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Abstract. We prove that the map on Balmer spectra induced by a fully
faithful geometric functor is a quotient map whose fibers are connected. This is

an analogue of the Zariski Connectedness Theorem in algebraic geometry and it

can be applied to a plethora of examples in equivariant and motivic mathematics.
We isolate a significant source of examples by introducing the “concentration”

of a tt-category at a well-behaved chosen set of compact generators. Various

categories of cellular objects arise in this way. In particular, the “unitation” of
a tt-category is the concentration at the unit object. We compute the Balmer

spectrum of the unitation of the equivariant stable homotopy category as well

as related categories arising in equivariant higher algebra. We also apply our
results to the study of the comparison map of a tt-category. Among other

results, we prove that the comparison map of a connective category is a quotient
map with connected fibers. This involves studying the tt-geometry of weight

complex functors, which may be of independent interest. We also study the
relationship between the comparison map and the affinization of the Balmer
spectrum viewed as a locally ringed space. These results provide a layered

approach to understanding the spectrum of a given tt-category, by starting
with the Zariski spectrum of the endomorphism ring of the unit, and then
passing backwards to larger and larger concentrations (through quotient maps

with connected fibers). Significant stages along the way include the passage to
the unitation and the passage to the concentration at the Picard group.
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1. Introduction

This paper is a study of fully faithful functors in tensor triangular geometry.
Throughout S and T will denote rigidly-compactly generated tt-categories. We prove
the following:

1.1. Theorem. Let f∗ : T → S be a fully faithful geometric functor. Then the
induced map ϕ : Spc(Sc) → Spc(Tc) is a spectral quotient map whose fibers are
connected.

This is an analogue in tensor triangular geometry of the Zariski Connectedness
Theorem in algebraic geometry. It is established as Theorem 5.5. The notion of a
spectral quotient map (Terminology 2.1) is a slight generalization of the usual notion
of a topological quotient map in point-set topology. It coincides with the usual notion
if the domain is noetherian. In fact, the spectral quotient map of Theorem 1.1 is a
topological quotient map whenever either of the spaces is noetherian; see Remark 5.6.
The first part of the theorem holds more generally:

1.2. Theorem. Let f∗ : T → S be a faithful geometric functor. Then the induced
map ϕ : Spc(Sc)→ Spc(Tc) is a spectral quotient map.

This is established as Theorem 4.1. Examples of faithful and fully faithful
geometric functors are plentiful in the algebraic, topological and motivic domains
where tt-geometry has taken root and a large portion of the paper is devoted to
explaining the consequences of the above two theorems in these various settings.
We formalize a significant source of examples as follows: For any set G ⊆ Tc of
compact objects such that thick〈G〉 ⊆ Tc is a rigid tensor-subcategory, the localizing
subcategory

T〈G〉 := Loc〈G〉 ⊆ T

is itself a rigidly-compactly generated tt-category and the inclusion T〈G〉 ↪→ T

is a fully faithful geometric functor. We call T〈G〉 the concentration of T at G.
For example, the category of cellular motivic spectra SHcell(C) ⊆ SH(C) is the
concentration of SH(C) at the motivic spheres and the derived category of Tate
motives DTM(C) ⊆ DM(C) is the concentration of DM(C) at the Tate twists.

Although the concentration at G is a tt-subcategory T〈G〉 ⊆ T, we regard concen-
tration as a process T  T〈G〉 which geometrically effects a quotient with connected
fibers: Spc(Tc)→ Spc(Tc〈G〉). We call the extreme case G = {1} the unitation of T:

T〈1〉 := Loc〈1〉 ⊆ T

Note that T〈1〉 = T says that T is unigenic meaning that it is generated by the tensor
unit. We thus also call T〈1〉 the unigenic core of T.

Examples in equivariant higher algebra. We study the process of concentration
for various examples arising in equivariant higher algebra with a particular emphasis
on unitation. For example, in Theorem 13.16 we completely determine the map

Spc(SHc
G)→ Spc((SHG)c〈1〉)

induced by the unitation of the equivariant stable homotopy category SHG for any
finite group G. The G = Cp case is depicted in Figure 1. In general, it glues together
those points which become glued in the spectrum of the Burnside ring, but only at
height infinity.
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Figure 1. The Balmer spectrum of the unitation of SHCp
.

This result for SHG is obtained by first understanding the unitation of its
linearization — the category of derived Mackey functors D(HG,Z) — and its chromatic
truncations (SHG)≤n. This is accomplished in Theorem 13.11 and Theorem 13.15,
respectively. We discover that unitation behaves very differently in these two cases,
which reflects the curious behaviour of the unitation of SHG.

We also describe the unitations of the derived category of permutation mod-
ules DPerm(G; k), the category of derived representations DRep(G; k), and the
derived category of the abelian category of Mackey functors D(Mack(G)). There is
a chain of tt-functors

(1.3) SHG → D(HG,Z)→ D(Mack(G))→ DPermG → DRepG

and we will see that each category behaves in a qualitatively different way with
respect to unitation; see Section 13.

The comparison map. These constructions are closely related to the (graded and
ungraded) comparison map

ρ : Spc(Tc)→ Spec(RT)

whose target is the Zariski spectrum of the (graded or ungraded) endomorphism
ring of the unit. Since T〈1〉 ↪→ T is fully faithful, this ring is the same for both
categories, and we have a factorization

(1.4)

Spc(Tc)

Spc
(
Tc〈1〉

)
Spec(RT).

ϕ

ρ

ρ

If the top ρ is a homeomorphism then the spectral quotient ϕ is injective and hence
a homeomorphism. On the other hand, if the bottom ρ is a homeomorphism then
unitation coincides with the comparison map. Both of these extreme possibilities
can occur, although the example of SHG shows that in general each map can be
nontrivial.

