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Abstract. We study the derived category of pseudo-coherent complexes over
a noetherian commutative ring, building on prior work by Matsui–Takahashi.
Our main theorem is a computation of the Balmer spectrum of this category

in the case of a discrete valuation ring. We prove that it coincides with
the spectral space associated to a bounded distributive lattice of asymptotic

equivalence classes of monotonic sequences of natural numbers. The proof
of this theorem involves an extensive study of generation behaviour in the
derived category of pseudo-coherent complexes. We find that different types of

generation are related to different asymptotic boundedness conditions on the
growth of torsion in homology. Consequently, we introduce certain distributive
lattices of (equivalence classes of) monotonic sequences where the partial orders

are defined by different notions of asymptotic boundedness. These lattices,
and the spectral spaces corresponding to them via Stone duality, may be of
independent interest. The complexity of these spectral spaces shows that, even

in the simplest nontrivial case, the spectrum of pseudo-coherent complexes
is vastly more complicated than the spectrum of perfect complexes. From a
broader perspective, these results demonstrate that the spectrum of a rigid

tensor-triangulated category can expand tremendously when we pass to a
(non-rigid) tensor-triangulated category which contains it.
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1. Introduction

A foundational result in tensor triangular geometry is the fact that a quasi-
compact and quasi-separated scheme X can be recovered as the Balmer spectrum
of its derived category of perfect complexes:

(1.1) Spc(Dperf(X)) ∼= X.

In particular, applied to an affine scheme X = Spec(R), the Balmer spectrum
recovers the usual Zariski spectrum: Spc(Dperf(R)) ∼= Spec(R).

Perfect complexes are precisely the dualizable objects of the larger tensor-
triangulated category Dqc(X) of complexes of OX -modules with quasi-coherent
cohomology. However, there is another essentially small tensor-triangulated category
which sits between them: the derived category of pseudo-coherent complexes Dps(X).
We have inclusions of tensor-triangulated categories

Dperf(X) ↪→ Dps(X) ↪→ Dqc(X).

Applying the Balmer spectrum to this new category, we obtain a locally ringed
space Spc(Dps(X)) and a surjective morphism

(1.2) Spc(Dps(X))� Spc(Dperf(X)) ∼= X.

It is natural to attempt to understand the space Spc(Dps(X)) and its relationship
with the original scheme X.

In this paper we will focus on X = Spec(R) for R a commutative noetherian

ring. In this case, Dps(R) ∼= Dfg
+(R) is simply the derived category of bounded

below complexes of finitely generated R-modules, and the surjective morphism (1.2)
coincides with Balmer’s comparison map

(1.3) ρ : Spc(Dps(R))→ Spec(R).

This has been studied in the work of Matsui and Takahashi [MT17]. They prove,
among other things, that the map ρ is a bijection if and only if Spec(R) is discrete
(i.e. R is artinian). Thus, naive dreams that (1.2) could have some familiar algebro-
geometric interpretation are not long-lasting.

Our primary goal in this paper is to give an in-depth study of the simplest
nontrivial case — that of a discrete valuation ring. This was also considered
by Matsui–Takahashi, but we will go further (and also correct an error in their
discussion). Our main theorem is a complete computation of Spc(Dps(R)) in this
particular case. In order to state our theorem, we first need to discuss the asymptotic
behaviour of sequences of natural numbers.

∗ ∗ ∗

Given two monotonic sequences f, g : N → N, we say that f is asymptotically
bounded by g, denoted f ≤ g, if there exists a constant A such that

f(n) ≤ Ag(n) for n� 0.

This defines a pre-order on the set of all monotonic sequences MSeq. This pre-order
induces an equivalence relation defined by f ∼ g if f ≤ g and g ≤ f . Moreover, the
set of equivalence classes ASeq := MSeq/∼ inherits a partial order from ≤. If we
formally adjoin a top element, we obtain a bounded distributive lattice ASeq+. It
corresponds, via Stone duality, to a spectral space Spec(ASeq+).
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We will also need two weaker notions of asymptotic boundedness. Consider the
scaling operators σ and µ defined by (σf)(n) := f(n + 1) and (µf)(n) := f(2n).
Then define:

• f ≤σ g if f ≤ σkg for some k ≥ 1.
• f ≤µ g if f ≤ µkg for some k ≥ 1.

These also define pre-orders on the set of monotonic sequences and in the same
fashion we obtain lattices of “σ-equivalence classes” and “µ-equivalence classes” of
monotonic sequences. These lattices are quotients of each other:

ASeq� ASeq/σ � ASeq/µ.

In particular, (ASeq/µ)+ =
{

[f ]µ
∣∣ f : N → N monotonic

}
t {∞} is the bounded

distributive lattice of µ-equivalence classes of monotonic sequences. Our main
theorem (Corollary 11.2) is:

1.4. Theorem. Let R be a discrete valuation ring. We have an isomorphism

Spc(Dps(R)) ∼= Spec((ASeq/µ)+)∨

where (−)∨ denotes the Hochster dual.

The connection between asymptotic sequences and pseudo-coherent complexes
arises from the asymptotic growth of torsion in homology. For any R-module M of
finite length, define

``(M) := min{n ∈ N | mnM = 0}
where m = (x) denotes the unique maximal ideal of R. It is the maximum i such
that R/xi is a direct summand of M . It is also the Loewy length of M , which
explains the notation. The largest proper thick ideal of Dps(R) is given by the
pseudo-coherent complexes whose homology modules are all of finite length:

Dfl
+(R) ⊆ Dfg

+(R) = Dps(R).

For a complex E ∈ Dfl
+(R), we may define ``E : N→ N by

``E(n) := ``(Hn(E))

for each n ∈ N.1 For example, given a sequence f : N→ N, we have ``R/xf = f for
the complex

R/xf :=
⊕
n∈N

R/xf(n)[n]

with zero differentials. We establish the following as Theorem 10.18:

1.5. Theorem. Let f be a nonzero monotonic sequence. The radical thick ideal
generated by R/xf is given by√

〈R/xf 〉 =
{
E ∈ Dfl

+(R)
∣∣ ``E ≤µ f }.

The proof of this theorem is quite involved and is the culmination of a series of
tools developed in Sections 8–10. The result simplifies in certain cases:

1In the main body of the paper we will use a variant definition in which ``E(0) is the Loewy
length of the first nonzero homology module of E, rather than of H0(E). This difference does not
affect the statements of the theorems in the Introduction; see Remark 8.22.
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1.6. Theorem. Let f be a nonzero monotonic sequence. The thick ideal 〈R/xf 〉 is
radical if and only if f is µ-stable, meaning that µf ≤ f . In this case, we have

〈R/xf 〉 =
{
E ∈ Dfl

+(R)
∣∣ ``E ≤ f }.

For example, f(n) := n2 is µ-stable while f(n) := 2n is not. In any case, we
establish in Corollary 10.19 that every principal radical ideal is generated by a
complex of the form R/xf for some monotonic sequence f and it follows from
Theorem 1.5 that R/xf and R/xg generate the same radical ideal if and only
if f and g are µ-equivalent, that is, [f ]µ = [g]µ in ASeq/µ. Moreover, Kock and
Pitsch [KP17] showed that the Balmer spectrum Spc(K) of a tensor-triangulated
category K is the Hochster dual of the spectral space corresponding to the bounded
distributive lattice PRad(K) of principal radical ideals of K. This leads to:

1.7. Theorem. Let R be a discrete valuation ring. We have an isomorphism of
bounded distributive lattices

(ASeq/µ)+
∼−→ PRad(Dps(R))

given by [f ]µ 7→
√
〈R/xf 〉 and ∞ 7→ Dps(R) =

√
〈R〉.

This is Theorem 11.1 and provides Theorem 1.4 as an immediate corollary.
According to the isomorphism of Theorem 1.7, the prime ideals of Dps(R) that are
finitely generated (as thick ideals or, equivalently, as radical thick ideals) correspond
to the µ-equivalence classes [f ]µ which are prime elements of the lattice (ASeq/µ)+.
For example, the constant zero sequence [0]µ and the class of bounded sequences [1]µ
are prime elements. In summary:

1.8. Theorem. Let R be a discrete valuation ring. The spectrum Spc(Dps(R)) is a
local irreducible space. The closed point is the zero ideal (0) and the generic point

is Dfl
+(R). Moreover, the ideal generated by the module R/x is prime and given by

〈R/x〉 =
{
E ∈ Dfl

+(R)
∣∣ ``(Hn(E)) is bounded

}
.

It is the smallest nonzero prime ideal.

The lattice ASeq/µ of µ-equivalence classes of monotonic sequences is extremely
intricate. To gain more explicit information, we can look for a simpler sublat-
tice L ⊂ ASeq/µ and study the surjective morphism

Spec((ASeq/µ)+)∨ � Spec(L+)∨.

For example, sitting inside ASeq/µ is a totally ordered sublattice PSeq ⊂ ASeq/µ
consisting of the (µ-equivalence classes of) power functions fα(n) := bnαc for
each α ∈ R≥0. The spectrum of this totally ordered lattice can be explicitly described
(Remark 12.10) and we obtain a factorization of the comparison map (1.3):

(1.9)

Spc(Dps(R)) Spec(PSeq+)∨ Spec(R)

•

•
•

•

•
•

•

•
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This shows that there is at least a continuum of prime ideals in Dps(R), but we
have only explicitly described three of them, as in Theorem 1.8 above. In fact, we
will prove (Theorem 13.9):

1.10. Theorem. Let f be an unbounded monotonic sequence. Its µ-equivalence
class [f ]µ is not a prime element in (ASeq/µ)+.

To prove that an arbitrary unbounded sequence is not prime is a difficult task,
which demands the construction of some bizzare monotonic sequences, detailed
in Section 13.

1.11. Corollary. There are at least 2ℵ0 prime ideals in Dps(R) but only two of these
prime ideals are finitely generated.

This frustrates attempts to give simple explicit descriptions of the prime ideals
in the cyan region of (1.9). It also establishes:

1.12. Corollary. For any d ≥ 1, the thick ideal{
E ∈ Dfl

+(R)
∣∣ ``(Hn(E)) is asymptotically bounded by the polynomial nd

}
is not prime.

We single this out because it contradicts [MT17, Theorem F]. Only two of the
thick ideals claimed to be prime in that theorem are actually prime. We explain the
error in Remark 13.12. Nevertheless, it was Matsui and Takahashi’s very interesting
paper which inspired our interest in these questions, and our work most certainly
depends on, and builds upon, their work.

∗ ∗ ∗
We also give a treatment of Spc(Dps(R)) for a general commutative noetherian ring,
again building on the work of [MT17]. A key construction is a splitting

τ : Spec(R) ↪→ Spc(Dps(R))

of the comparison map (1.3). The primes τ(p) in the image of this map are the tame
primes of Dps(R). In general, Matsui–Takahashi proved that each fiber ρ−1({p})
is irreducible with the tame prime τ(p) serving as the generic point. In Sections 5
and 6, we prove various general results about tame primes from a tensor-triangular
perspective and consider how Spc(Dps(R)) behaves when we vary the ring. Among
other results, we prove that the functor Dps(R) → Dps(Rp) is a Verdier quotient
(Proposition 6.18). It follows that Dps(Rp) is the local category of Dps(R) at the
tame prime τ(p):

Dps(R)/τ(p) ∼= Dps(Rp).

We also explain how the difficulty in understanding Dps(R) compared with Dperf(R)
is that Dps(R) does not interact well with algebraic localization and that an analogue
of the Neeman–Thomason theorem for Dperf(R) fails strongly for Dps(R). Ultimately,
we hope that our geometric exposition of these ideas will provide a strong foundation
for future studies of the tensor triangular geometry of pseudo-coherent complexes.

From a broader perspective, Dps(R) is a prototypical example of a tensor-
triangulated category which is not rigid, meaning that not all of its objects are
dualizable. It is for this reason that we must distinguish between the thick ideal 〈E〉
and the radical thick ideal

√
〈E〉 generated by an object E ∈ Dps(R). Our ex-

ample is particularly interesting because we find that the difference between 〈E〉
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and
√
〈E〉 amounts to the difference between the asymptotic bound f ≤σ g and

the weaker asymptotic bound f ≤µ g. Our results also demonstrate that passing
from the rigid tensor-triangulated category Dperf(R) to the slightly larger non-rigid
tensor-triangulated category Dps(R) enlarges the spectrum to an extreme degree.

Outline of the paper: We briefly review Stone duality in Section 2 and then
introduce several bounded distributive lattices of asymptotic equivalence classes of
monotonic sequences in Section 3. To our knowledge, these lattices — and their
associated spectral spaces — have not been considered in the literature, and may
be of independent interest. In Section 4 we turn to commutative algebra and recall
the basics concerning the derived category of pseudo-coherent complexes over a
commutative noetherian ring. We study its Balmer spectrum in Section 5 and
state several results obtained by Matsui–Takahashi [MT17] from a slightly different
perspective. In Section 6 we study the behaviour of Spc(Dps(R)) as we vary the
ring R. In particular, we consider the case of closed immersions (Corollary 6.5)
and localizations (Proposition 6.18). These results require a general tt-geometric
surjectivity theorem (Proposition 6.3) which may be of independent interest.

Sections 7–13 are devoted to the case of a discrete valuation ring. In Section 7
we consider the basic features of Dps(R) in this case, and introduce some con-
structions necessary to understand generation behaviour in this category, including
the complex R/xf associated to a sequence of natural numbers f and the Loewy
sequence ``E of a complex E (Definition 7.17). Then in Section 8 we develop meth-
ods to control the complexes lying in the thick ideal generated by R/xf . We find
that they are those complexes whose Loewy sequence is asymptotically σ-bounded
by f ; see Theorem 8.21 and Corollary 8.27. The full story, however, is subtle and
requires studying the notion of an “explodable complex” introduced in Section 9;
see Theorem 9.11. By studying such complexes and relating them to the notions of
σ-stability and µ-stability from Section 3, we are able to answer certain questions
raised in [MT17]. In particular, we show that two conditions considered in their
work, which we dub (MT1) and (MT2), are actually equivalent for a complex R/xf ;
in fact they are both equivalent to µ-stability. See Theorem 9.25 and Corollary 9.26.
This provides a negative answer to [MT17, Question 7.4]; see Example 9.20.

In Section 10 we study convolutions as a way to get a closer understanding
of radical ideals in Dps(R). A key insight is that pseudo-coherent complexes are
“explodable up to tensor-powers”; see Proposition 10.15. This leads to Theorem 10.18
which describes the radical ideal generated by R/xf . Armed with the above, we prove
our main result Theorem 11.1 in Section 11. In Section 12 we study the complexity of
the lattice of µ-equivalence classes of monotonic sequences and introduce the totally
orered sublattice of “power sequences”, also known as “exponential polynomial
functions”. We describe the spectral space associated to this totally ordered lattice
and use this to gain information about Spc(Dps(R)). Finally, in Section 13 we
provide some technical constructions which prove that the lattice of µ-equivalence
classes of asymptotic sequences has only two prime elements (Theorem 13.9). In
particular, Dps(R) has only two finitely generated prime ideals (Corollary 13.11 and
Corollary 13.13). This also proves that a claim made in [MT17] concerning the
prime ideals in Spc(Dps(R)) is false. We explain the error in Remark 13.12.



THE BALMER SPECTRUM OF PSEUDO-COHERENT COMPLEXES 7

2. Lattices and Stone duality

We begin with a review of Stone duality for bounded distributive lattices. We do
not give an exhaustive treatment and rather direct the reader to [Joh82], [DST19,
Chapter 3] or the summary in [BCH+24, Section 3] for further details.

2.1. Definition. A partially ordered set (A,≤) is a lattice if every two element subset
{a, b} ⊆ A admits a join (or least upper bound) a ∨ b and a meet (or greatest
lower bound) a ∧ b. A morphism of lattices f : A → B is a function satisfying
f(a ∨ b) = f(a) ∨ f(b) and f(a ∧ b) = f(a) ∧ f(b) for all a, b ∈ A. A morphism of
lattices is order-preserving (since a ≤ b if and only if a ∨ b = b) but the converse is
not true; see [BCH+24, Remark 3.3]. In other words, the category of lattices Lat is
a non-full subcategory of the category of partially ordered sets Pos.

2.2. Remark. If f : A → B is a bijective lattice morphism, then f−1 : B → A is
also a lattice morphism. It follows that the forgetful functors Lat → Pos → Set
reflect isomorphisms. In particular, an isomorphism of lattices is the same thing as
a bijective morphism of lattices and this is the same thing as an order-isomorphism
of partially ordered sets (i.e. a bijection satisfying a ≤ b if and only if f(a) ≤ f(b)).

2.3. Definition. A lattice is bounded if it contains a least element 0 and a greatest
element 1. A morphism of bounded lattices f : A→ B is morphism of lattices which
also satisfies f(0) = 0 and f(1) = 1. The bounded lattices thus form a non-full
subcategory BLat ⊂ Lat of the category of all lattices.

2.4. Definition. A lattice (A,≤) is said to be distributive if

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
for all a, b, c ∈ A. There are a number of equivalent characterizations; see [Grä78,
Lemma 10]. The bounded distributive lattices form a full subcategory BDLat ⊂ BLat
of the category of bounded lattices.

2.5. Example. The non-negative natural numbers N := N≥0 with its natural ordering
is a distributive lattice in which a ∧ b = min(a, b) and a ∨ b = max(a, b).

2.6. Remark. The functors BDLat→ BLat→ Lat evidently reflect isomorphisms. In
particular, a morphism of bounded distributive lattices is an isomorphism if and
only if it is bijective.

2.7. Definition. An ideal of a bounded distributive lattice (A,≤) is a nonempty
subset I ⊆ A such that

(a) if a ∈ I and b ∈ A satisfy b ≤ a, then b ∈ I;
(b) for all a, b ∈ I, we have a ∨ b ∈ I.

Moreover I is prime if in addition it is a proper subset of A and satisfies

(c) if a ∧ b ∈ I then either a ∈ I or b ∈ I.

2.8. Example. Let A be a bounded distributive lattice. For each element a ∈ A, we
have the principal ideal a↓ :=

{
b ∈ A

∣∣ b ≤ a}. It is a prime ideal if and only if the
element a is prime: a 6= 1 and b ∧ c ≤ a implies b ≤ a or c ≤ a.

2.9. Definition. A topological space is a spectral space if it is quasi-compact, the
quasi-compact open subsets are closed under finite intersection and form a basis
for the topology, and every irreducible closed subset admits a unique generic point;
see [DST19]. A spectral map of spectral spaces is a continuous function f : X → Y
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with the property that the preimage of any quasi-compact open subset is again
quasi-compact. We denote the category of spectral spaces and spectral maps by Spec.

