H be a compact Lie group which is connected. If f : A → B
is a faithful H-Galois extension of commutative ring spectra, then induction along f
induces a homeomorphism

Spc(ModcA)
∼−→ Spc(ModcB).

Proof. Recall from Remark 13.15 that f : A → B is finite and descendable. Therefore
by Theorem 11.17, we have a coequalizer diagram of spectral spaces

Spc(ModcB⊗AB) Spc(ModcB) Spc(ModcA)

where the two parallel arrows are induced by the two maps B ⇒ B ⊗A B given by
the left and right unit, informally sending b to b⊗ 1 and 1⊗ b, respectively. These
maps are split by the multiplication map B⊗AB → B so we get an induced injective
map Spc(ModcB) → Spc(ModcB⊗AB) splitting Spc(ModcB⊗AB) ⇒ Spc(ModcB). We
now claim that Spc(ModcB) → Spc(ModcB⊗AB) is a surjective map. This is because
the multiplication map can be identified with the map

B ⊗A B ≃ Hom(H+, B) → B

induced by {e} → H. Since up to homotopy H is a connected finite CW com-
plex, this map is descendable by [Mat16a, Proposition 3.36]. Combining [Mat16a,
Proposition 3.27] with [Bal18, Theorem 1.3], we conclude that Spc(ModcB) →
Spc(ModcB⊗AB) is surjective. It now follows that Spc(ModcB) → Spc(ModcB⊗AB)
is bijective and the two maps Spc(ModcB⊗AB) ⇒ Spc(ModcB) are inverses to it.
In particular, the two parallel arrows agree in the category of sets. Thus, the
topological coequalizer of Spc(ModcB⊗AB) ⇒ Spc(ModcB) can be identified with
Spc(ModcB), which is a spectral space. It follows from Proposition 4.10 that
the spectral and topological coequalizers must agree, giving us the equivalence
Spc(ModcA)

∼= Spc(ModcB). □

13.20. Remark. The argument of the previous proposition shows that the diagram

Spc(ModcB⊗AB) Spc(ModcB) Spc(ModcA)

is a coequalizer in topological spaces.
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13.21. Corollary. Let H be a compact Lie group which is connected and let A → B
be a faithful H-Galois extension of commutative ring spectra. If ModB is stratified
with Spc(ModcB) noetherian, then so is ModA.

Proof. Combine Corollary 12.14 with Remark 13.20. □

13.22. Theorem. Let A → B be a faithful G-Galois extension of commutative ring
spectra where G is a compact Lie group. If ModB is stratified with Spc(ModcB)
noetherian, then so is ModA.

Proof. By Lemma 13.18, we can split the problem into faithful Galois descent for a
finite group and for a connected group. The result thus follows from Theorem 13.7
and Corollary 13.21. □

References

[Aok23] Ko Aoki, The sheaves-spectrum adjunction, arXiv e-prints (February 2023),

arXiv:2302.04069, available at 2302.04069.

[Bal05] Paul Balmer, The spectrum of prime ideals in tensor triangulated categories, J. Reine
Angew. Math. 588 (2005), 149–168. MR2196732

[Bal07] , Supports and filtrations in algebraic geometry and modular representation
theory, Amer. J. Math. 129 (2007), no. 5, 1227–1250. MR2354319

[Bal10] , Spectra, spectra, spectra—tensor triangular spectra versus Zariski spectra of

endomorphism rings, Algebr. Geom. Topol. 10 (2010), no. 3, 1521–1563. MR2661535
[Bal11] , Separability and triangulated categories, Adv. Math. 226 (2011), no. 5, 4352–

4372. MR2770453

[Bal16] , Separable extensions in tensor-triangular geometry and generalized Quillen
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