The first step in a general strategy for understanding the Balmer spectrum of
a category T is to understand Spec(RT). The task of computing Spc(Tc) then
amounts to determining the fibers of the associated comparison map. This approach
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has been highly effective; see [BS17] and [ABHS25], for example. From our current
point of view, this method factors into two steps:

(a) Understand the spectrum of the unitation Spc(Tc〈1〉) by understanding the

fibers of its comparison map ρ : Spc(Tc〈1〉)→ Spec(RT); then

(b) Understand the fibers of ϕ : Spc(Tc)→ Spc
(
Tc〈1〉

)
where we have Theorem 1.1

at our disposal.

This perspective is particularly fruitful because we can prove strong results about the
comparison map of a unigenic category — which covers step (a) above — especially
when the category is connective (Definition 11.1):

1.5. Theorem. Let T = Ho(C) be a rigidly-compactly generated tt-∞-category which
is connective and unigenic. The ungraded comparison map ρ : Spc(Tc)→ Spec(RT)
is a closed quotient map whose fibers are local.

This theorem is well illustrated by the familiar map ρ : Spc(SHc) → Spec(Z)
whose fibers each contain a unique closed point. The key to the theorem is Propo-
sition 11.14 which establishes that, under the above hypotheses, each algebraic
localization of T is a local category (Proposition 11.14). For this we utilize the theory
of weight structures. Any connective and unigenic category T admits a canonical
weight structure and we prove that the associated weight complex functor provides
a splitting ω : Spec(RT) ↪→ Spc(Tc) of the comparison map, which embeds a copy
of Spec(RT) inside Spc(Tc). This copy of Spec(RT) is precisely the subspace con-
sisting of the unique relative closed points of the fibers of ρ : Spc(Tc)→ Spec(RT).
See Theorem 12.5. We also provide another perspective on these weight complex
functors, which may be of independent interest; see Proposition 11.19.

It is worth pointing out that Theorem 1.5 is false without the unigenic hypothesis.
Nevertheless, combined with our results on unitation we obtain:

1.6. Theorem. Let T = Ho(C) be a rigidly-compactly generated tt-∞-category which
is connective. The ungraded comparison map ρ : Spc(Tc)→ Spec(RT) is a spectral
quotient map whose fibers are connected.

This is proved in Corollary 12.9. As with Theorem 1.1, ρ is a topological quotient
map if either of the spaces are noetherian; see Remark 12.12.

We also obtain results for the graded comparison map:

1.7. Theorem. Let T be a rigidly-compactly generated tt-category. Suppose the
graded ring RT := End•(1) is coherent (e.g., noetherian). The graded comparison
map ρ : Spc(Tc)→ Spec(RT) is a spectral quotient map.

This strengthens [Bal10, Theorem 7.3] and generalizes results in [Lau23, Section 2].
It is proved in Theorem 10.8. Again, a stronger statement is obtained if T is further
assumed to be unigenic; see Proposition 10.6.

Twisted cohomology and the Picard group. Step (b) of the above method —
namely, understanding Spc(Tc)→ Spc

(
Tc〈1〉

)
— can be further refined by considering

increasingly larger concentrations:

Spc(Tc)→ · · · → Spc
(
Tc〈G2〉

)
→ Spc

(
Tc〈G1〉

)
→ Spc

(
Tc〈1〉

)
.

A significant step in this process is the concentration at the Picard group Pic(T).
This is of interest because all of the twisted comparison maps ρu associated to
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elements u ∈ Pic(T) factor through the map

(1.8) Spc(Tc)→ Spc
(
Tc〈Pic(T)〉

)
.

A result of interest in this context is Proposition 14.5.

Affinization. Regarding the Balmer spectrum as a locally ringed space, we may
consider its affinization, that is, the universal morphism to an affine scheme

α : Spec(Tc)→ Spec(AT).

The ungraded comparison map ρ : Spec(Tc) → Spec(RT) factors through the
affinization and, in general, this factorization is distinct from the factorization
through the unitation (1.4). For derived categories of schemes T = D(X), the
affinization and the comparison map coincide (Proposition 17.2). More generally,
we establish several sufficient criteria for α and ρ to coincide; see Proposition 17.19
and Proposition 17.21. This is the case, for example, if T is connective and RT is a
domain. These results provide another approach to understanding the comparison
map. They also provide a means for easily establishing that, for certain categories,
the Balmer spectrum is not a scheme.

Locally unigenic categories. As we will see, it is possible for a fully faithful
geometric functor to induce a homeomorphism on Balmer spectra without being an
equivalence. However, we demonstrate in Proposition 15.3 that this only occurs due
to the failure of the categories involved to be locally unigenic (Definition 15.1). This
leads to the study of the unigenic locus of a given category (Definition 15.10) which
we investigate for each of the equivariant examples mentioned above. For example,
although the derived category of permutation modules is never unigenic, it is locally
unigenic for an elementary abelian p-group. In general, the unigenic locus can be a
proper nonempty subset of the spectrum; see the examples in Section 15.

Derived categories of schemes are a prominent class of locally unigenic categories.
Those schemes with unigenic derived categories are studied in Section 17 and shown
to properly contain the class of quasi-affine schemes. Together with the connection
between affinization and the comparison map, this provides unusual examples of
unigenic categories that help demonstrate the limits of our theorems.

Overall, throughout this work, we illustrate our results with various examples
and explore the extent to which the statements of our theorems are the best possible.
The author hopes that these results will be helpful in the future study of the Balmer
spectrum. For example, they already provide useful information about the derived
category of motives over R; see Example 9.3.