2.10. Example. Let Spec(A) denote the set of prime ideals of a bounded distributive
lattice A. The sets U(a) :=

{
P ∈ Spec(A)

∣∣ a 6∈ P
}

for each a ∈ A are the
quasi-compact open sets for a spectral topology on Spec(A). Endowed with this
topology, the spectral space Spec(A) is called the spectrum of A. Moreover, for a
morphism f : A → B of bounded distributive lattices, we have an induced map
Spec(f) : Spec(B)→ Spec(A) which sends a prime ideal P to its preimage f−1(P )
and which evidently satisfies Spec(f)−1(U(a)) = U(f(a)) for each a ∈ A. We thus
obtain a contravariant functor Spec : BDLatop → Spec.

2.11. Remark. Stone duality establishes an anti-equivalence between the category of
bounded distributive lattices and the category of spectral spaces. More precisely,
there is an adjoint equivalence of categories

Ω : Spec� BDLatop : Spec

where the functor Ω sends a spectral space X to the bounded distributive lattice Ω(X)
consisting of its quasi-compact open subsets ordered by inclusion.

2.12. Remark. Let p and q be points in a spectral space X. We write p  q and
say that q is a specialization of p (and that p is a generalization of q) if q ∈ {p}.
Thus, {p} is the set of specializations of p and gen(p) :=

{
q
∣∣ p ∈ {q}} is the set

of generalizations of p. For the spectrum X = Spec(A) of a bounded distributive
lattice, p q is equivalent to an inclusion of prime ideals p ⊆ q. In particular, the
closed points are the maximal ideals of the lattice A; see [Joh82, 2.4].

2.13. Remark (Hochster duality). By definition, the quasi-compact open sets form a
basis for the topology of a spectral space X. The complements of the quasi-compact
open sets are called the Thomason closed sets and form a basis for another spectral
topology on X called the Hochster dual topology.2 We write X∨ for the set X
equipped with the Hochster dual topology. The open sets of X∨ — that is, the
arbitrary unions of Thomason closed sets — are the so-called Thomason sets of X.
One can readily check that X∨∨ = X. This construction is far more transparent
in the category of bounded distributive lattices. Under Stone duality, taking the
Hochster dual amounts to replacing the order of a bounded distributive lattice
(A,≤) with its opposite order (A,≤op).

2.14. Example. Let K be an essentially small tensor-triangulated category. The
collection of principal radical thick tensor ideals

√
〈a〉 forms a bounded distributive

lattice PRad(K) under inclusion. The join and meet are given by the direct sum
and tensor product of generating objects, respectively. As explained in [KP17],
the Balmer spectrum of K is the Hochster dual of the associated spectral space:
Spc(K) ∼= Spec(PRad(K))∨.

2.15. Remark. We have p q in X if and only if q p in X∨. In other words, X
and X∨ have the opposite specialization orders. In particular, the closed points
of X are the generic points of X∨ and vice versa.

2The Hochster dual topology is called the “inverse topology” in [DST19]. Our terminology
refers to [Hoc69] and [Tho97].
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2.16. Remark. The topology of a spectral space X is completely determined by its
specialization order together with its associated constructible topology ; see [DST19,
Section 1.5] for details. We suffice ourselves with recalling that the so-called
constructible sets are the subsets which are both closed and open for the constructible
topology, and the quasi-compact open sets are precisely the constructible sets which
are generalization closed. (Equivalently, the Thomason closed sets are precisely the
constructible sets which are specialization closed.)

2.17. Example. Let (A,≤) be a bounded totally ordered set. Then (A,≤) is a
bounded distributive lattice with a ∨ b = max{a, b} and a ∧ b = min{a, b}. Its
spectrum Spec(A) is described in detail in [DST19, Section 3.6]. The prime ideals
coincide with the proper nonempty down-sets. For each a ∈ A we have an associated
quasi-compact open set U(a) =

{
P ∈ Spec(L)

∣∣P ∩ a↑ = ∅
}

and Thomason closed

set V (a) =
{
P ∈ Spec(L)

∣∣ a↓ ⊆ P
}

. These are all the quasi-compact open sets
and Thomason closed sets. In particular, the constructible sets are the finite unions
of sets of the form V (a) ∩ U(b).

In our applications, we will naturally come across lattices which have a least
element but not a greatest element.

2.18. Construction. Let A be a lattice which has a least element 0. We define
A+ := A t {∞} and extend the partial order in the unique way so that ∞ is the
greatest element. Then A+ is a bounded lattice. Moreover, if A is distributive
then A+ will be a bounded distributive lattice. This construction provides a left
adjoint to the forgetful functor BDLat→ DLat0 where DLat0 denotes the category
of distributive lattices which have least elements 0 and lattice morphisms which
preserve them.

2.19. Notation. When notationally convenient, we will write Spec+(A) := Spec(A+).

2.20. Example. The lattice N := N≥0 has no greatest element but we can consider
Spec+(N). According to Example 2.17, the prime ideals are

Spec+(N) = [0] [0, 1] [0, 2] [0, 3] · · · N

with N the unique closed point and [0] the unique generic point. Note that the prime
ideal N is not principal, but all other prime ideals are principal and all elements of N
are prime. The homotopy theorist may recognize that it is homeomorphic to the
Balmer spectrum of the p-local stable homotopy category: Spec+(N) ∼= Spc(SHc

(p)).

We now turn to monomorphisms and epimorphisms.

2.21. Remark. An equivalence relation ∼ on a lattice (A,≤) is a congruence relation
if a0 ∼ b0 and a1 ∼ b1 implies a0 ∨ a1 ∼ b0 ∨ b1 and a0 ∧ a1 ∼ b0 ∧ b1. The set of
equivalence classes A/∼ then inherits the structure of a lattice and the quotient
map A→ A/∼ is a surjective lattice morphism. Moreover, every surjective lattice
morphism arises in this way from a congruence relation. See [Grä78, pp. 20–22] for
further details. We will call the lattice A/∼ a quotient lattice of A. It is immediate
that if A is (bounded) distributive then A/∼ is also (bounded) distributive.

2.22. Remark. Since BDLat is an algebraic category (in the sense that it is monadic
over Set) surjective morphisms are the same thing as regular epimorphisms (i.e. co-
equalizers) and these are the same as the extremal epimorphisms. Thus if A→ B is
a surjective morphism in BDLat then the corresponding spectral map Spec(B)→



10 BEREN SANDERS AND YUFEI ZHANG

Spec(A) is a regular monomorphism (equivalently, an extremal monomorphism)
in Spec and hence is a topological embedding; cf. [DST19, Theorem 5.4.3]. In other
words, a quotient A→ A/∼ of a bounded distributive lattice induces a topological
embedding Spec(A/∼) ↪→ Spec(A).

2.23. Remark. On the other hand, A→ B is an epimorphism in BDLat if and only if
Spec(B)→ Spec(A) is a monomorphism of spectral spaces which is the same thing
as being an injective spectral map. Finally, A→ B is a monomorphism in BDLat if
and only if A→ B is injective if and only if Spec(B)→ Spec(A) is surjective if and
only if Spec(B)→ Spec(A) is an epimorphism of spectral spaces.

2.24. Example. If A is a distributive lattice with a least element 0 and B ⊂ A is a
sublattice containing 0 then B+ ↪→ A+ is a monomorphism of bounded distributive
lattices and Spec+(A)→ Spec+(B) is a surjective spectral map.

The following observation will be used several times in the next section.

2.25. Remark. Let (X,≤) be a pre-ordered set, i.e. a set equipped with a reflexive
and transitive relation. There is an induced equivalence relation on X defined by
a ∼ b if a ≤ b and b ≤ a. Moreover, the set of equivalence classes X/∼ inherits a
partial order given by [a] ≤ [b] if a ≤ b. In this way, every pre-ordered set (X,≤)
gives rise to a partially ordered set (X/∼,≤). Indeed, this construction provides a
left adjoint to the fully faithful inclusion of partially ordered sets in the category of
pre-ordered sets.

3. Spectral spaces of asymptotic sequences

We now introduce some distributive lattices arising from the asymptotic growth
behaviour of sequences of natural numbers.

3.1. Notation. Let N := N≥0 denote the set of natural numbers.

3.2. Definition. A function f : N→ N is monotonic if f(n) ≤ f(n+ 1) for all n ∈ N.

3.3. Terminology. A monotonic sequence is a monotonic function N→ N.

3.4. Example. An arbitrary function f : N→ N gives rise to a monotonic sequence f̂
given by

f̂(n) := max
0≤i≤n

f(i).

Note that f is monotonic if and only if f = f̂ .

3.5. Remark. The collection of all monotonic sequences MSeq is a distributive lattice
with the pointwise ordering inherited from the target lattice N (Example 2.5). It
has a least element, the constant function 0, but does not have a greatest element.
The join and meet are given pointwise.

3.6. Definition. We define a relation on the set of monotonic sequences by writing
f ≤ g if there exists a constant A and an n0 ∈ N such that f(n) ≤ Ag(n) for all
n ≥ n0. Note that this is saying f = O(g) in “big-Oh” notation [Har52, §89]. We
say that f is asymptotically bounded by g.

3.7. Remark. Being reflexive and transitive, ≤ is a pre-order on the set of monotonic
sequences. It thus induces an equivalence relation defined by f ∼ g if f ≤ g and
g ≤ f (cf. Remark 2.25). In this case, we say f and g are asymptotically equivalent.
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3.8. Definition. Let ASeq := MSeq/∼ denote the set of asymptotic equivalence
classes of monotonic sequences. It inherits a well-defined partial order given by
[f ] ≤ [g] if f ≤ g.

3.9. Terminology. The elements of ASeq are the asymptotic monotonic sequences.
Although an asymptotic monotonic sequence is really an asymptotic equivalence
class of monotonic sequences, we will often abuse notation and simple write f for
the equivalence class [f ] ∈ ASeq. In such circumstances, the constructions and
definitions given do not depend on the choice of representative.

3.10. Proposition. The asymptotic monotonic sequences (ASeq,≤) form a distribu-
tive lattice which has a least element given by the constant sequence 0.

Proof. One readily checks that the equivalence relation ∼ on MSeq is a congruence
relation (Remark 2.21) for the pointwise lattice structure of Remark 3.5. In other
words, the map MSeq → ASeq is a surjective lattice homomorphism. Hence, the
distributivity of MSeq implies the distributivity of ASeq. �

3.11. Remark. We can thus consider the bounded distributive lattice ASeq+ obtained
by adjoining a top element (Construction 2.18). There is an associated spectral
space Spec+(ASeq) := Spec(ASeq+) by Stone duality.

3.12. Notation. We write n for the constant monotonic sequence with value n.

3.13. Example. A monotonic sequence f satisfies [f ] = [0] in ASeq if and only if
f = 0 pointwise. As already mentioned, [0] is the bottom element of ASeq.

3.14. Example. A monotonic sequence f is a bounded sequence if there is a constant A
such that f(n) ≤ A for all n ∈ N. All nonzero bounded sequences are asymptotically
equivalent and provide a single asymptotic monotonic sequence [1] ∈ ASeq. In fact,
the class [1] of nonzero bounded sequences is bounded by all nonzero asymptotic
monotonic sequences: [1] ≤ [f ] for all [f ] 6= 0.

3.15. Example. Let f(n) =
∑k
i=0 ain

i and g(n) =
∑l
i=0 bin

i be nonzero polynomials
with nonnegative integer coefficients. Then f ≤ g if and only if deg(f) ≤ deg(g). In
particular, f and g are asymptotically equivalent if and only if deg(f) = deg(g). For
each d ≥ 1 we have the unbounded asymptotic monotonic sequence [n 7→ nd] ∈ ASeq.

3.16. Example. The monotonic sequences f(n) = 222n+(−1)n

and g(n) = 222n

are not
comparable, meaning f 6≤ g and g 6≤ f . This readily follows from the observation
that

f(n) =

{√
g(n) if n is odd

(g(n))2 if n is even.

This example shows that the lattice ASeq is not totally ordered.

Our next goal is to introduce certain quotients of the lattice of asymptotic
monotonic sequences.

3.17. Definition. Let f be a monotonic sequence. We define monotonic sequences
σf and µf by setting (σf)(n) := f(n+ 1) and (µf)(n) := f(2n) for each n ∈ N.

3.18. Remark. It is immediate from the definitions that σ and µ both define lattice
endomorphisms of the lattice MSeq of monotonic sequences. It is also immediate from
the definitions that [f ] 7→ [σf ] and [f ] 7→ [µf ] are well-defined lattice endomorphisms
of the lattice ASeq of asymptotic monotonic sequences.
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3.19. Definition. We define two pre-orders ≤σ and ≤µ on MSeq as follows:

(a) f ≤σ g if f ≤ σkg for some positive integer k, and
(b) f ≤µ g if f ≤ µkg for some positive integer k.

We also consider the induced equivalence relations (Remark 2.25) defined by:

(a) f is σ-equivalent to g, denoted f ∼σ g, if f ≤σ g and g ≤σ f , and
(b) f is µ-equivalent to g, denoted f ∼µ g, if f ≤µ g and g ≤µ f .

3.20. Remark. Note that f ≤ σf ≤ µf . Hence f ≤ g ⇒ f ≤σ g ⇒ f ≤µ g and
f ∼ g ⇒ f ∼σ g ⇒ f ∼µ g. These observations imply that the relations f ∼σ g
and f ∼µ g only depend on the asymptotic equivalence classes of f and g, and
similarly for the relations f ≤σ g and f ≤µ g. In other words, we have well-defined
pre-orders on ASeq given by [f ] ≤σ [g] if f ≤σ g and [f ] ≤µ [g] if f ≤µ g. Moreover,
the equivalence relations ∼σ and ∼µ on MSeq induce equivalence relations on ASeq
which coincide with those induced by these pre-orders.

3.21. Notation. We write

ASeq/σ := ASeq/∼σ = MSeq/∼σ and ASeq/µ := ASeq/∼µ = MSeq/∼µ

for the set of σ-equivalence classes (respectively, µ-equivalence classes) of asymptotic
sequences.

3.22. Remark. It readily follows from Remark 3.18 that the equivalence relations ∼σ
and ∼µ are congruence relations on MSeq with respect to the pointwise ordering
(Remark 3.5). This implies that each of the surjective maps in

MSeq� ASeq� ASeq/σ � ASeq/µ

are lattice morphisms. In particular, each of these lattices is a distributive lattice
with least element (Remark 2.21).

3.23. Remark. From this point on, we will mostly be working in ASeq rather than
in MSeq bearing in mind Terminology 3.9. We emphasize that f ≤ g refers to the
asymptotic ordering of Definition 3.6. If we wish to indicate that two monotonic
sequences satisfy f(n) ≤ g(n) for all n ∈ N we will say that “f ≤ g pointwise”.
As explained above, we have well-defined pre-orders ≤σ and ≤µ on ASeq and the
quotient lattices ASeq/σ and ASeq/µ coincide with the induced partially ordered
sets as in Remark 2.25.

3.24. Example. The monotonic sequences f(n) = 2n and g(n) = 4n are µ-equivalent
but not σ-equivalent.

3.25. Example. The monotonic sequences f(n) = n! and g(n) = (n + 1)! are
σ-equivalent but not asymptotically equivalent.

3.26. Example. For two polynomials f and g as in Example 3.15, we have f ≤µ g if
and only if f ≤σ g if and only if f ≤ g if and only if deg(f) ≤ deg(g). This reflects
a special property enjoyed by polynomials, which we now isolate and study.

3.27. Definition. An asymptotic monotonic sequence f is σ-stable if σf ≤ f (equiva-
lently, if f ∼ σf) and is µ-stable if µf ≤ f (equivalently, if f ∼ µf). Every µ-stable
sequence is σ-stable.
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3.28. Examples.

(a) The zero sequence [0] and the bounded sequence [1] are µ-stable.
(b) The polynomial f(n) = nd is µ-stable for each d ≥ 0.
(c) The exponential f(n) = 2n is σ-stable but not µ-stable.
(d) The factorial f(n) = n! is neither µ-stable nor σ-stable.

3.29. Remark. Recall that σ and µ induce endomorphisms of the lattice ASeq
by σ[f ] = [σf ] and µ[f ] = [µf ]. The classes of σ-stable and µ-stable sequences
are the fixed points of these endomorphisms. Thus, we write ASeqσ ⊂ ASeq and
ASeqµ ⊆ ASeq for the subsets of σ-stable and µ-stable sequences, respectively. It is
immediate that ASeqµ ⊆ ASeqσ ⊆ ASeq are sublattices which contain the bottom
element.

3.30. Lemma. The endomorphism σ : ASeq→ ASeq is an automorphism.

Proof. We have already observed in Remark 3.20 that f ≤ g implies σf ≤ σg. The
converse is also immediate from the definitions. Thus, σf ∼ σg implies f ∼ g. In
other words, σ : ASeq → ASeq is injective. On the other hand, every monotonic
sequence f is of the form σg where g is the monotonic sequence defined by g(0) := 0
and g(n) := f(n− 1) for n ≥ 1. �

3.31. Remark. In contrast, the endomorphism µ : ASeq→ ASeq is not injective. For
example, if f is the monotonic sequence defined by

f(n) :=

{
n! if n is even

(n+ 1)! if n is odd

and g is defined by g(n) := n! then f 6≤ g even though µf = µg pointwise.

3.32. Remark. On the other hand, one can readily check from the definitions that
µf ≤ µg implies that f ≤ σg. The counterexample in Remark 3.31 (in which f 6≤ g)
is related to the fact that g(n) := n! is not σ-stable. More generally, one can verify

that µkf ≤ µkg implies f ≤ σ2k−1g using the fact that 2kdn/2ke ≤ n+ 2k − 1.

3.33. Lemma. Let f, g ∈ ASeq be two asymptotic monotonic sequences and let
τ ∈ {σ, µ}. If either f or g is τ -stable then f ≤ g if and only if f ≤τ g.

Proof. The (⇒) direction always holds by Remark 3.20. Conversely, suppose f ≤τ g.
By definition, this means f ≤ τkg for some k ≥ 1. If g is τ -stable then τg ≤ g so
that τkg ≤ g by induction and hence f ≤ g. On the other hand, if f is τ -stable then
τkf ≤ f so that τkf ≤ τkg. If τ = σ this implies f ≤ g by Lemma 3.30. If τ = µ

then it implies f ≤ σ2k−1g by Remark 3.32. However, the µ-stable sequence f is

in particular σ-stable so σ2k−1f ≤ f , hence σ2k−1f ≤ σ2k−1g and we can invoke
Lemma 3.30 again. �

3.34. Remark. It follows from Lemma 3.33 that the composites ASeqσ ↪→ ASeq�
ASeq/σ and ASeqµ ↪→ ASeq � ASeq/µ are injective. We may thus regard the
lattices ASeqσ and ASeqµ as sublattices of ASeq/σ and ASeq/µ, respectively.

3.35. Remark. We thus have a diagram of spectral spaces

Spec+(ASeq/µ) Spec+(ASeq/σ) Spec+(ASeq)

Spec+(ASeqµ) Spec+(ASeqσ)
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where the hooked arrows are embeddings and the double-headed arrows are surjective;
cf. Remark 2.22 and Example 2.24. We will return to these spaces in Section 11.

4. Pseudo-coherent complexes

We now turn to commutative algebra and introduce the derived category of
pseudo-coherent complexes.

4.1. Hypothesis. Throughout this section, R denotes a commutative noetherian ring.

4.2. Convention. We will use homological indexing for complexes. Thus D+(R) ={
X ∈ D(R)

∣∣Hi(X) = 0 for i � 0
}

is the full replete subcategory of complexes
which are homologically bounded on the right. The suspension ΣX = X[1] shifts
complexes to the left: (X[1])n = Xn−1.

4.3. Remark. A complex of R-modules is said to be a perfect complex if it is
quasi-isomorphic to a bounded complex of finitely generated projective modules.
The unbounded derived category D(R) is a rigidly-compactly generated tensor-
triangulated (“tt”) category whose compact (=dualizable) objects are precisely the
perfect complexes. In particular, the perfect complexes Dperf(R) = D(R)c = D(R)d

form an essentially small tensor-triangulated subcategory of D(R).

4.4. Remark. The notion of a pseudo-coherent complex was introduced by Illusie
in [SGA6]. The simplest characterization is that a complex X ∈ D(R) is pseudo-
coherent if it is quasi-isomorphic to a bounded below complex of finitely generated
projective modules. We will write Dps(R) ⊂ D(R) for the full replete subcategory of
pseudo-coherent complexes. It is an essentially small tensor-triangulated subcategory;
see [Sta20, Section 064N]. Since our ring R is noetherian, a complex X is pseudo-
coherent if and only if it is quasi-isomorphic to a bounded below complex of finitely
generated modules and this is the case, moreover, if and only if it is homologically
bounded on the right and each homology module is finitely generated:

Dps(R) = Dfg
+(R).

See [Sta20, Proposition 0FDB], for instance. Note that a module is a pseudo-coherent
complex if and only if it is finitely generated.

4.5. Remark. We cannot consider the Balmer spectrum of the bounded derived
category Db(R-mod) ⊂ Dps(R) because it is not always a tensor category:

4.6. Proposition. The following are equivalent:

(a) Db(R-mod) is a tensor subcategory of D(R);
(b) The inclusion Dperf(R) = Db(R-proj) ↪→ Db(R-mod) is an equivalence;
(c) R is regular.

Proof. The equivalence (b) ⇔ (c) is well-known. Moreover, (b) ⇒ (a) is imme-
diate since Dperf(R) is a tensor subcategory. We prove (a) ⇒ (c). Observe that
if Db(R-mod) is closed under the derived tensor product then for any maximal
ideal m ⊂ R we would have Hi(R/m⊗L

R R/m) = 0 for i� 0. Passing to the local

ring at m, this implies that TorRm
i (κ(m), κ(m)) = 0 for i� 0 which implies that Rm

is regular. See [Lam99, §§5F–5G], for example. �

4.7. Remark. The tt-category Dps(R) is never rigid: it always contains non-dualizable
objects. Indeed, Dperf(R) ⊂ Dps(R) is precisely the subcategory of dualizable objects.

https://stacks.math.columbia.edu/tag/0FDB
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Thus, all objects of Dps(R) are dualizable if and only if Dperf(R) = Dps(R). This is
the case if and only if R = 0 is the zero ring.

4.8. Notation. Let E ⊆ Dps(R) be a collection of objects. Since Dps(R) is not
rigid, we must distinguish between the thick tensor ideal 〈E〉 generated by E and

the radical thick tensor ideal
√
〈E〉 =

{
X ∈ Dps(R)

∣∣X⊗n ∈ 〈E〉 for some n ≥ 1
}

generated by E. On the other hand, the thick subcategory generated by E will be
denoted thick(E).

4.9. Proposition. The inclusion Dperf(R) ↪→ Dps(R) does not have a left adjoint
nor a right adjoint, except when R = 0.

Proof. If P ∈ Dperf(R) is a perfect complex then HomD(R)(R[n], P ) = 0 for |n| � 0.
Applying this to the dual of P , we also see that HomD(R)(P,R[n]) = 0 for |n| � 0.
Note that the complex with zero differentials

⊕
i≥0R[i] =

∏
i≥0R[i] ∈ D(R) is

pseudo-coherent. Hence, if G : Dps(R) → Dperf(R) is right adjoint to the inclu-
sion, it would follow that HomD(R)(R[n],

⊕
i≥0R[i]) = 0 for n � 0, which is a

contradiction. Similarly, if G is left adjoint to the inclusion, it would follow that
HomD(R)(

∏
i≥0R[i], R[n]) = 0 for n� 0, which is a contradiction. �

4.10. Remark. It is well-known that if X and Y belong to Dps(R) and X ⊗L
R Y 6= 0

then inf(X ⊗L
R Y ) ≥ inf(X) + inf(Y ) and

Hinf(X)+inf(Y )(X ⊗L
R Y ) = Hinf(X)(X)⊗R Hinf(Y )(Y ).

See [Fox77, Lemma 2.1] or [BS24, Remark 4.1], for example. Recall that inf(E) :=
inf
{
n ∈ Z

∣∣Hn(E) 6= 0
}

for any nonzero complex E ∈ D(R).

5. Tame primes

We now make some general observations about the Balmer spectrum of the derived
category of pseudo-coherent complexes Dps(R). Several of these results were proved
by Matsui–Takahashi [MT17] using a slightly different perspective. We will take for
granted some familiarity with tensor triangular geometry; see, e.g., [BHS23b, §§1–2].
Throughout, R denotes a commutative noetherian ring.

5.1. Remark. The fully faithful inclusion Dperf(R) ⊆ Dps(R) induces a spectral map

(5.2) Spc(Dps(R))� Spc(Dperf(R))

which is surjective by [Bal18, Theorem 1.3]. Moreover, under the identification
Spc(Dperf(R)) ∼= Spec(R), the map (5.2) identifies with the comparison map

(5.3) ρ : Spc(Dps(R))→ Spec(R)

defined by ρ(P) :=
{
r ∈ R

∣∣ cone(r) 6∈ P
}

. This follows immediately from the
naturality of the comparison map [Bal10, Corollary 5.6]. Throughout, we will make
the above identification and speak of the comparison map (5.3) rather than (5.2).

5.4. Notation. We will write supp(X) ⊆ Spc(Dps(R)) for the universal support of
a pseudo-coherent complex X ∈ Dps(R) and we will write Supp(Y ) ⊆ Spec(R) for
the Balmer–Favi support of an arbitrary complex Y ∈ D(R) using the identification
Spc(Dperf(R)) ∼= Spec(R).
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5.5. Remark. Since R is noetherian, the derived category D(R) is stratified in
the sense of [BHS23b]. It follows that the Balmer–Favi support of an arbitrary
complex X ∈ D(R) can be expressed in several different ways. In particular, we
have

Supp(X) =
{
p ∈ Spec(R)

∣∣ gp ⊗X 6= 0
}

=
{
p ∈ Spec(R)

∣∣κ(p)⊗X 6= 0
}

where gp denotes the associated Balmer–Favi idempotent and κ(p) denotes the
residue field; see [BHS23a, Remark 5.1 and Theorem 4.7]. Moreover, it follows that
this support theory satisfies the detection property

(5.6) Supp(X) = ∅ implies X = 0

and the tensor product property

(5.7) Supp(X ⊗ Y ) = Supp(X) ∩ Supp(Y )

for any two X,Y ∈ D(R).

5.8. Remark. It follows from (5.6) and (5.7) that D(R) has no nonzero tensor-
nilpotent objects. In particular, the same is true of Dps(R).

5.9. Lemma. Let R be a local noetherian ring with maximal ideal m. If X ∈ D(R)
is pseudo-coherent then X ⊗L

R R/m = 0 implies X = 0.

Proof. Suppose X ⊗L
R R/m = 0. If X is nonzero then, since it is homologically

bounded on the right, we can consider the smallest i such that Hi(X) 6= 0. By
Remark 4.10, 0 = Hi(X ⊗L

R R/m) = Hi(X) ⊗R R/m. Nakayama’s Lemma then
implies that Hi(X) = 0 which is a contradiction. �

5.10. Remark. It follows that for any pseudo-coherent complex X, we have

Supp(X) =
{
p ∈ Spec(R)

∣∣Xp 6= 0 in Dps(Rp)
}

=
⋃
i∈Z

SuppR(Hi(X))

where SuppR denotes the classical support of an R-module. Since each homology
module Hi(X) is finitely generated, this is a union of closed sets. In other words,
the Balmer–Favi support Supp(X) of a pseudo-coherent complex X is specialization
closed.

5.11. Remark. Since R is noetherian, the space Spec(R) is topologically noetherian.
Hence every closed subset of Spec(R) is Thomason closed and every specialization
closed subset is Thomason (Remark 2.13).

5.12. Construction. Restricting the support function Supp(−) to Dps(R), we have a
notion of support for pseudo-coherent complexes which satisfies all the axioms for a
support datum in the sense of [Bal05] except that it need not give closed subsets;
recall (5.6) and (5.7). The proof of [Bal05, Theorem 3.2] shows that there exists a
unique function

(5.13) τ : Spec(R)→ Spc(Dps(R))

such that

(5.14) τ−1(supp(X)) = Supp(X)
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for every X ∈ Dps(R). Explicitly,

(5.15) τ(p) :=
{
X ∈ Dps(R)

∣∣ p 6∈ Supp(X)
}
∈ Spc(Dps(R)).

This function need not be continuous, but it has the property that the preimage of
any Thomason closed subset is Thomason (Remark 5.10 and Remark 5.11). One
readily checks that this function satisfies:

(5.16) p ⊆ q⇐⇒ τ(p) ⊇ τ(q).

It also follows from the definitions that ρ(τ(p)) = p. Thus the map τ is injective.

5.17. Definition. Following [MT17], we call the primes of Spc(Dps(R)) lying in the
image of τ : Spec(R) ↪→ Spc(Dps(R)) the tame primes.

5.18. Remark. Our functions τ and ρ coincide with the functions denoted S and s
in [MT17]. Moreover, the Balmer–Favi support Supp(X) of a pseudo-coherent
complex X coincides with the support denoted SuppR(X) in [MT17].

5.19. Notation. For an ideal I ⊆ R, we will write Kosz(I) ∈ Dperf(R) for the Koszul
complex on a set of generators of I. Although the isomorphism type of this complex
depends on the choice of generators, any two such Koszul complexes generate the
same thick subcategory and this is sufficient uniqueness for our purposes.

5.20. Proposition (Matsui–Takahashi). Let X ∈ Dps(R) and p ∈ Spec(R). If
p ∈ Supp(X) then Kosz(p) ∈ 〈X〉.

Proof. This is a special case of [MT17, Proposition 2.9]. �

5.21. Corollary. For any P ∈ Spc(Dps(R)), we have P ⊆ τ(ρ(P)).

Proof. Consider any X ∈ P. We have Kosz(ρ(P)) 6∈ P by the definition of ρ. Hence
Kosz(ρ(P)) 6∈ 〈X〉. Proposition 5.20 then implies ρ(P) 6∈ Supp(X) = τ−1(supp(X)).
It follows that X ∈ τ(ρ(P)). �

5.22. Remark. The above is the key result about tame primes. It implies that each
fiber ρ−1({p}) is irreducible with the tame prime τ(p) serving as the generic point.

5.23. Proposition. Consider the splitting

Spec(R) Spc(Dps(R)) Spec(R).

id

τ ρ

(a) We have τ−1(U) = ρ(U) for any generalization closed set U ⊆ Spc(Dps(R)).
(b) The map τ : Spec(R) ↪→ Spc(Dps(R)) is a topological embedding with respect

to the Hochster dual topologies.
(c) The map ρ : Spc(Dps(R))� Spec(R) satisfies the going-down property.

Proof. (a): The inclusion τ−1(U) ⊆ ρ(U) holds for any subset U ⊆ Spc(Dps(R))
simply because ρ ◦ τ = id. The reverse inclusion holds when U is generalization
closed by Corollary 5.21.

(b): From (5.14) and Remark 5.10, the preimage τ−1(V ) of a Thomason closed
subset is specialization closed and hence Thomason by Remark 5.11. The Thomason
closed sets form a basis of open sets for the Hochster dual topologies (Remark 2.13).
Thus, τ is continuous with respect to the Hochster dual topologies. On the other
hand, ρ is a spectral map, hence is continuous with respect to the Hochster dual
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topologies. Thus, with respect to the Hochster dual topologies, τ is a split monomor-
phism and hence an embedding.

(c): For a surjective spectral map, the going-down property is equivalent to being
a closed quotient map with respect to the Hochster dual topologies and this is
also equivalent to merely being a closed map with respect to the Hochster dual
topologies; see [DST19, Corollary 5.3.4 and Corollary 6.4.14]. Moreover, since the
image of a proconstructible set under a spectral map is proconstructible, it suffices
to show that for every dual-closed set V , ρ(V ) is closed under specialization in the
Hochster dual topology. Thus, it suffices to show that ρ(V ) is generalization closed
if V is generalization closed. In other words, by part (a), the claim is that τ−1(V )
is generalization closed if V is generalization closed, which is true since τ preserves
specializations; see (5.16). �

5.24. Proposition (Matsui–Takahashi). The map τ : Spec(R)→ Spc(Dps(R)) is
continuous if and only if Spec(R) is finite.

Proof. This is established in [MT17, Theorem 4.7]. The “if” direction is immediate
from Remark 5.10 since if Spec(R) is finite then every specialization closed subset
is closed. �

5.25. Proposition. If Spec(R) is finite then the following hold:

(a) The map τ : Spec(R) ↪→ Spc(Dps(R)) is a topological embedding.
(b) The map ρ : Spc(Dps(R))� Spec(R) is an open quotient map.

Proof. Part (a) is immediate since τ is a split monomorphism in the category of
spectral spaces, hence in the category of topological spaces. For part (b), suppose
U ⊆ Spec(R) is a subset such that ρ−1(U) is open. Then U = ρ(ρ−1(U)) =
τ−1(ρ−1(U)) is open by part (a) of Proposition 5.23. �

5.26. Theorem (Matsui–Takahashi). The following are equivalent:

(a) ρ : Spc(Dps(R))→ Spec(R) is a bijection;
(b) ρ : Spc(Dps(R))→ Spec(R) is a homeomorphism;
(c) Spec(R) is (finite and) discrete.
(d) R is artinian.

Proof. It is well-known that Spec(R) is discrete if and only if R is artinian. The
rest is established in [MT17, Theorem 6.5]. �

5.27. Remark. One of the goals of this paper is to show that Spc(Dps(R)) can be
considerably more complicated than Spec(R) in the non-artinian case.

5.28. Proposition. The following statements hold:

(a) If R is local with unique closed point m then Spc(Dps(R)) is local with unique
closed point τ(m).

(b) If R is a domain with generic point η then Spc(Dps(R)) is irreducible with
generic point τ(η).

Proof. (a): Recall from Remark 5.8 that there are no nonzero tensor-nilpotent
objects in Dps(R). Thus, the claim is that (0) is a prime thick ideal in Dps(R). Well,
by construction τ(m) =

{
X ∈ Dps(R)

∣∣m 6∈ Supp(X)
}

which is the zero ideal by
Remark 5.10 and (5.6).

(b): This is proved in [Mat19, Theorem 3.6]. In any case, if η is a generic point of
Spec(R) then τ(η) is a generic point of Spc(Dps(R)) by (5.16) and Corollary 5.21. �
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5.29. Proposition. Every nonempty Thomason subset of Spc(Dps(R)) contains a
tame prime.

Proof. Since every Thomason subset is a union of Thomason closed subsets, it
suffices to prove that every nonempty Thomason closed subset contains a tame
prime. Each Thomason closed subset is of the form supp(X) for some X ∈ Dps(R).
If supp(X) contains no tame primes then Supp(X) = τ−1(supp(X)) = ∅. But the
Balmer–Favi support has the detection property (5.6), so this implies X = 0 and
hence supp(X) = ∅. �

5.30. Proposition. For every closed point m ∈ Spec(R), the tame prime τ(m) is a
closed point of Spc(Dps(R)) and the fiber ρ−1({m}) = {τ(m)} is a singleton.

Proof. Let P ∈ Spc(Dps(R)) be a prime ideal such that ρ(P) = m = (f1, . . . , fr).
Then cone(fi) 6∈ P for each i by the definition of ρ. Moreover,

Supp(cone(f1)⊗ · · · ⊗ cone(fr)) = {m}.

We claim that τ(m) ⊆ P. Otherwise, there exists an X ∈ τ(m) with X 6∈ P. By
definition, X ∈ τ(m) means that m 6∈ Supp(X). Thus, by (5.6) and (5.7), we have

Supp(X ⊗ cone(f1)⊗ · · · ⊗ cone(fr)) = Supp(X) ∩ Supp(cone(f1)⊗ · · · ⊗ cone(fr))

= Supp(X) ∩ {m}
= ∅

so that X ⊗ cone(f1) ⊗ · · · ⊗ cone(fr) = 0 ∈ P. Thus X ∈ P or cone(fi) ∈ P for
some i, which is a contradiction. This establishes that τ(m) ⊆ P and hence P = τ(m)
by Corollary 5.21. Also, τ(m) is closed since if τ(m) Q then m = ρ(τ(m)) ρ(Q)
so that ρ(Q) = m. Hence Q = τ(m) by what we just proved. �

5.31. Remark. For a perfect complex P , we have

supp(P ) = ρ−1(Supp(P ))

since Supp(P ) identifies with the universal support of P in Spec(R) ∼= Spc(Dperf(R)).
On the other hand, Corollary 5.21 implies that we have an inclusion

supp(X) ⊇ ρ−1(Supp(X))

for any pseudo-coherent complex X. This is not usually an equality. If it were an
equality for all X ∈ Dps(R), then every prime P ∈ Spc(Dps(R)) would be tame (and
hence R would be artinian by Theorem 5.26). Indeed, we would have

{P} =
⋂
X 6∈P

supp(X) = ρ−1(τ−1(
⋂
X 6∈P

supp(X))) = ρ−1(τ−1({P}))

so that τ(ρ(P)) ∈ {P}. Hence P = τ(ρ(P)) by Corollary 5.21.

6. Base-change

We now consider how Dps(−) behaves as we vary the ring.

6.1. Remark. Any ring homomorphism A → B induces a geometric functor f∗ :
D(A)→ D(B) which restricts to a functor

Dps(A)→ Dps(B).
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In general, the right adjoint f∗ : D(B)→ D(A) does not preserves pseudo-coherent
complexes, but it does when B is finitely generated as an A-module; that is, when
B = f∗(1) is itself pseudo-coherent as an A-module; see [Sta20, Lemma 064Z] for
example. In this case, we have an adjunction

Dps(A)� Dps(B)

where the left adjoint is a tt-functor.

6.2. Remark. In [Bal18], Balmer provides a useful criterion for the surjectivity of
the map ϕ : Spc(L)→ Spc(K) induced by a tt-functor K→ L. Unfortunately, this
theorem requires that K is rigid. Nevertheless, there is something that can be said
without this assumption:

6.3. Proposition. Let F : K → L be a tt-functor between essentially small
tt-categories and let ϕ : Spc(L)→ Spc(K) be the induced map. Suppose that F has
a right adjoint U and that the projection formula

U(F (a)⊗ b) ' a⊗ U(b)

holds for a ∈ K and b ∈ L. Then im(ϕ) = supp(U(1)).