Outline of the document. We start in Section 2 by introducing the notion of a
spectral quotient map. Various properties of these maps are established, including
a characterization which will be useful in the proof of our main theorems. We then
briefly recall the notion of a geometric functor in Section 3 and fix some notation
used throughout. Theorem 1.2 is proved in Section 4 and Theorem 1.1 is proved in
Section 5. Since faithful and fully faithful geometric functors are the objects of study
in this work, we give various characterizations of these properties in Section 6. We
augment this discussion in Section 7 with a consideration of full geometric functors.
This concludes Part I.

In Section 8 we introduce the notions of concentration and unitation and illustrate
these concepts with various examples. We briefly illustrate our main theorems in
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Section 9 with some motivic examples. We then turn to studying the comparison
map of a tt-category in Section 10. Here we establish our theorems for the graded
comparison map. We discuss the theory of weight structures in Section 11 and
apply this in Section 12 to prove our theorems about the ungraded comparison
map of a connective category. In Section 13 we study in detail the unitations of
various categories arising in equivariant higher algebra. We then briefly discuss the
twisted comparison maps and the Picard group in Section 14. We study locally
unigenic categories and introduce the unigenic locus in Section 15. In particular,
we study the unigenic locus of the equivariant categories considered earlier. In
Section 16, we discuss examples of (fully) faithful functors in algebraic geometry
before studying unigenic derived categories of schemes in Section 17. Here we also
consider affinization and its relation to the comparison map, which concludes the
paper.

Notation and conventions.

(a) We will write x y to indicate that x specializes to y; that is, y ∈ {x}.
(b) A tt-category is rigid if every object is dualizable.
(c) Our schemes will always be quasi-compact and quasi-separated. We will

write D(X) := Dqc(X) for the derived category of complexes of OX -modules
whose cohomology groups are quasi-coherent.

(d) Unless stated otherwise, G denotes a finite group and k denotes a field of
positive characteristic p.

Terminology. We will utilize standard terminology and notation used in tensor
triangular geometry. Any undefined terms or unspecified notation can be found
in [BHS23], [Bal10] or [DST19].
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the author’s stay at the Hausdorff Research Institute for Mathematics for the
trimester program Spectral Methods in Algebra, Geometry, and Topology funded by
the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under
Germany’s Excellence Strategy – EXC-2047/1 – 390685813. The author thanks
the participants of the Oberwolfach conference Tensor-triangular geometry and
Interactions for sharing their thoughts on terminology. He would also like to thank
Paul Balmer, Tobias Barthel, Ivo Dell’Ambrogio, Martin Gallauer and Drew Heard
for interesting discussions and helpful comments.
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Part I. The geometry of fully faithful functors

In this first part, we study the tensor triangular geometry of fully faithful
geometric functors. Examples and applications will be deferred to Part II.

2. Spectral spaces and quotient maps

We begin with a discussion of spectral quotient maps. We will take for granted
familiarity with basic notions concerning spectral spaces as discussed in [DST19].

2.1. Terminology. A surjective continuous map ϕ : X → Y of topological spaces
is a topological quotient map if it has the property that a subset C ⊆ Y is open
whenever ϕ−1(C) is open. A surjective spectral map ϕ : X → Y of spectral spaces
is a spectral quotient map if a subset C ⊆ Y is quasi-compact open whenever ϕ−1(C)
is quasi-compact open.

2.2. Remark. If a spectral map ϕ : X → Y of spectral spaces is a topological quotient
map then it is a spectral quotient map. On the other hand, [DST19, Example 6.4.18]
provides an example of a spectral quotient map which is not a topological quotient
map. Moreover, in this example the target space Y is noetherian (see [DST19,
Example 8.1.4(iii)]). Nevertheless, the two notions coincide if either:

(a) X is noetherian; or
(b) Y is finite.

The first case is immediate since every subspace of a noetherian space is quasi-
compact. On the other hand, if Y is finite then every point is constructible, hence
the constructible topology is discrete (see [DST19, Corollary 8.1.17]). It follows that
for any subset C ⊆ Y , the preimage ϕ−1(C) is constructible, hence is quasi-compact
open if and only if it is open.

2.3. Remark. A composite of two spectral quotient maps is again a spectral quotient
map. Moreover, if ϕ : X → Y is a spectral quotient map, then for any quasi-compact
open U ⊆ Y , the corestriction ϕ−1(U)→ U is again a spectral quotient map.

2.4. Remark. The notion of a spectral quotient map has many equivalent characteri-
zations, spelled out in [DST19, Theorem 6.4.9]. In particular, a surjective spectral
map ϕ : X → Y is a spectral quotient if and only if a constructible set C ⊆ Y is
quasi-compact open whenever ϕ−1(C) is quasi-compact open. Moreover, since the
complement of a constructible set is again constructible, this is equivalent to saying
that ϕ is a spectral quotient if and only if a constructible set C ⊆ Y is Thomason
closed whenever ϕ−1(C) is Thomason closed.

2.5. Remark. Recall that a basic constructible set is a set of the form U ∩V c with U
and V quasi-compact open, and that every constructible set is a finite union of basic
constructible sets; see [DST19, Proposition 1.3.13 and Corollary 1.3.15]. As we shall
see in Theorem 4.1 below, the following notion will be relevant for our study of
faithful functors in tt-geometry.

2.6. Definition. A surjective spectral map ϕ : X → Y is a weak spectral quotient
map if for every basic constructible set B ⊆ Y , we have that B is Thomason closed
whenever ϕ−1(B) is Thomason closed.
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2.7. Remark. Every spectral quotient map is a weak spectral quotient map since
if B ⊆ Y is a basic constructible set then its complement Bc = Y \B is constructible.
On the other hand, the following diagram

(2.8)

• •

• •

• •
depicts a weak spectral quotient which is not a spectral quotient. Note, however,
that the corestriction

× ×

• •

• •
is not a weak spectral quotient. This leads to:

2.9. Definition. A surjective spectral map ϕ : X → Y is a heritable weak spectral
quotient map if for each quasi-compact open U ⊆ Y , the corestriction

ϕ−1(U)→ U

is a weak spectral quotient.