Proof. The ⊆ inclusion is given at the start of the proof of [Bal18, Theorem 1.7]
and is a consequence of the projection formula. We prove the ⊇ direction. Let
P ∈ supp(U(1)). Consider the thick ideal 〈F (P)〉 and the multiplicative collection
of objects F (K \ P). We claim that

(6.4) 〈F (P)〉 ∩ F (K \ P) = ∅.

It will then follow from [Bal05, Lemma 2.2] that there exists a prime ideal Q ∈ Spc(L)
such that Q ⊇ 〈F (P)〉 and Q ∩ F (K \ P) = ∅. These two conditions imply that
F−1(Q) = P, that is, ϕ(Q) = P. Thus, it remains to prove (6.4). If it did not hold
then we would have

U(〈F (P)〉) ∩ U(F (K \ P)) 6= ∅.
Note that since U is an exact functor U−1(P) is a thick subcategory. Also note that
〈F (P)〉 = thick(F (P)⊗L). The projection formula implies that F (P)⊗L ⊆ U−1(P)
since P is an ideal. It follows that U(〈F (P)〉) ⊆ P. Thus it would follow that
P ∩ U(F (K \ P)) 6= ∅. This means there exists x ∈ K \ P such that U(1) ⊗ x '
UF (x) ∈ P. Since P is prime this would imply U(1) ∈ P which contradicts the
hypothesis that P ∈ supp(U(1)). �

6.5. Corollary. Let A→ B be finite morphism of commutative rings. Let

ϕ : Spc(Dps(B))→ Spc(Dps(A))

be the map induced by base change. Then im(ϕ) = supp(B).

Proof. The hypothesis is that B is finitely generated as an A-module. The adjunction
f∗ : D(A) � D(B) : f∗ thus restricts to an adjunction Dps(A) � Dps(B) as
explained in Remark 6.1. Moreover, since the projection formula holds for the big
categories [BDS16, Proposition 2.15], it also holds for the induced adjunction. Hence
we can apply Proposition 6.3. �

6.6. Example. For any ideal I ⊆ R, the image of Spc(Dps(R/I))→ Spc(Dps(R)) is
the Thomason closed set supp(R/I). For a prime ideal I = p, this is:

https://stacks.math.columbia.edu/tag/064Z
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6.7. Proposition. For any p ∈ Spec(R), we have

(6.8) {τ(p)} = supp(R/p) = supp(Kosz(p)) = ρ−1({p}).

Proof. It follows from (5.16) and Corollary 5.21 that ρ−1({p}) ⊆ {τ(p)}. Hence
it suffices to prove that the equalities in (6.8) are inclusions ⊆. First note that

{p} = Supp(R/p). Hence R/p ∈ 〈Kosz(p)〉 by Proposition 5.20, so that supp(R/p) ⊆
supp(Kosz(p)). Also, since Supp(R/p) = τ−1(supp(R/p)) we have τ(p) ∈ supp(R/p)

and hence {τ(p)} ⊆ supp(R/p). Finally, supp(Kosz(p)) = ρ−1({p}) by Remark 5.31
and the definitions. �

6.9. Example. Let p ∈ Spec(R) and consider the commutative diagram

Dps(R) Dps(R/p)

Dps(Rp) Dps(κ(p))

The unique point in the bottom-right maps to the unique closed point m in the
bottom-left and the unique generic point η in the top-right, which are both in turn
mapped to the tame prime τ(p) in the top-left; recall Proposition 5.28. In particular,

(6.10) τ(p) = Ker(Dps(R)→ Dps(Rp)).

This can also be seen directly from the definition of τ(p); see Construction 5.12.

6.11. Lemma. Let A→ B be a morphism of noetherian commutative rings. Then
the following diagram commutes

Spec(B) Spec(A)

Spc(Dps(B)) Spc(Dps(A))

f

τ τ

where the vertical maps are the inclusions of the tame primes.

Proof. Unravelling the definitions, this amounts to the claim that for any a ∈ Dps(A)
and p ∈ Spec(B), we have p ∈ Supp(f∗(a)) if and only if f(p) ∈ Supp(a). Since the
rings are noetherian, their derived categories are stratified in the sense of [BHS23b],
hence f−1(Supp(a)) = Supp(f∗(a)) by [BCHS23, Corollary 14.19]. �

6.12. Corollary. Let A→ B be a finite morphism of commutative noetherian rings
such that Spec(B)→ Spec(A) is surjective. Then the map

Spc(Dps(B))→ Spc(Dps(A))

is surjective.

Proof. By Corollary 6.5, the image of the map is supp(B). On the other hand, the
surjectivity of Spec(B)→ Spec(A) and the commutative diagram of Lemma 6.11
implies that the image contains every tame prime. Since supp(B) is closed, it must
contain every specialization of every tame prime; hence it must contain everything
by Corollary 5.21. �

6.13. Remark. Every tame prime is visible3 by Proposition 6.7. In fact:

3A point x in a spectral space is said to be visible if its closure {x} is a Thomason closed set.
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6.14. Proposition. For a closed point P ∈ Spc(Dps(R)), the following are equivalent:

(a) P is visible.
(b) P is tame.
(c) ρ(P) is a closed point of Spec(R).

Proof. (a)⇒ (b): If P is a visible closed point then {P} is Thomason closed, hence it
must contain a tame prime by Proposition 5.29 and thus we must have P = τ(ρ(P)).

(b)⇒ (c): Suppose P = τ(p) is tame. If ρ(P) p then P = τ(ρ(P)) τ(p) so
that P = τ(p). Therefore ρ(P) = p. This establishes that ρ(P) is closed.

(c)⇒ (a): If ρ(P) =: m is a closed point then P ∈ ρ−1({m}) = {τ(m)} invoking
Proposition 5.30. Hence P is visible, since {P} = ρ−1({m}) is Thomason, being the
preimage of a Thomason set under a spectral map. �

6.15. Remark. The question of whether all the closed points of Spc(Dps(R)) are
tame was raised in [MT17, Question 4.15] and they provide an affirmative answer if
Spec(R) has only finitely many closed points (i.e. R is semi-local). We can provide
an alternative proof of this fact:

6.16. Proposition. If R is semi-local then all the closed points of Spc(Dps(R)) are
tame. Consequently, the closed points of Spc(Dps(R)) correspond bijectively with the
closed points of Spec(R).

Proof. Let m1,m2, . . . ,mn be the collection of maximal ideals of R. The tt-functor
Dps(R)→

∏n
i=1 Dps(Rmi) is conservative since Supp(X) is empty for any object X

in the kernel, since it is specialization closed and yet contains no closed points.4

Thus, [Bal18, Theorem 1.2] establishes that the image of the induced map
n∐
i=1

Spc(Dps(Rmi))
∼= Spc(

n∏
i=1

Dps(Rmi))→ Spc(Dps(R))

contains all the closed points of Spc(Dps(R)). Thus, given any closed point P

in Spc(Dps(R)), there exists a maximal ideal m of Spec(R) and a prime ideal Q in
Spc(Dps(Rm)) mapping to P under the canonical map Spc(Dps(Rm))→ Spc(Dps(R)).
It follows that the unique closed point τ(m) ∈ Spc(Dps(Rm)) also maps to P.
Lemma 6.11 then implies that P = τ(m) is itself tame. �

We now turn to the process of localization.

6.17. Lemma. For any multiplicative subset S ⊂ R, the functor

Dps(R)→ Dps(S
−1R)

is essentially surjective.

Proof. The argument is similar to the one given in [Let21, Lemma 3.9]. Let A
be a commutative ring and let X• be a bounded below complex of A-modules,
say with Xi = 0 for i < 0 for concreteness. For any sequence of units s1, s2, . . .
in A, we can construct a new complex Y by setting Yi := Xi and dYi := si.d

X
i for

each i. The morphism Y• → X• which in degree i is multiplication by s1s2 · · · si is
then a quasi-isomorphism. With this observation in hand, consider the localization

4In fact, for any commutative noetherian ring, the family of functors D(R)→ D(Rm), ranging

over the maximal ideals m, is jointly conservative since they are jointly surjective on the spectra
of compact objects; see [BCHS23, Corollary 14.24] or [BCHS24, Theorem 1.9] bearing in mind
[BHS23a, Theorem A].
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R → S−1R. It is standard that every finitely generated S−1R-module is (up to
isomorphism) of the form S−1M = M ⊗R S−1R for some finitely generated R-
module M ; cf. [Eis95, Exercise 2.10]. Moreover, since finitely generated modules
over noetherian rings are finitely presented, we have HomS−1R(S−1M,S−1N) '
S−1 HomR(M,N) for any finitely generated R-modules M and N . It follows that
for any f ∈ HomS−1R(S−1M,S−1N) there is s ∈ S such that s.f ∈ HomR(M,N).
Thus, any bounded below complex of S−1R-modules is quasi-isomorphic to a
bounded below complex of the form (S−1Mi, S

−1di)i for some finitely generated
R-modules Mi and R-linear maps di : Mi →Mi−1. Although (S−1di)◦ (S−1di+1) =
S−1(di ◦ di+1) = 0 we do not necessarily have di ◦ di+1 = 0. Nevertheless, for each i,
there exists an si ∈ S such that 0 = si.(di ◦ di+1) = (si.di) ◦ di+1. Thus, replacing
each di by si.di, we obtain a bounded below complex of R-modules (Mi, si.di)i
which localizes to a complex quasi-isomorphic to our original complex. �

6.18. Proposition. For any multiplicative subset S ⊂ R, the functor

Dps(R)→ Dps(S
−1R)

is a Verdier localization.

Proof. The Bousfield localization functor D(R)→ D(S−1R) restricts to a tt-functor
F : Dps(R)→ Dps(S

−1R) which is essentially surjective by Lemma 6.17. It induces

a conservative essentially surjective tt-functor F : Dps(R)/KerF → Dps(S
−1R).

We will prove that this functor F is full. It will then follow formally that it is fully
faithful and hence an equivalence; see, e.g., [COS13, Lemma 2.1] or [San25, §7].
We will use the notation S−1(−) = S−1R ⊗R − for the functor from (complexes
of) R-modules to (complexes of) S−1R-modules. Let X and Y be two bounded
below complexes of finitely generated R-modules and consider a morphism of
complexes f : S−1X → S−1Y . Without loss of generality, we may assume that
Yn = 0 for n < 0. For each index n, we have the morphism of S−1R-modules
fn : S−1Xn → S−1Yn. As recalled in the proof of Lemma 6.17, there exists an
sn ∈ S such that sn.fn = S−1(gn) for some morphism gn : Xn → Yn of R-modules.
From the equality

S−1(dYn ) ◦ fn = dS
−1Y

n ◦ fn = fn−1 ◦ dS
−1X

n = fn−1 ◦ S−1(dXn )

it follows that

0 = snsn−1.(S
−1(dYn ) ◦ fn − fn−1 ◦ S−1(dXn ))

= S−1(sn−1.d
Y
n ) ◦ sn.fn − sn−1.fn−1 ◦ S−1(sn.d

X
n )

= S−1(sn−1.d
Y
n ◦ gn − gn−1 ◦ sn.dXn )

in HomS−1R(S−1Xn, S
−1Yn−1) ' S−1 HomR(Xn, Yn−1). Hence there exists tn ∈ S

such that

0 = tnsn−1.d
Y
n ◦ gn − gn−1 ◦ tnsn.dXn

in HomR(Xn, Yn−1). For n < 0, we may take gn = 0, sn = 1 and tn = 1. With

these observations in hand, let X̃ be the complex with X̃n = Xn and dX̃n = tnsn.d
X
n .

Also, let Ỹ be the complex with Ỹn = Yn and dYn = tnsn−1.d
Y
n . By construction,

the gn define a morphism of complexes g : X̃ → Ỹ . Next consider the morphism

of complexes u : X̃ → X defined by un = t0t1 · · · tns0s1 · · · sn for n ≥ 0 and

un = 1 for n < 0. Finally, let v : Ỹ → Y be the morphism of complexes given by
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vn = t0t1 · · · tns0s1 · · · sn−1 for n ≥ 0. One may then verify from the definitions

that the morphisms u : X̃ → X, g : X̃ → Ỹ , v : Ỹ → Y , f : S−1X → S−1Y satisfy

f ◦ S−1(u) = S−1(v) ◦ S−1(g)

of morphisms S−1(X̃) → S−1(Y ). Moreover, note that S−1(u) and S−1(v) are
isomorphisms. Since u and v are maps of pseudo-coherent complexes, they are also
inverted by q : Dps(R) → Dps(R)/KerF . Hence, f = F (q(v) ◦ q(g) ◦ q(u)−1). It
follows that Dps(R)/KerF → Dps(S

−1R) is full and hence is an equivalence. �

6.19. Corollary. For any p ∈ Spec(R), the localization R→ Rp induces an equiva-
lence of tt-categories Dps(R)/τ(p) ∼= Dps(Rp).

Proof. This follows from Proposition 6.18 and (6.10). �

6.20. Remark. This establishes that Dps(Rp) is the local category of Dps(R) at the
tame prime τ(p). In particular, the localization R → Rp induces a topological

embedding Spc(Dps(Rp))
∼−→ gen(τ(p)) ⊆ Spc(Dps(R)).

6.21. Remark. Recall that for each p ∈ Spec(R), we have the algebraic localization

Dps(R)p := Dps(R)/〈cone(s) | s 6∈ p〉.

One of the difficulties in understanding Spc(Dps(R)) is that it does not behave well
with respect to algebraic localizations in the sense that usually Dps(R)p 6∼= Dps(Rp).
It follows from the definitions that for any P ∈ ρ−1({p}) the functor D(R)→ D(Rp)
factors as

(6.22) Dps(R)� Dps(R)p � Dps(R)/P� Dps(R)/τ(p)
∼=−→ Dps(Rp).

In particular, if the fiber ρ−1({p}) is not a singleton then there is no hope for the
functor Dps(R)p → Dps(Rp) to be conservative let alone an equivalence.

6.23. Example. Let R = Z and let p1, p2, p3, . . . be the sequence of prime numbers.
Consider X :=

∐
i≥1 Z/pi[i] ∈ Dps(Z). Observe that

X 6∈ 〈Z/n | n 6∈ p〉 = Ker(Dps(Z)→ Dps(Z)p)

for any p ∈ Spec(R) since X cannot be built in finitely many steps from this
collection of cyclic modules. Hence Xp 6= 0 in Dps(Z)p for all p ∈ Spec(Z). On the
other hand, Supp(X) consists precisely of all the closed points. In particular, X
vanishes in Dps(Q) but does not vanish in Dps(Z)(0). Thus, Dps(Z)(0) → Dps(Q) is
not conservative.

6.24. Remark. In summary, the complexity of Dps(R) over Dperf(R) is reflected by the
lack of conservativity of the functor Dps(R)p → Dps(Rp). In contrast, Dperf(Rp) is
the idempotent-completion of Dperf(R)p by the Neeman–Thomason theorem [Nee92].

6.25. Remark. The majority of this paper is devoted to understanding Spc(Dps(R))
in the case when R is a discrete valuation ring. We thus end this section with a few
remarks about how one can relate arbitrary noetherian rings to this case.

6.26. Example. Let R be an excellent local domain of dimension 1 and let A be the
integral closure of R in its field of fractions. The ring A is still noetherian by the
Krull–Akizuki theorem and it is module-finite over R by the excellence hypothesis.
By the lying-over theorem, we know that Spec(A)→ Spec(R) is surjective. Thus
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there exists a prime p ∈ Spec(A) which maps to the maximal ideal m of R. Then Ap

is a discrete valuation ring and the composite

Spec(Ap) ↪→ Spec(A)� Spec(R)

is a homeomorphism. We have an analogous situation with the pair of maps

Spc(Dps(Ap)) ↪→ Spc(Dps(A))� Spc(Dps(R))

by Proposition 6.18 and Corollary 6.12.

6.27. Remark. More generally, given any specialization p ∈ {q} in a noetherian
ring R, there exists a map R→ A to a discrete valuation ring which realizes this
specialization. This is explained in detail in the proof of [Sta20, Lemma 054F] and
the references therein. Briefly, one first passes to a local domain (via localization
and taking a quotient) and then to a local domain of dimension 1 by passing to a
maximal dominating valuation ring in its field of fractions (see [Sta20, Lemma 00P8]
and [Sta20, Lemma 00IA]) and then one takes a localization of its integral clo-
sure as in Example 6.26. However, we do not have a complete understanding of
how Dps(−) behaves under each of these steps. For an excellent ring, we do have
some understanding of the last step as indicated in Example 6.26.

7. Discrete valuation rings

We turn our attention to pseudo-coherent complexes over discrete valuation rings.

7.1. Hypothesis. For the remainder of the paper, R denotes a discrete valuation ring
with unique maximal ideal m = (x) and residue field k = R/m.

7.2. Remark. The goal is to compute Spc(Dps(R)). As explained in Remark 5.1 we
have a surjective spectral map

ρ : Spc(Dps(R))� Spec(R)

and the latter space is very simple. It consists of two points, a closed point m and a
generic point η:

Spec(R) =
• m = (x)

• η = (0)

By the results of Sections 5 and 6, we know that Spc(Dps(R)) is a local space
with unique closed point given by the zero ideal which coincides with the tame
prime τ(m) associated with the unique closed point m ∈ Spec(R). Moreover, the
fiber ρ−1({m}) = {τ(m)} is a singleton. It also follows from general principles
that Spc(Dps(R)) is irreducible with generic point given by the tame prime τ(η)
associated to the generic point η ∈ Spec(R). We will describe this tame prime in
Remark 7.11 below.

7.3. Remark. The ideals of R are precisely the zero ideal (0) together with the
powers of the maximal ideal mi = (xi), i ≥ 0. This is a straightforward consequence
of the Krull intersection theorem which asserts that

⋂
i≥0 m

i = (0) in any noetherian
local ring.

7.4. Remark. Since R is a principal ideal domain, every finitely generated R-module
is isomorphic to a direct sum of cyclic modules. Moreover, by Remark 7.3, every
nonzero cyclic module is either R itself or of the form R/xi for some i ≥ 1.

https://stacks.math.columbia.edu/tag/054F
https://stacks.math.columbia.edu/tag/00P8
https://stacks.math.columbia.edu/tag/00IA
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7.5. Lemma. For any integers i, j ≥ 0, the following statements hold:

(a) R/xi ⊗R R/xj ' R/xmin(i,j).

(b) TorR1 (R/xi, R/xj) ' R/xmin(i,j).
(c) There is a short exact sequence

0→ R/xi
xj

−→ R/xi+j → R/xj → 0.

Proof. These are straightforward exercises. �

7.6. Lemma. For a finitely generated R-module M , the following are equivalent:

(a) M has finite length;
(b) M has no free summand;
(c) M is torsion;
(d) η 6∈ SuppR(M).

Proof. It follows from Remark 7.3 that the proper cyclic modules R/mi are artinian
while the free module R is of course not artinian. Hence the R-modules of finite
length are precisely the finitely generated R-modules which have no free summand
(i.e. which are torsion). On the other hand, recall that SuppR(M) = V (Ann(M))
for any finitely generated module, so η 6∈ SuppR(M) if and only if Ann(M) 6= (0)
which is the case precisely when M has no free summand. �

7.7. Definition. For a finite length R-module M , the Loewy length of M is

``(M) := min
{
i ≥ 0

∣∣miM = 0
}
.

For example, ``(R/xi) = i for each i ≥ 0. In particular, the Loewy length of the
zero module is zero. In general, ``(M) is the largest i such that R/xi is a direct
summand of M .

7.8. Lemma. Let M and N be finite length R-modules. Then

(a) ``(M ⊕N) = max(``(M), ``(N)).
(b) ``(M ⊗R N) = min(``(M), ``(N)).

(c) ``(TorR1 (M,N)) = min(``(M), ``(N)).

Proof. Part (a) is immediate from the definition, while parts (b) and (c) follow from
Lemma 7.5. �

7.9. Lemma. Let 0→ N →M → L→ 0 be a short exact sequence of finite length
R-modules. Then ``(M) ≤ ``(N) + ``(L).

Proof. We have m``(L)(M/N) = 0 so that m``(L)(M) ⊆ N . Then

m``(N)+``(L)M = m``(N)(m``(L)M) ⊆ m``(N)N = 0.

Hence ``(M) ≤ ``(N) + ``(L) as desired. �

We now turn to complexes of R-modules.

7.10. Remark. Since R is hereditary, every complex E ∈ D(R) is isomorphic to the
complex⊕

i∈Z

Hi(E)[i] = (· · · → H2(E)
0−→ H1(E)

0−→ H0(E)
0−→ H−1(E)→ · · · )

consisting of the homology of E with zero differentials; see [Kra07, Section 1.6], for
example. In particular, any pseudo-coherent complex E ∈ Dps(R) is isomorphic to
a bounded below complex of finitely generated modules with zero differentials.
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7.11. Remark. We write Dfl
+(R) ⊂ Dps(R) for the full subcategory consisting of

complexes homologically bounded on the right with Hi(E) of finite length for each
i ∈ Z. It is a prime ideal of Dps(R). This can be checked directly, or we may observe
that it is the tame prime τ(η) associated to the generic point η ∈ Spec(R). Indeed:

τ(η) :=
{
X ∈ Dps(R)

∣∣ η 6∈ Supp(X)
}

=
{
X ∈ Dps(R)

∣∣ η 6∈⋃
i∈Z

SuppR(Hi(X))
}

= Dfl
+(R)

by Remark 5.10, Definition 5.17 and Lemma 7.6.

7.12. Remark. Note that if X 6∈ Dfl
+(R) then X must contain a shift of R as a direct

summand and hence 〈X〉 = Dps(R). Thus, the prime ideal Dfl
+(R) is in fact the

unique largest proper thick ideal of Dps(R). Hence much of our discussion will be

concerned with understanding the complexes in Dfl
+(R).

7.13. Remark. We may also consider the thick subcategory Dfl
b(R) consisting of all

homologically bounded complexes with finite length homology modules. It is not an
ideal in Dps(R). For example:

R/m⊗ (· · · → R
0−→ R

0−→ R→ 0→ 0→ · · · ) '
⊕
i∈N

R/m[i] 6∈ Dfl
b(R).

7.14. Lemma. If i ≤ j then cone(R/xj
xi

−→ R/xj) ∈ D(R) contains R/xi as a direct
summand.

Proof. Let M := R/xj and consider the morphism of R-modules xi : M → M
regarded as a morphism in the derived category. Its cone is the Koszul complex

Kosz(x;M) = (· · · → 0 → M
x−→ M → 0 → · · · ) concentrated in degrees 1 and 0.

Since R is hereditary, it is isomorphic to a complex which has H0(Kosz(x;M)) '
M/xiM as a direct summand. Moreover, M/xiM ' M ⊗R R/xi ' R/xi by
Lemma 7.5. �

7.15. Proposition. We have Dfl
b(R) = thick(R/x) = thick(R/xi) for all i ≥ 1. This

is the smallest nonzero thick subcategory of Dps(R).

Proof. The short exact sequence in Lemma 7.5(c) implies that thick(R/x) con-

tains R/xi for all i ≥ 1 and this implies that Dfl
b(R) = thick(R/x). On the other

hand R/x ∈ thick(R/xi) by Lemma 7.14. The second statement says that Dfl
b(R)

is contained in every nonzero thick subcategory. If 0 6= X ∈ Dps(R) then by Re-
mark 7.10 the object X contains a shift of R/xi for some i ≥ 1 or a shift of R as a

direct summand. In the former case, we have Dfl
b(R) ⊆ thick(X) by what we have

just proved. In the latter case, the short exact sequence 0→ R
x−→ R→ R/x→ 0

shows that R/x ∈ thick(R) and hence Dfl
b(R) ⊆ thick(X) as well. �

7.16. Remark. Given X ∈ Dfl
+(R) and any n ∈ Z we can form the good truncation

X≥n ∈ Dfl
+(R) which satisfies

Hi(X≥n) =

{
Hi(X) for i ≥ n
0 for i < n.
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Since every complex splits into the direct sum of its homology, we have X ' X≥n⊕X ′
with X ′ ∈ Dfl

b(R). As noted above, all nonzero bounded complexes generate the
same thick subcategory:

0 6= X ∈ Dfl
b(R) =⇒ thick(X) = Dfl

b(R).

On the other hand, if X is not bounded then thick(X) = thick(X≥n) for any n ∈ Z.
The bottom-line is that only the behaviour in high degree is relevant.

7.17. Definition (Loewy sequences). Let E ∈ Dfl
+(R) be a complex with H0(E) 6= 0

and Hn(E) = 0 for n < 0. We define a function ``E : N→ N by

``E(n) := ``(Hn(E))

for each n ∈ N. More generally, if E ∈ Dfl
+(R) is nonzero then E[− inf(E)] is

concentrated in nonnegative degrees as above and we set ``E := ``E[− inf(E)]. Finally,
we define ``E for the zero complex E to be the constant zero function.

7.18. Construction. Let f : N→ N be a function. We write R/xf for the complex

· · · → R/xf(2) → R/xf(1) → R/xf(0) → 0→ 0→ · · ·
which has zero differentials and where R/xf(0) sits in degree 0. Note that R/xf ∈
Dfl

+(R) and we have ``R/xf = f provided that f(0) 6= 0.

7.19. Remark. For any k ∈ N, we can define σkf : N→ N by σkf(n) = f(n+ k) in
conformance with Notation 3.21. In particular, if f 6= 0 then we can consider

inf(f) := inf(R/xf ) = min{n ∈ N | f(n) 6= 0}.
According to Definition 7.17, ``R/xf = σinf(f)f . Moreover,

R/xσ
inf(f)f = R/xf [− inf(f)].

Thus, the function f ′ := σinf(f)f satisfies inf(f ′) = 0 and we have thick(R/xf ) =

thick(R/xf
′
) since these complexes are just shifts of each other. It follows that in

our study of nonzero complexes R/xf , there will often be no loss of generality in
assuming that f(0) 6= 0.

7.20. Lemma. Let f, g : N → N be functions. If f(n) ≤ g(n) for all n ∈ N then
R/xf ∈ thick(R/xg).

Proof. Consider the morphism of complexes R/xg → R/xg which in degree n is
xf(n) : R/xg(n) → R/xg(n). Its cone has R/xf =

⊕
n∈N R/x

f(n)[n] as a direct
summand by Lemma 7.14. �

7.21. Lemma. Let f, g : N → N be functions. There is a short exact sequence of
complexes

0→ R/xf → R/xf+g → R/xg → 0.

Proof. This follows from Lemma 7.5(c) and the definitions. �

7.22. Example. It follows from Lemma 7.20 and Lemma 7.21 that

thick(R/xf ⊕R/xg) = thick(R/xf∨g) = thick(R/xf+g)

for any two funtions f, g : N→ N.

7.23. Proposition. If f, g : N→ N are two monotonic sequences such that f ≤ g,
that is, such that f is asymptotically bounded by g, then R/xf ∈ thick(R/xg).
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Proof. The claim is trivial if f = 0. Otherwise, f and hence g is nonzero. Hence
thick(R/xg) ⊇ Dfl

b(R) by Proposition 7.15. By definition, f ≤ g means that there
exist positive integers A and n0 such that f(n) ≤ Ag(n) for all n ≥ n0. Thus
the truncation (R/xf )≥n0

∈ thick(R/xAg) by Lemma 7.20. On the other hand, it
follows from Lemma 7.21 that R/xAg ∈ thick(R/xg). Hence R/xf ∈ thick(R/xg)
bearing in mind Remark 7.16. �

We next take the tensor into account.

7.24. Remark. Let X,Y ∈ Dps(R). It follows from the decompositions of Remark 7.10
that

Hn(X ⊗L
R Y ) =

 ⊕
i+j=n

Hi(X)⊗R Hj(Y )

⊕
 ⊕
i+j=n−1

TorR1
(
Hi(X), Hj(Y )

)
for each n ∈ Z. We will use this decomposition repeatedly in what follows. Here we
have used the notation ⊗L

R for emphasis, but throughout the paper we are simply
writing ⊗ for the derived tensor product of complexes.

7.25. Remark. Recall from Example 3.4 that an arbitrary function f : N→ N gives

rise to a monotonic function f̂ .

7.26. Proposition. For any function f : N→ N, we have 〈R/xf 〉 = 〈R/xf̂ 〉.

Proof. We have the ⊆ inclusion by the above results (e.g., pointwise boundedness).

We need to prove that R/xf̂ ∈ 〈R/xf 〉. Consider the complex

(7.27) R↑ :=
⊕
n∈N

R[n] = (· · · → R→ R→ R→ 0→ · · · )

concentrated in non-negative degrees with zero differentials. From Remark 7.24, we
see that

Hn(R/xf ⊗R↑) =

n⊕
i=0

R/xf(i).

In particular, this contains R/xf̂(n) as a direct summand. Thus R/xf ⊗R↑ contains

R/xf̂ as a direct summand. �

8. Constructing thick ideals

We would like to have some control over the thick ideal 〈X〉 generated by a
pseudo-coherent complex X ∈ Dps(R). Clarity will be gained by abstracting our
method as follows:

8.1. Hypothesis. Let K be a tensor-triangulated category which is equipped with
subcategories {K≥n}n∈Z satisfying

ΣK≥n ⊆ K≥n+1 ⊆ K≥n and Σ−1K≥n ⊆ K≥n−1

for each n ∈ Z. We make the significant additional hypothesis that for every object
x ∈ K, there is some n ∈ Z such that x ∈ K≥n. Finally, we assume 1 ∈ K≥0

although this is just for convenience.

8.2. Example. We could take K = Dps(R) with K≥n consisting of those X ∈ Dps(R)
with Hi(X) = 0 for i < n.



30 BEREN SANDERS AND YUFEI ZHANG

8.3. Construction. Let C be a full subcategory of K and s ∈ Z. We write

C(s) :=
{
z
∣∣ z is a ⊕-summand of z′ and there exists an exact triangle

a→ z′ → b⊗ w → Σa with a, b ∈ C and w ∈ K≥s
}
.

8.4. Remark. If 0 ∈ C then C(s) contains all ⊕-summands of objects in C and we
also have C⊗K≥s ⊆ C(s).

8.5. Remark. Note that Σk1 ∈ K≥k for any k ∈ Z. So if 0 ∈ C then ΣkC ⊆ C(k).

8.6. Remark. If s ≤ t then C(t) ⊆ C(s) simply because K≥t ⊆ K≥s.

8.7. Remark. It follows from 1 ∈ K≥0 that C⊕ C ⊆ C(0).

8.8. Remark. If a→ b→ c→ Σa is an exact triangle in K with a, b ∈ C then c ∈ C(1).
Indeed, by rotation we have an exact triangle

b→ c→ Σa→ Σb

and Σa ' a⊗ Σ1 with Σ1 ∈ K≥1.

8.9. Notation. For a sequence s1, s2, . . . , sN of integers, write

C(s1, s2, . . . , sN ) := (C(s1, s2, . . . , sN−1))(sN ).

8.10. Remark. If C ⊆ D are full subcategories of K then certainly

C(s1, . . . , sN ) ⊆ D(s1, . . . , sN ).

With the above observations in hand, we can describe the thick ideal generated
by an object as follows:

8.11. Proposition. Let x ∈ K and let C := {all ⊕-summands of x}. Then

(8.12) 〈x〉 =
⋃

N≥1,

(s1,...,sN )∈ZN

C(s1, . . . , sN ).

Proof. We claim that the right-hand side of (8.12) is a thick ideal of K. It is a full
replete subcategory which contains zero. It follows from our observations (and our
hypothesis that every object is “bounded below”) that it is closed under −⊗K and,
in particular, closed under the suspension and desuspension — just observe that if
a ∈ C(s1, . . . , sN ) and b ∈ K≥n then a⊗ b ∈ C(s1, . . . , sN , n) by Remark 8.4. It also
follows from our observations that it is closed under direct summands. Moreover,
it is closed under cones. For this last claim, suppose a → b → c → Σa is an
exact triangle in K with a and b contained in the right-hand side of (8.12). So
a ∈ C(s1, . . . , sN ) for some s1, . . . , sN and b ∈ C(t1, . . . , tM ) for some t1, . . . , tM .
Then certainly a ∈ C(s1, . . . , sN , t1, . . . , tM ) but also b ∈ C(s1, . . . , sN , t1, . . . , tM )
since C ⊆ C(s1, . . . , sN ) implies C(t1, . . . , tM ) ⊆ C(s1, . . . , sN , t1, . . . , tM ). Hence
c ∈ C(s1, . . . , sN , t1, . . . , tM , 1) by Remark 8.8.

Thus, the right-hand side of (8.12) is a thick ideal of K. It contains x hence
contains 〈x〉. On the other hand, if I is any thick ideal then for any full subcategory D,
if D ⊆ I then D(s) ⊆ I for any s ∈ Z. Hence, if I is a thick ideal which contains x
then C ⊆ I and hence C(s1, . . . , sN ) ⊆ I for any s1, . . . , sN . We conclude that the
right-hand side of (8.12) is contained in all such I and hence is contained in 〈x〉. �

8.13. Corollary. Let x ∈ K and let C := {all ⊕-summands of x}. Then y ∈ 〈x〉 if
and only if there exist integers s and N such that y ∈ C(s, s, . . . , s︸ ︷︷ ︸

N times

).
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Proof. The (⇐) direction is clear from Proposition 8.11. For the (⇒) direction
recall that if s ≤ t then C(t) ⊆ C(s). By Proposition 8.11, y ∈ C(s1, . . . , sN ) for
some s1, . . . , sN and we can just take s := min(s1, . . . , sN ). �

8.14. Hypothesis. We now take K := Dps(R) and let K≥n be the subcategory of com-

plexes with homology concentrated in degrees ≥ n as in Example 8.2. Let x ∈ Dfl
+(R)

and let C := {all ⊕-summands of x}.

8.15. Lemma. In the notation of Construction 8.3, we have

``(Hn(z)) ≤ ``(Hn(z′)) ≤ ``(Hn(a)) + ``(Hn(b⊗ w))

and
``(Hn(b⊗ w)) ≤ max

−∞<i≤n−s
``(Hi(b))

for all n ∈ Z.

Proof. The first statement follows from Lemma 7.8 and Lemma 7.9 together with
Remark 7.10. For the second statement, Remark 7.24 and Lemma 7.8 imply that

``(Hn(b⊗ w)) = max
n−1≤i+j≤n

min(``(Hi(b)), ``(Hj(w))).

Note that w ∈ K≥s so Hj(w) = 0 for j < s. It then follows that

``(Hn(b⊗ w)) ≤ max
−∞<i≤n−s

``(Hi(b))

as desired. �

8.16. Remark. Suppose f : Z → N is a monotonic function which “dominates” C

in the sense that for each y ∈ C, we have ``(Hn(y)) ≤ f(n) for all n ∈ Z. It then
follows from Lemma 8.15 that, in the notation of Construction 8.3, we have

``(Hn(z)) ≤ ``(Hn(a)) + max
−∞<i≤n−s

``(Hi(b))

≤ f(n) + max
−∞<i≤n−s

f(i)

≤ f(n) + f(n− s)
for each n ∈ Z. If we then define f ′ by f ′(n) := f(n) + f(n − s) then f ′ is a
monotonic function which dominates C(s).

8.17. Example. Let s1, s2, . . . be a sequence of integers and suppose f0 : Z→ N is a
monotonic function which dominates C0 := C. Then for each k ≥ 1, the recursively
defined function fk(n) := fk−1(n) + fk−1(n − sk) is a monotonic function which
dominates Ck := C(s1, . . . , sk). We will utilize this idea in the proof of Theorem 8.21
below.

8.18. Remark. Recall from Definition 3.19 that for monotonic sequences f, g : N→ N,
we defined f ≤σ g to mean that f ≤ σkg for some positive integer k. This in turn
means that there is a constant A such that f(n) ≤ Ag(n+ k) for n� 0. Although
we only defined it for monotonic sequences, the definition of f ≤σ g evidently makes
sense for arbitrary sequences f, g : N→ N. Similarly, the definition of f ≤µ g also
makes sense for arbitrary sequences. The following will be helpful to bear in mind:

8.19. Lemma. Suppose g is a monotonic sequence with g 6= 0. Then

(a) f ≤ g if and only if f̂ ≤ g.

(b) f ≤σ g if and only if f̂ ≤σ g.
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(c) f ≤µ g if and only if f̂ ≤µ g.

Proof. The (⇐) directions are immediate since f ≤ f̂ pointwise. Moreover, parts (b)
and (c) follow from part (a) since if g 6= 0 then σkg and µkg are also nonzero for all

k ≥ 1. It thus suffices to prove that if f ≤ g then f̂ ≤ g. By definition, f ≤ g means
that there exist positive integers A and n0 such that f(n) ≤ Ag(n) for all n ≥ n0.
Without loss of generality, we can choose n0 large enough so that g(n0) 6= 0. Let

B := max{f̂(n0), A}. Then for any n ≥ n0 we have

f̂(n) = max{f̂(n0), max
n0≤i≤n

f(i)}

≤ max{f̂(n0), max
n0≤i≤n

Ag(i)}

= max{f̂(n0), Ag(n)}
≤ max{B,Bg(n)}
≤ Bg(n)

which establishes that f̂ ≤ g. �

8.20. Remark. The statement of Lemma 8.19 is not true for g = 0 since f ≤ 0 is

equivalent to f converging to zero whereas f̂ ≤ 0 is equivalent to f being identically
zero.