2.10. Example. The map (2.8) is a weak spectral quotient that is not a heritable
weak spectral quotient.

2.11. Remark. Our primary goal at present is to characterize spectral quotient maps
as precisely the heritable weak spectral quotient maps; see Proposition 2.16 below.
This will take some preparation.

2.12. Definition. Let ϕ : X → Y be a spectral map. Given points y, y′ ∈ Y with
y  y′, we say that ϕ satisfies weak lifting from y′ to y if there exists a sequence
of points x0, x1, . . . , xn ∈ X such that ϕ(x0) = y′ and ϕ(xn) = y and with the
property that xi is a specialization of a point in the same fiber as xi+1. Visually:

ϕ(x0)=y′

ϕ(x1)

ϕ(x2)

...

ϕ(xn−1)

ϕ(xn)=y

x0

x1

x2

...

xn−1

xn

We say that ϕ satisfies the weak lifting property if the above holds for all specializa-
tions y  y′ in Y .

2.13. Remark. The weak lifting property generalizes the lifting property described
in [DST19, Proposition 6.4.13] which in turn generalizes both the going-up and
going-down properties.
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2.14. Proposition. If a spectral map ϕ : X → Y has the weak lifting property, then
it is a topological quotient.

Proof. This is proved in a manner similar to [DST19, Proposition 6.4.13]. First note
that the weak lifting property implies that ϕ is surjective. Next let Z ⊆ Y be an
arbitrary subset and suppose ϕ−1(Z) is closed. Then in particular ϕ−1(Z) is closed
under specialization. We claim that Z is similarly closed under specialization. To
this end, let y ∈ Z and let y′ be a specialization of y. By the weak lifting property,
there exist x0, x1, . . . , xn ∈ X as in Definition 2.12. Note that xn ∈ ϕ−1(Z)
since ϕ(xn) = y ∈ Z. Moreover, xn−1 is a specialization of a point w ∈ X with
ϕ(w) = ϕ(xn) ∈ Z. Thus w ∈ ϕ−1(Z) and hence xn−1 ∈ ϕ−1(Z) since the latter
is closed under specialization. Continuing in this fashion we establish that each of
the xi is contained in ϕ−1(Z). In particular, x0 ∈ ϕ−1(Z) so that y′ = ϕ(x0) ∈ Z.
This establishes that Z is specialization closed. It follows that Z is closed since
Z = ϕ(ϕ−1(Z)) is proconstructible, being the image of a proconstructible set under
a spectral map ([DST19, Corollary 1.3.23]). We have established that if ϕ−1(Z) is
closed then Z is closed. �

2.15. Lemma. A heritable weak spectral quotient ϕ : X → Y with Y finite is a
topological quotient.

Proof. We will establish that ϕ satisfies the weak lifting property (Definition 2.12).
Let y0 ∈ Y . By considering the corestriction ϕ−1(gen(y0)) → gen(y0) we may
assume that Y is local with unique closed point y0. Consider the collection S ⊆ Y
of all points y to which we have weak lifting from y0. We claim that S = Y . If
not, then since Y is finite, we can choose a point y ∈ Y which is minimal among
all points in Y \ S; that is, y 6∈ S but {y} \ {y} is contained in S. Since Y is
finite, the singleton {y} is basic constructible and hence the preimage ϕ−1({y})
is also basic constructible. Recall that a constructible set is specialization closed
if and only if it is Thomason closed. Thus, since ϕ is a weak spectral quotient
and {y} is not specialization closed (since y0 is a specialization of y) we conclude
that ϕ−1({y}) is not specialization closed. Hence there exists x ∈ ϕ−1({y}) and
a specialization x  x′ with x′ 6∈ ϕ−1({y}). Thus y = ϕ(x)  ϕ(x′) is a proper
specialization and hence ϕ(x′) ∈ S. Hence we have weak lifting from the closed
point y0 to ϕ(x′). Since x′ is a specialization of x, we have established that y0 has
weak lifting to ϕ(x) = y 6∈ S, which is a contradiction. We conclude that S = Y .
This establishes that the original map has the weak lifting property and we can
invoke Proposition 2.14. �

2.16. Proposition. A surjective spectral map ϕ : X → Y is a spectral quotient if
and only if it is a heritable weak spectral quotient.

Proof. The (⇒) direction follows from the fact that spectral quotients are weak
spectral quotients together with the readily checked fact that the corestriction of
a spectral quotient to any quasi-compact open subset is again a spectral quotient.
The main part is the (⇐) direction. The surjective spectral map ϕ : X → Y is an
epimorphism in the category of spectral spaces ([DST19, Theorem 5.2.5]), hence it
is a spectral quotient if (and only if) ψ ◦ ϕ : X → Z is a spectral quotient for each
spectral quotient ψ : Y → Z to a finite Z by [DST19, Proposition 6.4.12(vi)]. Such
a composite ψ ◦ ϕ is a heritable weak spectral quotient (as the composite of two
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such, invoking the (⇒) direction) and hence is a topological (and hence spectral)
quotient by Lemma 2.15. �

Our strongest results will require the following strengthened versions:

2.17. Definition. A spectral map ϕ : X → Y is a strong spectral quotient map if the
corestriction ϕ−1(U)→ U is a spectral quotient map for every U ⊆ Y which is the
complement of a Thomason subset. Similarly, a surjective spectral map ϕ : X → Y
is a strongly heritable weak spectral quotient map if the corestriction ϕ−1(U)→ U is
a weak spectral quotient for each U ⊆ Y which is the complement of a Thomason
subset.