8.21. Theorem. Let X ∈ Dfl
+(R) and Y ∈ Dps(R). If Y ∈ 〈X〉 then ̂̀̀Y ≤σ ̂̀̀X .

Proof. Note that if Y ∈ 〈X〉 then Y ∈ Dfl
+(R) by Remark 7.12 since X ∈ Dfl

+(R).
Thus ``Y is well-defined. Define f0 ∈ Z→ N by

f0(n) :=

 max
inf(X)≤i≤n

``(Hi(X)) if n ≥ inf(X)

0 if n < inf(X).

Note that f0(n) = ̂̀̀
X(n − inf(X)) for n ≥ inf(X) according to Example 3.4

and the conventions of Definition 7.17. In any case, f0 is a monotonic function
which dominates C := {all ⊕-summands of X} in the sense of Remark 8.16. By
Corollary 8.13, the hypothesis Y ∈ 〈X〉 implies that there are integers N and s such
that Y ∈ C(s, s, . . . , s︸ ︷︷ ︸

N times

). Inductively define fk for k ≥ 1 by

fk(n) := fk−1(n) + fk−1(n− s).

By Remark 8.16 and Example 8.17, for any E ∈ C(s, s, . . . , s︸ ︷︷ ︸
k times

) we have

``(Hn(E)) ≤ fk(n)

for all n ∈ Z. Moreover, we can prove inductively that

fk(n) ≤ 2kf0(n+ k|s|)

for all n ∈ Z and k ≥ 0. This establishes that

``(Hn(Y )) ≤ 2Nf0(n+N |s|)
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for all n ∈ Z. In particular, recalling Definition 7.17, we have

``Y (n) = ``(Hn+inf(Y )(Y ))

≤ 2Nf0(n+ inf(Y ) +N |s|)

= 2N ̂̀̀X(n− inf(X) + inf(Y ) +N |s|)

for all n large enough so that n+ inf(Y ) +N |s| ≥ inf(X). Setting

t := max{0,− inf(X) + inf(Y ) +N |s|}

we thus have

``Y (n) ≤ 2Nσt̂̀̀X(n)

for all sufficiently large n. That is, we have the asymptotic bound ``Y ≤ σt̂̀̀X .

This proves that ``Y ≤σ ̂̀̀X . If ̂̀̀X 6= 0 then Lemma 8.19 implies ̂̀̀Y ≤σ ̂̀̀X . On

the other hand, if ̂̀̀X = 0 then X = 0 so that Y = 0 and hence ̂̀̀Y = 0 too. �

8.22. Remark. According to Definition 7.17, we have ``X(n) = ``(Hn+inf(X)) for

all n ∈ N. An alternative approach would be to consider the function ``′X : N→ N
defined by

(8.23) ``′X(n) := ``(Hn(X))

for each n ∈ N. Note that this function only captures the Loewy lengths of the
homology groups in non-negative degrees. It is a matter of preference which function
is deemed more natural (bearing in mind Remark 7.16). For the purposes of
exposition, either choice has pros and cons. In any case:

8.24. Lemma. For any X ∈ Dfl
+(R), the monotonic functions ̂̀̀X and ̂̀̀′X are

σ-equivalent.

Proof. This is a routine verification from the definitions and Lemma 8.19(b). �

8.25. Example. If f : N→ N is a monotonic sequence then f ∼σ ``R/xf .

8.26. Remark. It will be helpful to bear in mind that if f ∼σ f ′ and g ∼σ g′ then
f ≤σ g if and only if f ′ ≤σ g′. Moreover, note that if g is σ-stable (Definition 3.27)
then f ≤σ g if and only if f ≤ g.

8.27. Corollary. Let f, g : N → N be monotonic sequences. The following are
equivalent:

(a) R/xf is contained in the thick subcategory generated by R/xg.
(b) R/xf is contained in the thick ideal generated by R/xg.
(c) f ≤σ g.

Proof. The implication (a)⇒ (b) is immediate.
(b) ⇒ (c): Since f and g are monotonic, we have ``R/xf ≤σ ``R/xg by Theo-

rem 8.21. Hence f ≤σ g by Example 8.25.
(c)⇒ (a): By definition, (c) states that f ≤ σkg for some k ≥ 1. Proposition 7.23

then implies that R/xf ∈ thick(R/xσ
kg). On the other hand, R/xσ

kg is a direct
summand of R/xg[−k], namely it is the truncation (R/xg[−k])≥0 of Remark 7.16.
Thus R/xf ∈ thick(R/xg). �
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8.28. Remark. It is natural to ask whether the converse of Theorem 8.21 holds.
That is, to ask whether 〈X〉 =

{
Y ∈ Dfl

+(R)
∣∣ ̂̀̀

Y ≤σ ̂̀̀X } for any X ∈ Dfl
+(R).

In particular, do we have 〈R/xf 〉 =
{
Y ∈ Dfl

+(R)
∣∣ ̂̀̀

Y ≤σ f
}

for any monotonic
sequence f? To explore these questions we will need a new idea explored in the
next section; see Theorem 9.11 and Corollary 9.26.

9. Explodable complexes

We are still considering a discrete valuation ring R.

9.1. Construction. Let a : N→ N be a function. For any complex X ∈ D(R), define
the complex

X⊕a :=
⊕
n∈N

Hn(X)⊕a(n)[n]

which has zero differentials. For example, if X ∈ D≥0(R) is concentrated in non-
negative degrees then X⊕1 ∼= X.

9.2. Definition. A pseudo-coherent complex X is said to be explodable if X⊕a ∈ 〈X〉
for every function a : N→ N.

9.3. Example. Every bounded pseudo-coherent complex is explodable. Indeed,
if X 6= 0 is bounded then X⊕a is also bounded for any a and hence is contained in
the thick subcategory generated by X by Remark 7.16 and Remark 7.12. Moreover,
the statement is trivially true for X = 0.

9.4. Remark. The above construction is most naturally applied to complexes which
are concentrated in non-negative degrees. Indeed, X⊕a = (X≥0)⊕a where X≥0 is
the truncation of X. It follows from this observation and Remark 7.16 that X is
explodable if and only if its truncation X≥0 is explodable.

9.5. Remark. If â is the monotonic sequence associated to a (as in Example 3.4)
then X⊕a is a direct summand of X⊕â. It follows that X is explodable if and only
if X⊕a ∈ 〈X〉 for every monotonic sequence a : N→ N.

9.6. Lemma. Let f : N→ N be monotonic. If the complex R/xf is explodable then

the complex R/xσ
kf is explodable for all k ≥ 1.

Proof. The statement is trivial if f = 0 so suppose f 6= 0. This implies σkf(n) 6= 0
for n� 0 since f is monotonic. Consider any monotonic function a : N→ N. By
Remark 9.5, it suffices to prove

(R/xσ
kf )⊕a ∈ 〈R/xσ

kf 〉.
This is trivial if a = 0 so assume a 6= 0. Hence a(n) 6= 0 for n � 0 since a is
monotonic. Next note that a = σkb for the function b : N→ N defined by b(n) = 1
for n < k and b(n) = a(n− k) for n ≥ k. Observe that

(9.7) (R/xf )⊕b[−k] ' (R/xσ
kf )⊕a ⊕ E

where E ∈ Dfl
b(R). Since (R/xσ

kf )⊕a 6= 0, we have E ∈ thick((R/xσ
kf )⊕a) by

Remark 7.16. Thus (9.7) implies that

thick((R/xf )⊕b) = thick((R/xσ
kf )⊕a).

In particular, applied to a = b = 1, we have

thick(R/xf ) = thick(R/xσ
kf ).
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Thus, if R/xf is explodable then

(R/xσ
kf )⊕a ∈ 〈(R/xf )⊕b〉 ⊆ 〈R/xf 〉 = 〈R/xσ

kf 〉
as desired. �

9.8. Lemma. Let f : N → N be a function. For any constant A and function
a : N→ N, the complex (R/xAf )⊕a is contained in the thick subcategory generated
by (R/xf )⊕a.

Proof. For each n ∈ N, we have a short exact sequence

0→ (R/xf(n))⊕a(n) → (R/x2f(n))⊕a(n) → (R/xf(n))⊕a(n) → 0

by Lemma 7.5(c), which assemble into a short exact sequence of complexes

0→ (R/xf )⊕a → (R/x2f )⊕a → (R/xf )⊕a → 0.

Choose an N such that 2N ≥ A. Thus, with N extensions we can build (R/x2Nf )⊕a.
This has an endomorphism whose cone contains (R/xAf )⊕a as a direct summand;
see Lemma 7.14. �

9.9. Lemma. Let X ∈ Dfl
≥0(R) and let f : N→ N be a monotonic function such that

``(Hn(X)) ≤ f(n) for all n ∈ N. Then X ∈ thick((R/xf )⊕a) where a(n) denotes
the number of indecomposable summands in Hn(X).

Proof. Suppose M is a finite length R-module with decomposition

M ' R/xk1 ⊕R/xk2 ⊕ · · · ⊕R/xkm .
It follows from Lemma 7.14 that if ` ≥ ``(M) = max{ki | 1 ≤ i ≤ m} then M is a
direct summand of the cone of the diagonal map

(R/x`)⊕m → (R/x`)⊕m

which in degree i is multiplication by xki . Since f(n) ≥ ``(Hn(X)), we have for
each n ∈ N a map

(R/xf(n))⊕a(n) gn−→ (R/xf(n))⊕a(n)

whose cone contains Hn(X) as a direct summand. The cone of the morphism

(R/xf )⊕a =
∐
n≥0

(R/xf(n))⊕a(n)[n]

∐
n≥0 gn[n]

−−−−−−−→
∐
n≥0

(R/xf(n))⊕a(n)[n] = (R/xf )⊕a

is
∐
n≥0 cone(gn)[n] and hence contains

∐
n≥0Hn(X)[n] as a direct summand.

Thus, X is contained in the thick subcategory generated by (R/xf )⊕a. �

9.10. Proposition. Let X ∈ Dfl
+(R) and let f : N → N be a monotonic function

satisfying ̂̀̀X ≤σ f . If the complex R/xf is explodable then X ∈ 〈R/xf 〉.

Proof. The statement is trivially true if X = 0 so suppose X 6= 0. Observe that
``X′ = ``X for X ′ := X[− inf(X)] ∈ Dfl

≥0(R). Moreover, X ∈ thick((R/xf )⊕a)

if and only if X ′ ∈ thick((R/xf )⊕a). Thus, replacing X by X ′ we may assume

X ∈ Dfl
≥0(R) with ``X(n) = ``(Hn(X)) for all n ≥ 0. By hypothesis, ̂̀̀X ≤ σkf

for some k ≥ 1. If f = 0 then ``X = 0 so that X = 0. Thus, we may assume

f 6= 0. By Lemma 9.6 and Corollary 8.27, replacing f by σkf , we may assume

without loss of generality that ̂̀̀X ≤ f . Thus there are constants A and n0 so

that ̂̀̀X(n) ≤ Af(n) for all n ≥ n0. Since R/xf 6= 0, Remark 7.16 implies that
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X ∈ 〈R/xf 〉 if and only if X≥n0
∈ 〈R/xf 〉. Replacing X by X≥n0

we may assume,
without loss of generality, that ``(Hn(X)) ≤ Af(n) for all n ∈ N. Let a : N→ N be
the function with a(n) equal to the number of indecomposable summands in Hn(X).
Lemma 9.9 then implies that X is contained in the thick subcategory generated by
(R/xAf )⊕a. Lemma 9.8 then implies that X is contained in the thick subcategory
generated by (R/xf )⊕a. If the complex R/xf is explodable then (R/xf )⊕a ∈ 〈R/xf 〉
so that X ∈ 〈R/xf 〉. �

9.11. Theorem. Let f be a monotonic sequence such that R/xf is explodable. The
following hold:

(a) 〈R/xf 〉 =
{
E ∈ Dfl

+(R)
∣∣ ̂̀̀

E ≤σ f
}

.

(b) 〈R/xf 〉 = 〈E〉 for all E ∈ Dfl
+(R) with ̂̀̀E ∼σ f .

(c) Any complex E satisfying ̂̀̀E ∼σ f is explodable.

Proof. (a): The ⊆ inclusion follows from Theorem 8.21 bearing mind Example 8.25
and the ⊇ inclusion follows from Proposition 9.10.

(b): Part (a) provides the ⊇ inclusion. On the other hand, E[− inf(E)] con-
tains R/x``E as a direct summand. It then follows from Proposition 7.26 that the

thick ideal 〈E〉 contains R/x
̂̀̀

E .

(c): For any a : N→ N, `̂`E⊕a = ̂̀̀
E so (a) and (b) imply that E⊕a ∈ 〈E〉. �

9.12. Remark. We now want to understand for which monotonic sequences f is the
complex R/xf explodable. The following constructions are taken from [MT17]:

9.13. Definition. Let E be a complex with zero differentials. Let Esplit denote the
complex

· · · → 0→ E2 → 0→ E1 → 0→ E0 → 0→ · · ·
with Ei in degree 2i, let Eeven denote the complex

· · · → E6 → E4 → E2 → E0 → E−2 → · · ·

with E2i in degree i, and let Eodd denote the complex

· · · → E7 → E5 → E3 → E1 → E−1 → · · ·

with E2i+1 in degree i.

Matsui–Takahashi asked whether a complex E satisfies the following properties:

9.14. Definition. We say that a pseudo-coherent complex E satisfies property

(MT1) if Eeven, Eodd ∈ 〈E〉;
(MT2) if E ∈ 〈Esplit〉.

9.15. Proposition (Matsui–Takahashi). If (MT1) holds for E then E is explodable.

Proof. This follows from [MT17, Corollary 7.3]. �

Our next task is to gain an understanding of when condition (MT1) holds.

9.16. Lemma. Let f be a monotonic sequence. Condition (MT1) holds for the
complex R/xf if and only if the following two conditions hold:

(a) µf ≤σ f , and
(b) µσf ≤σ f .
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Proof. For the complex E = R/xf , we have Eeven = R/xµf and Eodd = R/xµσf .
Corollary 8.27 then implies that Eeven ∈ 〈E〉 if and only if µf ≤σ f and Eodd ∈ 〈E〉
if and only if µσf ≤σ f . �

9.17. Lemma. Let f be a monotonic sequence. The following conditions are
equivalent:

(a) µf ≤σ f
(b) µσf ≤σ f
(c) f is µ-stable.

Proof. (a)⇒ (b): Observe that

(µσf)(n) = f(2n+ 1) ≤ f(2n+ 2) = µf(n+ 1) = (σµf)(n)

so µσf ≤σ σµf ≤σ σf ≤σ f .
(b) ⇒ (c): We first establish that f is σ-stable. By assumption, there exist

positive integers A and k such that f(2n+ 1) ≤ Af(n+ k) for n� 0. This implies
that for n � 0 even, f(n + 1) ≤ Af(n/2 + k) ≤ Af(n) while for n � 0 odd,
f(n+ 1) ≤ f(n+ 2) ≤ Af((n+ 1)/2 + k) ≤ Af(n). Thus, σf ≤ f . It then follows
using (b) that

µf ≤ µσf ≤ σkf ≤ f
which demonstrates that f is µ-stable.

(c)⇒ (a): This follows immediately from µf ≤ f . �

9.18. Proposition. Let f be a monotonic sequence. Condition (MT1) holds for the
complex E = R/xf if and only if f is µ-stable.

Proof. This immediately follows from Lemma 9.16 and Lemma 9.17. �

9.19. Example. The complex R/xf satisfies (MT1) for the polynomial f(n) = nd.
Matsui–Takahashi [MT17, Example 7.5] established the d = 1 case.

9.20. Example. The proposition establishes that (MT1) does not hold in general.
For example, it doesn’t hold for the complex R/xf with f(n) = 2n, since this f is
not µ-stable. This provides a negative answer to [MT17, Question 7.4].

9.21. Corollary. If f is µ-stable then the complex R/xf is explodable.

Proof. This follows from Proposition 9.15 and Proposition 9.18. �

Next we consider condition (MT2).

9.22. Remark. Note that (R/xf )split = R/xfsplit where fsplit : N→ N is defined by

fsplit(n) =

{
f(n/2) if n is even

0 if n is odd.

Observe that f̂split(n) = f(bn/2c) for each n ∈ N.

9.23. Lemma. Let f be a monotonic sequence. If f ≤σ f̂split then f is σ-stable.

Proof. By definition, f ≤σ f̂split means that there is an A, k and n0 such that

f(n) ≤ Af̂split(n+ k) for n ≥ n0. Hence, for n ≥ max(n0, k+ 1) we have f(n+ 1) ≤
Af̂split(n+ k + 1) ≤ Af̂split(2n) = Af(n). �
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9.24. Proposition. Let f be a monotonic sequence. Condition (MT2) holds for the
complex E = R/xf if and only if f is µ-stable.

Proof. It follows from Proposition 7.26 and Corollary 8.27 that E ∈ 〈Esplit〉 if

and only if f ≤σ f̂split. In other words, (MT2) holds if and only if f ≤σ f̂split.

One readily checks that f ≤σ f̂split implies µf ≤σ f . Since f is also σ-stable (by
Lemma 9.23), this implies µf ≤ f , so that f is µ-stable. Conversely, suppose f is
µ-stable. Thus there exist constants A and n0 such that f(2n) ≤ Af(n) for n ≥ n0.
Consider an n > 2n0 + 1. If n is even then f(n) ≤ Af(n/2) while if n is odd then
f(n) ≤ f(n + 1) ≤ Af(bn/2c + 1) ≤ Af(2bn/2c) ≤ A2f(bn/2c). Thus we have

f(n) ≤ A2f(bn/2c) = A2f̂split(n) for all n > 2n0 + 1. So that f ≤ f̂split which of

course implies f ≤σ f̂split. �

9.25. Theorem. If f is a monotonic sequence, then the following are equivalent:

(a) (MT1) holds for R/xf ;
(b) (MT2) holds for R/xf ;
(c) f is µ-stable.

Proof. This follows from Proposition 9.18 and Proposition 9.24. �

9.26. Corollary. If f is a µ-stable monotonic sequence then

〈R/xf 〉 =
{
E ∈ Dfl

+(R)
∣∣ ̂̀̀

E ≤σ f
}

=
{
E ∈ Dfl

+(R)
∣∣ ̂̀̀

E ≤ f
}
.

Proof. This follows from Theorem 9.25, Proposition 9.15 and Theorem 9.11 bearing
in mind that, since f is µ-stable, we have g ≤ f ⇔ g ≤σ f ⇔ g ≤µ f for any
monotonic sequence g. �

10. Convolutions and radical ideals

In the previous sections, we have established several results concerning the thick
ideal 〈E〉 generated by a pseudo-coherent complex E with a particular emphasis
on complexes of the form E = R/xf . The strongest results were obtained for
complexes which are explodable (Definition 9.2). In this section, we will provide

more satisfactory results concerning the radical thick ideal
√
〈E〉 generated by a

pseudo-coherent complex E. The results we obtain for
√
〈E〉 are more complete

than those we have established for 〈E〉. One reason for this is that while we
do not know if the complex R/xf is always explodable, we can prove that it is

always “explodable up to tensor powers” meaning that (R/xf )⊕a ∈
√
〈R/xf 〉 for

any sequence a; see Proposition 10.15. This phenomenon leads to Theorem 10.18
which explicitly describes the principal radical ideal

√
〈R/xf 〉 for any monotonic

sequence f .

10.1. Definition. We define the convolution f ∗ g of two sequences f, g : N→ N by

(f ∗ g)(n) := max
0≤i≤n

min(f(i), g(n− i)).

10.2. Remark. The following facts are readily verified:

(a) Convolution is commutative: f ∗ g = g ∗ f pointwise.
(b) Convolution is associative: f ∗ (g ∗ h) = (f ∗ g) ∗ h pointwise.5

5Both (f ∗(g∗h))(n) and ((f ∗g)∗h)(n) are the maximum value the function min(f(x), g(y), h(z))
takes over the simplex x + y + z = n, x, y, z ≥ 0.
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(c) f ∗ g is monotonic if either f or g is monotonic.
(d) f ∗ g ≤ f if f is monotonic.

10.3. Lemma. Let f be a monotonic sequence with f(0) 6= 0 and let E ∈ Dfl
+(R) be

a nonzero complex with inf(E) = 0. Then

``R/xf⊗E = f ∗ ``E .

Proof. For notational simplicity, let g(n) := ``E(n) = ``(Hn(E)). It follows from
Remark 7.24, Lemma 7.8 and Remark 4.10 that for any n ∈ N we have

(``R/xf⊗E)(n) = ``(Hn(R/xf ⊗ E))

= max
(

max
i+j=n

min(f(i), g(j)), max
i+j=n−1

min(f(i), g(j))
)

= max
(
(f ∗ g)(n), (f ∗ g)(n− 1)

)
= (f ∗ g)(n)

since f ∗ g is monotonic (since f is monotonic). �

10.4. Lemma. For any monotonic sequence f , we have

(f ∗ f)(n) = f(bn/2c)
for all n ∈ N.

Proof. For 0 ≤ i ≤ n, define g(i) := f(n− i). Thus,

(f ∗ f)(n) = max
0≤i≤n

min(f(i), g(i)).

Observe that while f is monotonically increasing, the function g is monotonically
decreasing on the interval 0, . . . , n. Moreover, note that the “graphs” of f and g
are symmetric about x = n/2. More precisely, for any 0 ≤ k ≤ bn/2c, we have

g(bn/2c − k) = f(dn/2e+ k).

Note that for such k we have bn/2c − k ≤ dn/2e + k. Hence g(bn/2c − k) =
f(dn/2e+ k) ≥ f(bn/2c − k). It follows that

max
0≤i≤bn/2c

min(f(i), g(i)) = max
0≤i≤bn/2c

f(i) = f(bn/2c).

On the other hand, for such k we also have f(dn/2e+k) = g(dn/2e−i) ≥ g(dn/2e+k).
It follows that

max
dn/2e≤i≤n

min(f(i), g(i)) = max
dn/2e≤i≤n

g(i) = g(dn/2e).

Finally, just observe that g(dn/2e) = f(bn/2c). �

10.5. Lemma. Let f and g be monotonic sequences. Then f ∗ g ≤ f ∧ g ≤ µ(f ∗ g)
pointwise. Hence f ∗ g and f ∧ g are µ-equivalent.

Proof. The first inequality f ∗ g ≤ f ∧ g holds by Remark 10.2(d). On the other
hand, we have

(f ∧ g)(n) = min(f(n), g(n)) ≤ max
i+j=2n

min(f(i), g(j)) = µ(f ∗ g)(n)

for all n ∈ N. It follows that f ∗ g and f ∧ g are µ-equivalent (Definition 3.19). �

10.6. Lemma. For any monotonic sequence f , we have µ(f ∗ f) = f pointwise.

Proof. This immediately follows from Lemma 10.4 �
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10.7. Lemma. Let f and g be monotonic sequences. If f ≤ µg then f ∗ f ≤ g.

Proof. This is a routine consequence of Lemma 10.4. �

10.8. Lemma. For any monotonic sequences f and a, the complex ((R/xf )⊕a)⊗2

is contained in the thick subcategory generated by the pseudo-coherent complex with
zero differentials E ∈ Dfl

≥0(R) defined by

(10.9) En :=
⊕

0≤i≤bn/2c

(R/xf(i))⊕a(i)a(n−i)

for all n ∈ N.

Proof. By Remark 7.24 and Lemma 7.5 we have

Hn((R/xf )⊕a ⊗ (R/xf )⊕a) =
⊕

0≤i≤n

(R/xmin(f(i),f(n−i)))⊕a(i)a(n−i)(10.10)

⊕
⊕

0≤i≤n−1

(R/xmin(f(i),f(n−1−i)))⊕a(i)a(n−1−i)

for each n ∈ N. As explained in the proof of Lemma 10.4,

min(f(i), f(n− i)) =

{
f(i) for 0 ≤ i ≤ bn/2c
f(n− i) for dn/2e ≤ i ≤ n.

It follows that the first term of (10.10) coincides with⊕
0≤i≤bn/2c

(R/xf(i))⊕a(i)a(n−i) ⊕
⊕

dn/2e≤i≤n

(R/xf(n−i))⊕a(i)a(n−i)

which in turn coincides with

(10.11)

 ⊕
0≤i≤bn/2c

(R/xf(i))⊕a(i)a(n−i)

⊕
 ⊕

0≤i≤bn/2c

(R/xf(i))⊕a(i)a(n−i)

 .

One similarly shows that the second term of (10.10) coincides with the analogue of
(10.11) in which n is replaced by n−1; since a is monotonic, this is a direct summand
of (10.11). In summary, (R/xf )⊕a ⊗ (R/xf )⊕a is a direct summand of E⊕4 where

E ∈ Dfl
≥0(R) is the complex with zero differentials defined by

En =
⊕

0≤i≤bn/2c

(R/xf(i))a(i)a(n−i).

Thus, (R/xf )⊕a ⊗ (R/xf )⊕a is contained in thick(E⊕4) = thick(E). �

10.12. Proposition. For any monotonic sequence f , we have

(R/xf )⊗2 ∈ 〈R/xf∗f 〉.

Proof. By Lemma 10.8, it suffices to prove that E ∈ 〈R/xf∗f 〉 where E ∈ Dfl
≥0(R)

is the complex with zero differentials defined by

En =
⊕

0≤i≤bn/2c

R/xf(i)

for each n ∈ N. Now recall the complex R↑ from (7.27). For each n ∈ N, we have

Hn(R/xf∗f ⊗R↑) =
⊕

0≤i≤n

R/x(f∗f)(i) =
⊕

0≤i≤n

R/xf(bi/2c)
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where the last equality is from Lemma 10.4. Focusing on the even i, we see that E
is a direct summand of R/xf∗f ⊗R↑. Hence E ∈ 〈R/xf∗f 〉. �

10.13. Corollary. For any monotonic sequence f , we have

(R/xf )⊗2k

∈ 〈R/xf
∗2k

〉

for each k ≥ 1.

Proof. First note that if a ∈ 〈b〉 in a tensor-triangulated category, then a standard
thick subcategory argument implies that a⊗ a ∈ 〈b⊗ b〉. We then prove the claim
by induction. The base k = 1 case is Proposition 10.12. For the inductive step,
observe that

(R/xf )⊗2k+1

= (R/xf )⊗2k

⊗ (R/xf )⊗2k

∈ 〈R/xf
∗2k

⊗R/xf
∗2k

〉 ⊆ 〈R/xf
∗2k+1

〉

by the inductive hypothesis and another application of Proposition 10.12. �

10.14. Theorem. Let f and g be monotonic sequences. We have R/xf ∈
√
〈R/xg〉

if and only if f ≤µ g.

Proof. The claim is trivial if f = 0 so we may assume f 6= 0. If we then define f ′

by f ′(n) := f(n+ inf(f)) then R/xf
′

= R/xf [− inf(f)] and f ′ ∼σ f . In particular,
f ′ ∼µ f . Thus, replacing f by f ′ we may assume without loss of generality that
f(0) 6= 0. Hence ``(R/xf ) = f .

(⇒): Suppose R/xf ∈
√
〈R/xg〉. Thus (R/xf )⊗m ∈ 〈R/xg〉 for some m ≥ 1. It

follows that (R/xf )⊗2k ∈ 〈R/xg〉 for some k ≥ 1. By an inductive application of

Lemma 10.3, we have ``
(R/xf )⊗2k = (``R/xf )∗2

k

= f∗2
k

. In particular, this Loewy

sequence is monotonic. Theorem 8.21 then implies that ``
(R/xf )⊗2k ≤σ g, that

is, f∗2
k ≤σ g. Hence f∗2

k ≤µ g. On the other hand, Lemma 10.6 implies that

h ≤µ h ∗ h for any monotonic sequence h. Thus, f ≤µ f∗2
k

so that f ≤µ g.

(⇐): If f ≤µ g then f ≤ µkg for some k ≥ 1. Lemma 10.7 then implies f∗2
k ≤ g.

Hence R/xf
∗2k ∈ 〈R/xg〉 by Corollary 8.27. It then follows from Corollary 10.13

that (R/xf )⊗2k ∈ 〈R/xg〉. �

10.15. Proposition. For any monotonic sequence f , we have

(R/xf )⊕a ⊗ (R/xf )⊕a ∈ 〈R/xf 〉

for any function a : N→ N.

Proof. Replacing a by â, we may assume without loss of generality that a is
monotonic. By Lemma 10.8, it suffices to prove that E ∈ 〈R/xf 〉 where E ∈ Dfl

≥0(R)
is the complex with zero differentials defined by

En =
⊕

0≤i≤bn/2c

(R/xf(i))a(i)a(n−i)

for n ∈ N. To this end, define b : N→ N by

b(n) :=

2n∑
j=0

a(j)a(2n− j)



42 BEREN SANDERS AND YUFEI ZHANG

and observe that

(10.16) Hn(R/xf ⊗ (R↑)⊕b) =
⊕

0≤i≤n

(R/xf(i))⊕b(n−i)

where R↑ is the complex from (7.27). For each 0 ≤ i ≤ bn/2c, we have

b(n− i) ≥
n∑
j=0

a(j)a(2n− 2i− j) ≥
n∑
j=0

a(j)a(n− j) ≥ a(i)a(n− i).

Hence (10.16) has En as a direct summand. It follows that

E ∈ thick(R/xf ⊗ (R↑)⊕b) ⊆ 〈R/xf 〉
as desired. �

10.17. Corollary. For any E ∈ Dfl
+(R), we have E ⊗ E ∈ 〈R/x``E 〉.

Proof. Note that E[− inf(E)] ⊗ E[− inf(E)] ∼= (E ⊗ E)[−2 inf(E)] and ``E =
``E[− inf(E)] by definition. Thus, replacing E by E[− inf(E)] we may assume that

E ∈ Dfl
≥0(R) with H0(E) 6= 0. Then ``E(n) = ``(Hn(E)) for all n ∈ N.

Let f := ̂̀̀
E . By Proposition 7.26, it suffices to prove that E ⊗ E ∈ 〈R/xf 〉.

Moreover, by Lemma 9.9, we have E ∈ thick((R/xf )⊕a) where a(n) is the number
of indecomposable summands in Hn(E). It follows that

E ⊗ E ∈ thick((R/xf )⊕a ⊗ (R/xf )⊕a)

by a standard thick subcategory argument. Hence E ⊗ E ∈ 〈R/xf 〉 by Proposi-
tion 10.15. �

10.18. Theorem. For any monotonic sequence f , we have√
〈R/xf 〉 =

{
E ∈ Dfl

+(R)
∣∣ ̂̀̀

E ≤µ f
}
.

Proof. If 0 6= E ∈
√
〈R/xf 〉 then E′ := E[− inf(E)] ∈

√
〈R/xf 〉 and R/x``E′ is

a direct summand of E′. Hence R/x`̂`E′ ∈ 〈E′〉 ⊆
√
〈R/xf 〉 by Proposition 7.26.

Hence ̂̀̀E := ̂̀̀
E′ ≤µ f by Theorem 10.14. Conversely, if E ∈ Dfl

+(R) satisfieŝ̀̀
E ≤µ f then R/x

̂̀̀
E ∈

√
〈R/xf 〉 by Theorem 10.14 and E ⊗ E ∈ 〈R/x``E 〉 =

〈R/x̂̀̀
E 〉 by Corollary 10.17 and Proposition 7.26. Hence E ⊗ E ∈

√
〈R/xf 〉 and

therefore E ∈
√
〈R/xf 〉 as well. �

10.19. Corollary. For any X ∈ Dfl
+(R), we have√

〈X〉 =
√
〈R/x``X 〉 =

{
E ∈ Dfl

+(R)
∣∣ ̂̀̀

E ≤µ ̂̀̀X }.
Proof. The statement is true if X = 0. Otherwise, replacing X by X[− inf(X)],
we may assume without loss of generality that ``X(n) = ``(Hn(X)) for all n ∈ Z.

Hence, R/x``X is a direct summand of X so that R/x``X ∈
√
〈X〉. On the other

hand, √
〈R/x``X 〉 =

√
〈R/x̂̀̀

X 〉 =
{
E ∈ Dfl

+(R)
∣∣ ̂̀̀

E ≤µ ̂̀̀X }
by Proposition 7.26 and Theorem 10.18. In particular, X ∈

√
〈R/x``X 〉. �

10.20. Corollary. For any two monotonic sequences f and g, we have

(10.21)
√
〈R/xf ⊗R/xg〉 =

√
〈R/xf∗g〉 =

√
〈R/xf∧g〉 =

√
〈R/xf 〉 ∩

√
〈R/xg〉.
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Proof. The statement is true if either f = 0 or g = 0. Otherwise, replacing f
by σinf(f)f and g by σinf(g)g we may assume that f(0) 6= 0 and g(0) 6= 0. Then
``R/xf = f and ``R/xg = g. Lemma 10.3 then asserts that ``R/xf⊗R/xg = f ∗ g.
Hence the first equality in (10.21) follows from Corollary 10.19. On the other
hand, f ∗ g and f ∧ g are µ-equivalent by Lemma 10.5. Hence the second equality
in (10.21) follows from Theorem 10.14. Finally, the last equality also follows from

Corollary 10.19 since if E ∈
√
〈R/xf 〉 ∩

√
〈R/xg〉 then ̂̀̀E ≤µ f and ̂̀̀E ≤µ g

which implies that ̂̀̀E ≤µ f ∧ g. �

10.22. Corollary. Let f be a monotonic sequence. The ideal 〈R/xf 〉 is radical if
and only if f is µ-stable.

Proof. (⇒): Observe that R/xµf ∈
√
〈R/xf 〉 by Theorem 10.14 since µf ≤µ f .

Hence R/xµf ∈ 〈R/xf 〉 if the ideal 〈R/xf 〉 is radical. This implies that µf ≤σ f by
Corollary 8.27 which is equivalent to f being µ-stable by Lemma 9.17.

(⇐): If E ∈
√
〈R/xf 〉 then ̂̀̀E ≤µ f by Theorem 10.18. This implies ̂̀̀E ≤ f if

f is µ-stable. Hence E ∈ 〈R/xf 〉 by Corollary 9.26. �

11. The spectrum for a discrete valuation ring

We have developed the tools needed to compute the Balmer spectrum of Dps(R).
Recall from Example 2.14 that PRad(Dps(R)) denotes the bounded distributive
lattice of principal radical ideals of Dps(R).

11.1. Theorem. Let R be a discrete valuation ring. We have an isomorphism of
bounded distributive lattices

(ASeq/µ)+
∼−→ PRad(Dps(R))

given by [f ]µ 7→
√
〈R/xf 〉 and ∞ 7→ Dps(R) =

√
〈R〉.

Proof. It follows from Theorem 10.14 that the map is well-defined, injective and
order-preserving. Moreover, recall from Remark 7.12 that if E ∈ Dps(R)\Dfl

+(R) then√
〈E〉 =

√
〈R〉 = Dps(R). Thus Corollary 10.19 implies that the map is surjective.

It evidently preserves the bottom and top elements. Moreover, it preserves binary
joins by Example 7.22 and it preserves binary meets by Corollary 10.20. Hence, it
is an isomorphism of bounded distributive lattices. �

11.2. Corollary. Let R be a discrete valuation ring. We have an isomorphism

Spc(Dps(R)) ∼= Spec+(ASeq/µ)∨.

Proof. This follows from Theorem 11.1 by Stone duality (Remark 2.11) bearing in
mind Example 2.14. �

11.3. Example. Recall that the points of Spec+(ASeq/µ)∨ are the prime ideals of the
lattice (ASeq/µ)+. There is a unique largest prime ideal, namely the collection of all
asymptotic sequences ASeq/µ ( (ASeq/µ)+. Bearing in mind that the specialization
order is flipped under Hochster duality, this largest prime ideal is the unique generic
point of Spec+(ASeq/µ)∨.

11.4. Remark. In general, under the isomorphism of Corollary 11.2, a prime ideal P ∈
Spc(Dps(R)) corresponds to the prime ideal

{
[f ]µ

∣∣R/xf ∈ P
}
∈ Spec+(ASeq/µ)∨.

For example, we see that the generic point τ(η) = Dfl
+(R) indeed corresponds

to ASeq/µ.
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11.5. Proposition. Let f be a monotonic sequence. Then
√
〈R/xf 〉 is a prime

ideal of Dps(R) if and only if [f ]µ is a prime element of the lattice (ASeq/µ)+.

Proof. In general, a principal radical ideal
√
〈a〉 ∈ PRad(K) is a prime ideal of K if

and only if
√
〈a〉 is a prime element of the lattice PRad(K). Thus, the claim follows

from Theorem 11.1. �

11.6. Example. The zero sequence [0]µ is evidently a prime in (ASeq/µ)+ and hence,
since it is the bottom element, the singleton {[0]µ} is a prime ideal. It is the smallest
prime ideal and the unique closed point in Spec+(ASeq/µ)∨. Of course, we evidently
see that it corresponds to the closed point τ(m) = (0) of Spc(Dps(R)).

11.7. Proposition. The bounded sequence [1]µ is a prime element of (ASeq/µ)+.
Hence {[0]µ, [1]µ} is the smallest nonzero prime ideal of (ASeq/µ)+.

Proof. The first statement amounts to proving that if f and g are monotonic
sequences that are not asymptotically bounded, then g ∧ h is not asymptotically
bounded. Indeed, for any positive integers A and n, there exists an n0 ≥ n such
that f(n0) > A and there exists an n1 ≥ n such that g(n1) > A. Since f and g are
monotonic, we have (f ∧ g)(m) > A for m = max(n0, n1). The second statement
follows from the fact that [1] is the smallest nonzero asymptotic monotonic sequence
(Example 3.14) so the principal ideal it generates is {[0], [1]}. �

11.8. Corollary. The thick ideal 〈R/x〉 =
{
E ∈ Dfl

+(R)
∣∣ ``E is bounded

}
is a prime

ideal. It is the smallest nonzero prime ideal of Dps(R).