2.18. Corollary. A surjective spectral map ϕ : X → Y is a strong spectral quotient
if and only if it is a strongly heritable weak spectral quotient.

Proof. This readily follows from Proposition 2.16 and the definitions. �

2.19. Definition. Similarly, we say that ϕ : X → Y is a strong topological quotient
map if the corestriction ϕ−1(U)→ U is a topological quotient map for every U ⊆ Y
which is the complement of a Thomason subset.

2.20. Proposition. Let ϕ : X → Y be a spectral map with Y noetherian. The
following are equivalent:

(a) ϕ is a strong topological quotient map.
(b) Any immediate specialization y  y′ in Y lifts to a specialization x  x′

in X.
(c) ϕ satisfies the weak lifting property.

Proof. (a) ⇒ (b): Let y  y′ be an immediate specialization. Since ϕ is a strong
topological quotient, the corestriction ϕ−1(gen(y′)) → gen(y′) is a topological
quotient. We may thus assume that ϕ is a topological quotient to a local space Y
and show that we can lift any immediate specialization y  y′ to the unique closed
point y′ ∈ Y . If there were no lift then ϕ−1({y}) would be specialization closed.
Moreover, since the fiber ϕ−1({y}) is proconstructible, this would imply that it is
closed ([DST19, Theorem 1.5.4]). Since ϕ is a topological quotient, this would imply
that {y} is closed, which is false.

(b) ⇒ (c): Since Y is noetherian, every specialization y  y′ is realized as a
finite succession of immediate specializations ([DST19, Theorem 8.1.11]). Thus, the
lifting of each immediate specialization shows that every specialization satisfies weak
lifting according to Definition 2.12.

(c) ⇒ (a): Since the weak lifting property is strongly heritable (because the
complement of a Thomason subset is closed under generalization), this follows
from Proposition 2.14. �

2.21. Remark. The implication (c)⇒ (a) in Proposition 2.20 does not require the
noetherian assumption.

2.22. Example. If a spectral map ϕ : X → Y is a closed quotient map then it satisfies
the going-up property and thus trivially satisfies the weak lifting property. Hence it
is a strong topological quotient map.

2.23. Remark. We will use the above characterization of (strong) spectral quotients
in the proof of Theorem 4.1 below. For the remainder of this section we will collect
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a few more facts about spectral quotients, especially pertaining to spectral quotients
whose fibers are connected, with a view toward Section 5.

2.24. Terminology. Let ϕ : X → Y be a function. A subset S ⊆ X is saturated
(with respect to ϕ) if S = ϕ−1(ϕ(S)).

2.25. Lemma. For a surjective spectral map ϕ : X → Y , the following are equivalent:

(a) ϕ is a spectral quotient map;
(b) A saturated subset S ⊆ X is quasi-compact open if and only if ϕ(S) is

quasi-compact open.

Proof. This is routine from the definitions. �

2.26. Corollary. A spectral quotient map ϕ : X → Y is a homeomorphism if and
only if it is injective.

Proof. If ϕ is injective then every subset S ⊆ X is saturated. Hence by Lemma 2.25,
if S is quasi-compact open then ϕ(S) is quasi-compact open. Since the quasi-compact
opens form a basis for the topology of X, it follows that ϕ is an open map, and
hence is a homeomorphism. �

2.27. Lemma. Let ϕ : X → Y be a continuous map whose non-empty fibers are
connected. If S ⊆ X is closed and open then S is saturated: S = ϕ−1(ϕ(S)).

Proof. This is routine from the definitions. �

2.28. Proposition. Let ϕ : X → Y be a spectral quotient map whose fibers are
connected. If Y is connected then X is connected.

Proof. Suppose X = U1tU2 is a disjoint union of open subsets. In particular, each Ui
is both closed and open. Hence by Lemma 2.27, each Ui is saturated. Moreover,
since closed subsets of quasi-compact spaces are quasi-compact, each Ui is quasi-
compact open. Hence Lemma 2.25 implies that ϕ(Ui) is quasi-compact open in Y .
Moreover, note that ϕ−1(ϕ(U1)∩ϕ(U2)) = ϕ−1(ϕ(U1))∩ϕ−1(ϕ(U2)) = U1∩U2 = ∅
so that ϕ(U1) ∩ ϕ(U2) = ∅. Thus Y = ϕ(X) = ϕ(U1) ∪ ϕ(U2) is a disjoint union
of open sets. Hence, since Y is connected, we have Y = ϕ(Ui) for some i so that
X = ϕ−1(ϕ(Ui)) = Ui. �

2.29. Corollary. Let ϕ : X → Y be a spectral quotient map whose fibers are
connected. Then ϕ−1(C) is connected for any connected subset C ⊆ Y which is
either quasi-compact open or Thomason closed.

Proof. If C ⊆ Y is quasi-compact open or the complement of a quasi-compact open
then the corestriction ϕ−1(C)→ C is itself a spectral quotient map (with connected
fibers). The result thus follows from Proposition 2.28. �

2.30. Proposition. Let ϕ : X → Y be a strong spectral quotient map whose fibers
are connected. If Y is noetherian then ϕ is a strong topological quotient map.