Proof. It follows from Proposition 11.7 and Proposition 11.5 that the radical ideal√
〈R/x1〉 is a prime ideal of Dps(R). This coincides with 〈R/x1〉 by Corollary 10.22

since 1 is µ-stable. Moreover, 〈R/x1〉 = 〈R/x〉 by Proposition 7.26. The equality in
the statement follows from Theorem 10.18 bearing in mind Lemma 8.24, Remark 8.26
and Lemma 8.19. It is the smallest nonzero prime ideal (in fact, the smallest nonzero
thick ideal) by Proposition 7.15. �

11.9. Remark. In summary, we have the following picture:

Spc(Dps(R)) Spec(R)
ρ

•

•
•

•

•

On the left, we have three explicitly specified points, namely (from top to bottom)
the zero ideal (0) = τ(m), the smallest nonzero prime ideal 〈R/x〉 and the largest

prime ideal Dfl
+(R) = τ(η).

12. The complexity of asymptotic sequences

The lattice of µ-equivalence classes of asymptotic sequences is extremely compli-
cated and correspondingly the cyan region of Spec(Dps(R)) depicted above is quite
complicated. We want to obtain more explicit information about it.
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12.1. Remark. Recall from Remark 3.34 that we have an inclusion of distributive
lattices ASeqµ ↪→ ASeq/µ. Hence we have a surjective spectral map

(12.2) Spc(Dps(R) ∼= Spec+(ASeq/µ)∨ � Spec+(ASeqµ)∨.

We can gain information about the former space by investigating the latter space.
Thus, we want to study the lattice of µ-stable sequences further.

12.3. Remark. Recall that we have discussed some examples of σ-stable sequences
and µ-stable sequences in Examples 3.28. In particular, polynomials are µ-stable
(and hence σ-stable) while exponential functions are σ-stable but not µ-stable.
Considering these examples, one might wonder whether sequences fail to be µ-stable
or σ-stable simply because they grow too fast. With this in mind we can ask: If f
is asymptotically bounded by a σ-stable (respectively, µ-stable) sequence g, does it
follow that f is itself σ-stable (respectively, µ-stable)? Here is a counterexample:

12.4. Example. Let f(n) = max{k! | k! ≤ n} and let g(n) = n. Then f ≤ g since
f(n) = g(n) if n = k! for some k and f(n) < g(n) if n 6= k! for all k. Also, g
is µ-stable. However, we claim that f is not σ-stable (and hence not µ-stable
either). In fact, for each positive integer k, we have f(k! − 1) = (k − 1)! and
(σf)(k!− 1) = f(k!) = k! for all k. For any fixed A, choosing any k > A, we have

(σf)(k!− 1) = k! > A(k − 1)! = Af(k!− 1)

which shows that f is not σ-stable. This shows that ASeqσ and ASeqµ are not ideals
of ASeq since they are not down-sets.

12.5. Remark. While the lattice ASeqµ is complicated, we can generalize the poly-
nomials of Example 3.15 to obtain a more manageable sublattice.

12.6. Definition (Power sequences). For any non-negative real number α ∈ R≥0,
define fα(n) := bnαc. We call fα a power sequence. It is straightforward to check
that power sequences are µ-stable. Also note that f0 is the bounded sequence 1.

12.7. Remark. If we set gα(n) := dnαe then clearly fα(n) ≤ gα(n) ≤ fα(n) + 1 ≤
gα(n) + 1, which implies fα ∼ gα. Thus, choosing the floor (over the ceiling) does
not change the nature of the power sequence.

12.8. Remark. Let α, β ∈ R≥0. We have fα ≤ fβ if and only if fα ≤µ fβ if and only
if α ≤ β. In particular, two power sequences fα and fβ are asymptotically equivalent
if and only if they are µ-equivalent if and only if α = β. There is thus a continuum
of asymptotic equivalence classes of power sequences, indexed by non-negative real
numbers, namely

{
[fα]

∣∣α ∈ R≥0

}
. Consequently, ASeqµ and hence ASeqσ, ASeq,

ASeq/µ and ASeq/σ all contain uncountably many elements.

12.9. Definition. We write PSeq for the subset of ASeqµ consisting of the power
sequences together with [0]. It is a totally ordered sublattice of ASeqµ. We can thus
augment (12.2) by considering the surjections

Spc(Dps(R)) ∼= Spec+(ASeq/µ)∨ � Spec+(ASeqµ)∨ � Spec+(PSeq)∨.

12.10. Remark. We can describe the spectrum Spec+(PSeq)∨ by working through
Example 2.17. Since the lattice PSeq+ is totally ordered, every element (excluding∞)
is prime. In particular, we have the smallest prime ideal o := 〈0〉 = {0} and for each
0 ≤ α <∞ we have the prime ideal pα := 〈fα〉 = {0} ∪

{
fβ
∣∣ 0 ≤ β ≤ α}, including

p0 = 〈f0〉 = 〈1〉 = {0, 1}. In addition, for each 0 < α ≤ ∞, we have a prime ideal
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qα := {0} ∪
{
fβ
∣∣β < α

}
, including the largest prime ideal q∞ = PSeq. These

are all the prime ideals, since they are all the nonempty proper down-sets. Since
Hochster duality flips the specialization order, we have p q if and only q ⊆ p. We
may visualize this space as follows:

Spec+(PSeq)∨ =

•

•
•

The top point (the closed point) is 〈0〉, the next point is p0 = 〈1〉, and the bottom
point (the generic point) is q∞ = PSeq. The points on the left-hand branch are the
points pα, 0 < α < ∞, going downwards as α increases. Similarly, the points on
the right-hand branch are the points qα, 0 < α < ∞, also going downwards as α
increases. The red diagonal lines hint at the specialization order. We have

{pα} = {o} ∪
{
pβ
∣∣ 0 ≤ β ≤ α} ∪ { qβ ∣∣ 0 < β ≤ α

}
, and

{qα} = {o} ∪
{
pβ
∣∣ 0 ≤ β < α

}
∪
{
qβ
∣∣ 0 < β ≤ α

}
.

In particular, for each α > 0, we have pα  qα. The diagonal lines in the figure
indicate that, in contrast, qα 6 pα but rather qα  pβ for each β < α. Thus, the
depiction does not tell the whole story, since there are also specializations going
from the left branch to the right branch. The nonempty Thomason closed subsets
are the sets

V (α) := {o} ∪
{
pβ
∣∣β < α

}
∪
{
qβ
∣∣β ≤ α}

for 0 ≤ α ≤ ∞. We see that the visible points are precisely the qα, 0 < α ≤ ∞. In
particular, the point 〈[1]〉 = p0 is not visible. The space is not noetherian.

12.11. Remark. One can readily check that the spectral map corresponding to
the sublattice inclusion {0, 1}+ ⊆ PSeq+ ⊆ (ASeq/µ)+ can be identified, under
the homeomorphism Spc(Dps(R)) ∼= Spec+(ASeq/µ)∨, with the comparison map
ρ : Spc(Dps(R))→ Spec(R). Recalling Remark 11.9, we have

Spc(Dps(R)) Spec+(PSeq)∨ Spec(R)

•

•
•

•

•
•

•

•

12.12. Remark. This discussion proves that Spc(Dps(R)) for a discrete valuation
ring is not noetherian since it surjects onto a non-noetherian space. Moreover, it
has at least 2ℵ0 many points, while Spec(R) has only two points. Matsui [Mat19,
Theorem 3.1] proves that if Spc(Dps(R)) is noetherian then Spec(R) is finite. The
converse is thus far from true.

12.13. Remark. Recall from Proposition 11.5 that the principal radical ideal
√
〈R/xf 〉

is a prime ideal of Dps(R) if and only if [f ]µ is a prime element of the lattice
(ASeq/µ)+. We will establish, however, that the lattice of µ-equivalence classes of
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monotonic sequences has only two prime elements, namely [0] and [1]. It will follow
that, although Dps(R) has at least a continuum many prime ideals, only two of
them are finitely generated; see Corollary 13.13 below. The proof of this result is
somewhat intricate and will be given in the next section.

13. Technical constructions

In order to prove that the bounded distributive lattice (ASeq/µ)+ has few prime
elements, we need to construct some bizarre monotonic sequences.

13.1. Construction. Let k0 < k1 < k2 < · · · be a strictly increasing sequence of
natural numbers. Suppose f0 and f1 are monotonic sequences which satisfy

(a) f0(ki+1 − 1) ≤ f1(ki+1) and f1(ki+1 − 1) ≤ f0(ki+1) for each i ∈ N; and
(b) f0(k0 − 1) ≤ f1(k0) if k0 > 0.

Note that for each n ≥ k0, there is a unique i ∈ N such that ki ≤ n < ki+1. For any
subset S ⊆ N, we can define

(13.2) fS(n) :=


f1(n) if ki ≤ n < ki+1 and i ∈ S
f0(n) if ki ≤ n < ki+1 and i 6∈ S
f0(n) if n < k0

The hypotheses ensure that fS is monotonic for any S ⊆ N. Observe that f∅ = f0

while fN(n) = f1(n) for n ≥ k0. The construction is simplest when k0 = 0 but we
will need the extra flexibility which allows the indexing sequence to start at k0 > 0.

13.3. Lemma. In the context of Construction 13.1, suppose that f0 ≤ f1. Then

(a) fS1 ∧ fS2 ∼ fS1∩S2 and
(b) fS1 ∨ fS2 ∼ fS1∪S2

for any two subsets S1, S2 ⊆ N.

Proof. By hypothesis, there are positive integers A and N such that f0(n) ≤ Af1(n)
for all n ≥ N . Without loss of generality we may take N ≥ k0. We will establish
that

(fS1
∧ fS2

)(n) ≤ fS1∩S2
(n) ≤ A(fS1

∧ fS2
)(n)

and
(fS1∪S2

)(n) ≤ (fS1
∨ fS2

)(n) ≤ A(fS1∪S2
)(n)

for all n ≥ N . For any such n, there is a unique i such that ki ≤ n < ki+1. If
i ∈ S1 ∩ S2 then fS1∩S2

(n) = fS1
(n) = fS2

(n) = f1(n) while if i 6∈ S1 ∪ S2 then
fS1∪S2

(n) = fS1
(n) = fS2

(n) = f0(n). In both of these cases,

fS1∩S2(n) = (fS1 ∧ fS2)(n) = (fS1 ∨ fS2)(n) = fS1∪S2(n).

It thus remains to consider the case where i belongs to precisely one of the subsets.
Suppose i ∈ S1 \ S2 or i ∈ S2 \ S1. Then (fS1 ∧ fS2)(n) = min(f1(n), f0(n)) and
(fS1 ∨ fS2)(n) = max(f1(n), f0(n)). If f0(n) ≤ f1(n) then

(fS1
∧ fS2

)(n) = f0(n) = fS1∩S2
(n) and fS1∪S2

(n) = f1(n) = (fS1
∨ fS2

)(n).

Otherwise, if f1(n) < f0(n) then

(fS1 ∧ fS2)(n) = f1(n) < f0(n) = fS1∩S2(n) = f0(n) ≤ Af1(n) = A(fS1 ∧ fS2)(n)

and

fS1∪S2
(n) = f1(n) < f0(n) = (fS1

∨ fS2
)(n) = f0(n) ≤ Af1(n) = AfS1∪S2

(n)
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which finishes the proof. �

13.4. Construction. Let f0 be an unbounded monotonic sequence. We construct a
strictly increasing sequence k0 < k1 < · · · as follows. Let k0 := min{n | f0(n) 6= 0}
and inductively define

ki+1 := min{n | f0(n) > 2if0(ki)}.

Now define f1 : N→ N by

f1(n) :=

{
2if0(ki) if ki ≤ n < ki+1 for some (unique) i ≥ 1, and

0 if n < k0.

This sequence is monotonic and constructed so that f0 ≤ f1 and f1 6≤ f0. Moreover,
the sequences f0 and f1 satisfy the hypotheses of Construction 13.1. Thus, we have
a well-defined monotonic sequence fS for every S ⊆ N.

13.5. Lemma. In the situation of Construction 13.4, the sequence fS is asymptoti-
cally bounded by f0 if and only if the subset S ⊆ N is finite.

Proof. If S is finite then fS(n) = f0(n) for n� 0 and hence fS ≤ f0. Now suppose
that S is infinite. For any positive integers A and N , we may choose i ∈ S large
enough so that ki > N and 2i > A. Then fS(ki) = f1(ki) = 2if0(ki) > Af0(ki).
This establishes that fS 6≤ f0. �

13.6. Theorem. Let f be an unbounded monotonic sequence. Its asymptotic equiva-
lence class [f ] is not a prime element in the lattice ASeq+.

Proof. Using Construction 13.1 and Construction 13.4 above for f0 := f , we can
consider feven := fS1 where S1 = Neven is the subset of even natural numbers and
fodd := fS2 where S2 = Nodd is the subset of natural numbers. By Lemma 13.5,
feven 6≤ f and fodd 6≤ f . However, by Lemma 13.3, feven ∧ fodd ∼ f∅ = f . In other
words, [feven] ∧ [fodd] ≤ [f ] and yet [feven] 6≤ [f ] and [fodd] 6≤ [f ]. That is, [f ] is not
a prime element. �

To prove the analogous statement for (ASeq/µ)+ we make a slight modification:

13.7. Construction. Let f0 be an unbounded monotonic sequence. We construct a
strictly increasing sequence k0 < k1 < · · · as follows. Let k0 := min{n | f0(n) 6= 0}
and inductively define

ki+1 := min{n | f0(n) > 2if0(2iki)}.

Now define f1 : N→ N by

f1(n) :=

{
2if0(2iki) if ki ≤ n < ki+1 for some (unique) i ≥ 1, and

0 if n < k0.

This sequence is monotonic and constructed so that f0 ≤ f1 and f1 6≤µ f0. Moreover,
the sequences f0 and f1 satisfy the hypotheses of Construction 13.1. Thus, we have
a well-defined monotonic sequence fS for every S ⊆ N.

13.8. Lemma. In the situation of Construction 13.7, we have fS ≤µ f0 if and only
if the subset S ⊆ N is finite.
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Proof. As before, if S is finite then fS(n) = f0(n) for n � 0 and hence fS ≤ f0.
Now suppose that S is infinite. We claim that fS 6≤µ f0. In other words, fS 6≤ µkf0

for every k ≥ 1. For any positive integers k, A and N , since S is infinite, we may
choose i ∈ S large enough so that ki > N , 2i > A and i > k. Then

fS(ki) = f1(ki) = 2if0(2iki) > Af0(2kki) = Aµkf0(ki).

This establishes that fS 6≤ µkf0. �

13.9. Theorem. Let f be an unbounded monotonic sequence. Its µ-equivalence
class [f ]µ is not a prime element in (ASeq/µ)+.

Proof. The proof of Theorem 13.6 goes through verbatim using Construction 13.7,
Lemma 13.8 and ≤µ instead of Construction 13.4, Lemma 13.5 and ≤. �

13.10. Corollary. Let f be an unbounded monotonic sequence. The radical ideal√
〈R/xf 〉 =

{
E ∈ Dfl

+(R)
∣∣ ̂̀̀

E ≤ f
}

is not a prime ideal of Dps(R).

Proof. If this were a prime ideal then Proposition 11.5 implies that [f ]µ would be a
prime element of the bounded distributive lattice (ASeq/µ)+ which is not the case
by Theorem 13.9. �

13.11. Corollary. Let f be an unbounded µ-stable sequence. The radical ideal

〈R/xf 〉 =
{
E ∈ Dfl

+(R)
∣∣ ``(Hn(E)) is asymptotically bounded by f

}
is not a prime ideal of Dps(R).

Proof. This is a special case of Corollary 13.10. The ideal 〈R/xf 〉 is radical by
Corollary 10.22 and the displayed equality follows from Theorem 10.18 bearing in
mind that ̂̀̀

E ≤µ f ⇐⇒ ``E ≤µ f (Lemma 8.19)

⇐⇒ ``′E ≤µ f (Lemma 8.24)

⇐⇒ ``′E ≤ f (f is µ-stable)

where ``′E(n) = ``(Hn(E)) was defined in Remark 8.22. �

13.12. Remark. It is claimed in [MT17, Theorem F and Theorem 7.11] that for each
integer c ≥ 1, the subcategory

Lc :=
{
E ∈ Dfl

+(R)
∣∣ ``(Hn(E)) is asymptotically bounded by nc−1

}
is a prime ideal of Dps(R). This is true for c = 1 but Corollary 13.11 establishes
that this is false for c ≥ 2. These Lc are not prime for c ≥ 2. The error lies in the
proof of [MT17, Theorem 7.11]. The offending statement is: “As ae > tec−1, we
must have ae > bn−e, and bn−e ≤ tnc−1 for all n ≥ e.” This logic is faulty, however.
There is no reason a priori why we couldn’t have ae ≤ tnc−1 for some n > e and
hence could have bn−e > tnc−1 for some n > e. Translated to our point of view,
their argument amounts to an attempt to prove that h(n) = nc−1 is prime; more
specifically, that f ∗ g ≤ h implies f ≤ h or g ≤ h. (Since h is µ-stable, this is
equivalent to saying that [h]µ is a prime element of (ASeq/µ)+ bearing in mind
Lemma 10.5.) Here is the analogue of the incorrect argument using our notation:
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Suppose f ∗g ≤ h. So there exists A and n0 such that (f ∗g)(n) ≤ Ah(n)
for all n ≥ n0. Suppose f 6≤ h. So there exists e ≥ n0 such that
f(e) > Ah(e). Now, for any n ≥ e we have

min(f(e), g(n− e)) ≤ (f ∗ g)(n) ≤ Ah(n).

Since f(e) > Ah(e) we must have g(n− e) ≤ Ah(n) for all n ≥ e. (This

previous sentence is unjustified.) Hence g(n) ≤ Ah(n + e) for n � 0.

That is, g ≤ σeh. Since h is µ-stable, it is σ-stable, hence g ≤ h.

In summary, the argument is faulty and we have in fact proved that the statement
is false. Nevertheless, we found Matsui and Takahashi’s study of this example very
intriguing. It served as the inspiration for the current paper.

13.13. Corollary. There are at least 2ℵ0 prime ideals in Dps(R) but only two of
these prime ideals are finitely generated.

Proof. Since P ∈ Spc(Dps(R)) is radical, it is finitely generated as a thick ideal if and
only if it is finitely generated as a radical ideal. Moreover, being finitely generated is
equivalent to being generated by a single object. Thus, if P is finitely generated then
it is a principal radical ideal. We proved in Corollary 10.19 that every proper principal
radical ideal

√
〈E〉 of Dps(R) is of the form

√
〈R/xf 〉 for some monotonic sequence f .

This sequence cannot be unbounded by Corollary 13.10. The only remaining cases
are the zero sequence [0] and the bounded sequence [1], which do indeed provide
finitely generated prime ideals (Example 11.6 and Proposition 11.7). �
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