Proof. By Proposition 2.14, it suffices to establish that any immediate specialization
y  y′ in Y lifts to a specialization x x′ in X. Since ϕ is a strong spectral quotient
map, the corestriction ϕ−1(gen(y′))→ gen(y′) is a spectral quotient map. Thus, it
suffices to assume ϕ is a spectral quotient map to a local space Y and prove that
we can lift every immediate specialization y  y′ to the unique closed point y′ ∈ Y .
(This is the same reduction used in the proof of (a)⇒ (b) in Proposition 2.20.) Note
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that {y, y′} = {y} is a Thomason closed subset. Hence ϕ−1({y, y′}) is connected

by Corollary 2.29. Note that ϕ−1({y, y′}) = ϕ−1({y}) ∪ ϕ−1({y′}) is a union of
nonempty closed sets, and hence has a nontrivial intersection. Since the fiber
ϕ−1({y}) is proconstructible, its closure is the same as its specialization closure. We
conclude that there exists a specialization x x′ which lifts y  y′. This completes
the proof. �

2.31. Lemma. Let X be a spectral space and let {Si}i∈I be a set of Thomason
closed subsets with the property that any finite intersection of the Si is connected.
Then the whole intersection

⋂
i∈I Si is connected.

Proof. Suppose Z1 and Z2 are Thomason closed subsets of X such that⋂
i∈I

Si ⊆ Z1 ∪ Z2 and
⋂
i∈I

Si ∩ Z1 ∩ Z2 = ∅.

We need to show that
⋂
i∈I Si ⊆ Zk for some k = 1, 2. It suffices to only

consider Thomason closed subsets Zi since
⋂
i∈I Si is closed and hence procon-

structible; see [DST19, Proposition 6.6.1]. The first hypothesis can be rewritten as
Zc

1 ∩ Zc
2 ⊆

⋃
i∈I S

c
i which is an open covering of the quasi-compact open Zc

1 ∩ Zc
2.

Hence there exists a finite subset J1 ⊆ I such that
⋂
j∈J1 Sj ⊆ Z1 ∩ Z2. On the

other hand, the second hypothesis can be rewritten as X = Zc
1 ∪ Zc

2 ∪
⋃
i∈I S

c
i .

Thus, the quasi-compactness of X implies that there is a finite J2 ⊆ I such that⋂
j∈J2 Sj ∩ Z1 ∩ Z2 = ∅. Taking J := J1∪J2, we obtain a finite intersection

⋂
j∈J Sj

satisfying both
⋂
j∈J Sj ⊆ Z1 ∪ Z2 and

⋂
j∈J Sj ∩ Z1 ∩ Zj = ∅. By hypothesis this

finite intersection is connected. Hence there is a 1 ≤ k ≤ 2 such that
⋂
j∈J Sj ⊆ Zk.

In particular
⋂
i∈I Si ⊆ Zk and the proof is complete. �

2.32. Proposition. Let (Xi, ϕij) be a cofiltered diagram in the category of spectral
spaces and let X := limi∈I Xi.

(a) If the transition maps ϕij are surjective then each map fi : X → Xi is
surjective.

(b) If the transition maps ϕij are spectral quotient maps then each map fi :
X → Xi is a spectral quotient map.

Proof. First recall that the forgetful functor from the category of spectral spaces to
the category of topological spaces creates limits; see [DST19, Section 11.1]. Also
note that we can assume without loss of generality that our diagram is indexed on a
cofiltered set (as our notation above suggests); see [AN82] or [AR94, Section 1.A].

(a): Because we can equip each space with its constructible topology, we may
assume without loss of generality that the spaces are quasi-compact Hausdorff spaces.
It is well-known that a cofiltered limit of non-empty quasi-compact Hausdorff spaces
is non-empty; see, e.g., [ES52, Chapter VIII, Theorem 3.6, page 217] or [Sta20,
Lemma 0A2R]. With this in hand, let i ∈ I and suppose xi ∈ Xi. For each
j ∈ I we define a subset Aj ⊆ Xj as follows. If i ≤ j then take the singleton set
Aj := {ϕij(xi)}. (In particular, Ai = {xi}.) On the other hand, if i 6≤ j then

choose any k ∈ I such that k ≤ i and k ≤ j and take Aj := ϕkj(ϕ
−1
ki ({xi})). A

straightforward exercise, using the hypothesis that the transition maps are surjective,
establishes that this definition does not depend on the choice of k. (For example,
if j ≤ i then Aj = ϕ−1

ji ({xi}).) From the definitions, one can check that for each

j ≤ j′, the transition map ϕjj′ : Xj → Xj′ restricts to a map Aj → Aj′ . Thus

https://stacks.math.columbia.edu/tag/0A2R
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the Aj form a cofiltered subdiagram of the the Xj . Note that these subsets Aj are
quasi-compact (as closed subsets in the constructible topology on Xj) and non-empty
since the transition maps are surjective by hypothesis. Thus limiAi ⊆ limiXi is
non-empty. Any element of limiAi provides an element in X = limiXi which maps
to xi under fi. This proves (a).

(b): Let C ⊆ Xi be a subset and suppose f−1
i (C) is quasi-compact open in X.

Then [Sta20, Lemma 0A2P] implies that there is a j ∈ I and an open U ⊆ Xj such

that f−1
i (C) = f−1

j (U). Moreover, since fj is surjective by part (a), the open U
is quasi-compact. Since the diagram is cofiltered, there exists a k such that k ≤ i
and k ≤ j. In other words fj and fi both factor through fk : X → Xk. Since fk is

surjective by (a), it follows that ϕ−1
ki (C) = ϕ−1

kj (U). Thus ϕ−1
ki (C) is a quasi-compact

open set. Since ϕki is a spectral quotient map, this implies C is quasi-compact open.
This establishes that fi is a spectral quotient map. �

3. Geometric functors

We take for granted familiarity with common notation and terminology in tensor
triangular geometry as discussed, for example, in [BHS23, Sections 1-2].

3.1. Hypothesis. In this paper, f∗ : T → S will always denote a geometric functor
(a. k. a. coproduct-preserving tensor-triangulated functor) between rigidly-compactly
generated tensor-triangulated categories. It restricts to a tensor-triangulated functor
f∗ : Tc → Sc between the compact(=dualizable) objects and hence induces a spectral
map ϕ := Spc(f∗) : Spc(Sc)→ Spc(Tc) of spectral spaces.

3.2. Remark. For any Thomason subset Y ⊆ Spc(Tc) with V := Y c, we have
an induced geometric functor T|V → S|ϕ−1(V ) which realizes the corestriction
ϕ−1(V )→ V on spectra; see, e.g. [BHS23, Proposition 1.30] or [San22, Remark 5.10].
Note that both squares in

T S

T|V S|ϕ−1(V )

f∗

commute. Hence, if f∗ is (fully) faithful then the induced functor is also (fully)
faithful. In particular, for any prime P ∈ Spc(Tc), we have an induced geometric
functor

TP = T|gen(P) → S|ϕ−1(gen(P))

on the local category at P which is (fully) faithful if f∗ is (fully) faithful. See
[BHS23, Terminology 1.11, Remark 1.21 and Definition 1.25] for further discussion.

3.3. Example. If C is a rigidly-compactly generated tt-∞-category (in the sense
of [BCH+24, Section 5]) and A ∈ CAlg(C) then A-ModC is also rigidly-compactly
generated. The base-change functor Ho(C)→ Ho(A-ModC) is a geometric functor.

3.4. Example. If K = Ho(B) is an essentially small idempotent-complete rigid
tt-category which has an underlying model then T := Ho(Ind(B)) is a rigidly-
compactly generated tt-category with Tc = K. Moreover, any symmetric monoidal
exact functor A→ B of underlying models extends (essentially uniquely) to a geo-
metric functor Ho(Ind(A))→ Ho(Ind(B)). See [BHV18, Section 2.2] and [BCH+24,
Section 5] for further details.
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3.5. Notation. We will write T = Ho(C) on occasions when we are further assuming
that T is the homotopy category of a rigidly-compactly generated tt-∞-category C.
See [Zou25, Section 2] for further discussion concerning this terminology. Also,
although the Balmer spectrum is an invariant of the homotopy category, we will
occasionally write Spc(Cc) := Spc(Ho(Cc)) = Spc(Tc) when notationally convenient.

4. Faithful functors are quotient maps

4.1. Theorem. Let f∗ : T → S be a faithful geometric functor. Then the induced
map ϕ : Spc(Sc)→ Spc(Tc) is a strong spectral quotient map.

Proof. Since f∗ is faithful, the surjectivity of ϕ follows from [Bal18, Theorem 1.3]
or [BCHS24, Theorem 1.4]. Suppose U and V are two quasi-compact open subsets
of Spc(Tc). We can consider the exact triangle

eY → 1→ fY → ΣeY

in T associated to the Thomason closed set Y := U c and we can consider an
object x ∈ Tc with supp(x) = V c. Then [PSW22, Proposition 2.29] asserts that the
morphism

fY ⊗ x→ ΣeY ⊗ x
vanishes if and only if U ∩ V c is Thomason. If we apply the geometric functor f∗,
we obtain the morphism

f∗(fY )⊗ f∗(x)→ Σf∗(eY )⊗ f∗(x)

and note that f∗(eY ) = eϕ−1(Y ) and f∗(fY ) = fϕ−1(Y ) by [BF11, Theorem 6.3] or

[BS17, Proposition 5.11]. Moreover, supp(f∗(x)) = ϕ−1(supp(x)) = ϕ−1(V )c. Thus,
if f∗ : T → S is faithful, then U ∩ V c is Thomason whenever ϕ−1(U) ∩ ϕ−1(V )c

is Thomason. In other words, a basic constructible set C ⊆ Spc(Tc) is Thomason
whenever ϕ−1(C) is Thomason. Moreover, recall that a constructible set is Thomason
if and only if it is Thomason closed. Thus, if f∗ is faithful then for any basic
constructible set C ⊆ Spc(Tc), we have that C is Thomason closed whenever
ϕ−1(C) is Thomason closed. That is, ϕ is a weak spectral quotient (Definition 2.6).

Now, if W ⊆ Spc(Tc) is any complement of a Thomason subset, we can consider
the corestriction T|W → S|ϕ−1(W ) which is again faithful by Remark 3.2. Hence, the
above argument — applied to these corestrictions — shows that the map induced
by a faithful functor is a strongly heritable weak spectral quotient (Definition 2.17)
and we can invoke Corollary 2.18. �

4.2. Remark. The spectral quotient map induced by a faithful functor need not
satisfy the going-up property nor need it satisfy the going-down property (even if
the spaces involved are noetherian); see Example 16.13 below. In particular, it need
not be a closed map nor an open map; see [DST19, Section 5.3].

4.3. Remark. It is possible for ϕ to be a strong spectral quotient without f∗ being
faithful. Thus, the converse of Theorem 4.1 is false. For example, if f∗ : T → S is a
descendable finite étale morphism in the sense of [San22] which has finite degree
in the sense of [Bal14] then ϕ is a closed quotient map by [Bal16, Theorem 1.5];
cf. [BCHS23, Remark 13.26]. However, f∗ need not be faithful. For an explicit
example, let G be a finite p-group and let k be a field of characteristic p. Restriction
to elementary abelian subgroups provides a descendable finite étale morphism
StMod(kG)→

∏
E≤G StMod(kE) of finite degree which is only faithful in the trivial
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case where G itself is elementary abelian; see [Bal16, Page 911]. For further examples
of non-faithful quotient maps, see Remark 16.14 or Example 16.15.

5. Fully faithful functors have connected fibers

We next prove that the map on spectra induced by a fully faithful functor has
connected fibers.

5.1. Lemma. Suppose T is a local rigidly-compactly generated category. For any
non-empty Thomason closed subset Z ⊆ Spc(Tc), the endomorphism ring EndT(eZ)
is a local ring.

Proof. Since eZ ∈ T is an idempotent coring, the switch map τ : eZ ⊗ eZ
∼−→

eZ ⊗ eZ coincides with the identity map; cf. [San22, Example 2.41]. This implies
that every endomorphism of eZ is “tensor-balanced” in the terminology of [San13,
Definition 3.1]. By [San13, Lemma 3.3], every such endomorphism f : eZ → eZ
has the property that f⊗2 ⊗ cone(f) = 0. However, we cannot invoke [San13,
Proposition 3.5] directly since the assumption that T is local only asserts that the
tensor product of two nonzero compact objects is nonzero, while eZ is not necessarily
compact. Nevertheless, we can proceed as follows.

Recall that for any object t ∈ T we have t ∈ Locid〈eZ〉 if and only if t ' eZ ⊗ t.
In particular, since cone(f) ∈ Locid〈eZ〉 we have cone(f) ' cone(f) ⊗ eZ . Since
Z ⊆ Spc(Tc) is Thomason closed, there exists a compact object x ∈ Tc with
supp(x) = Z. Then Locid〈x〉 = Locid〈eZ〉 and it readily follows (for example, from
[BHS23, Lemma 3.6]) that

Locid〈cone(f)⊗ x〉 = Locid〈cone(f)⊗ eZ〉 = Locid〈cone(f)〉.

Note that the object cone(f)⊗ x is compact as it is the cone of the endomorphism

eZ ⊗ x
f⊗1−−−→ eZ ⊗ x

of the compact object eZ ⊗ x ' x ∈ Tc. In summary, the endomorphism f is a
nonunit if and only if the compact object cone(f)⊗ x is nonzero.

We conclude that if f, g ∈ EndT(eZ) are two nonunits then cone(f)⊗ x 6= 0 and
cone(g)⊗ x 6= 0. Since these objects are compact and T is assumed to be local, it
follows that cone(f)⊗ x⊗ cone(g)⊗ x 6= 0 and hence that

(5.2) cone(f)⊗ cone(g)⊗ x 6= 0.

This implies that f+g is also a nonunit. Indeed, it follows from f⊗2⊗cone(f) = 0 and
g⊗2⊗cone(g) = 0 that (f+g)⊗n⊗cone(f)⊗cone(g) = 0 for n ≥ 3 as in the proof of
[San13, Proposition 3.5]. Thus, if f+g were a unit, then (f+g)⊗3⊗cone(f)⊗cone(g)
is an endomorphism of e⊗3

Z ⊗cone(f)⊗cone(g) which is both an isomorphism and the

zero morphism. It follows that eZ⊗cone(f)⊗cone(g) ' e⊗3
Z ⊗cone(f)⊗cone(g) = 0.

Tensoring with x, we obtain x⊗ cone(f)⊗ cone(g) = 0, which contradicts (5.2). We
have thus established that the sum of two nonunits is a nonunit; that is, the nonzero
ring EndT(eZ) is local. �

5.3. Proposition. Let f∗ : T → S be a fully faithful geometric functor. If T is local
then the preimage ϕ−1(Z) of any nonempty specialization closed subset Z ⊆ Spc(Tc)
is connected.
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Proof. We first prove the result for a Thomason closed subset Z ⊆ Spc(Tc). The
endomorphism ring EndT(eZ) is local by Lemma 5.1. Since f∗ is fully faithful,
EndS(f∗(eZ)) is local. Moreover, note that f∗(eZ) = eϕ−1(Z) is the left idempotent

for the Thomason closed subset ϕ−1(Z); see, e.g., [BCHS23, Remark 13.7]. Recall
that for any two Thomason subsets Y1 and Y2, we have a Mayer–Vietoris exact
triangle

eY1∩Y2
→ eY1

⊕ eY2
→ eY1∪Y2

→ ΣeY1∩Y2

by [BF11, Theorem 5.18]. Suppose ϕ−1(Z) = Z1 t Z2 is a disjoint union of
closed sets. Note that the Zi are necessarily Thomason closed sets. For example,
Zc

1 = (ϕ−1(Z))c ∪ Z2 is a union of two quasi-compact subsets and hence is quasi-
compact. Thus we would obtain f∗(eZ) = eZ1

⊕ eZ2
from the Mayer–Vietoris

exact triangle. But since the endomorphism ring is local, the object f∗(eZ) has no
nontrivial idempotent endomorphisms. Hence eZ1 = 0 or eZ2 = 0. That is, Z1 = ∅
or Z2 = ∅. In summary, the preimage ϕ−1(Z) is connected.

We have proved the result in the case of a Thomason closed subset Z. Now
suppose that Z is an arbitrary (nonempty) closed subset. We may write Z =

⋂
i∈I Zi

as an intersection of nonempty Thomason closed sets. Then ϕ−1(Z) =
⋂
i∈I ϕ

−1(Zi).

Each of the Thomason closed sets Si := ϕ−1(Zi) is connected. Moreover, any finite
intersection of the Si is the preimage of a finite intersection of the Zi; but any
finite intersection of the Zi is Thomason closed (and nonempty since it contains
the unique closed point) and hence its preimage is connected by what we have
already proved. Therefore, Lemma 2.31 implies that the arbitrary intersection
ϕ−1(Z) =

⋂
i∈I ϕ

−1(Zi) is connected.
Finally, suppose Z is an arbitrary (nonempty) specialization closed subset. We

may write Z =
⋃
i∈I Zi as a union of closed subsets. Then ϕ−1(Z) =

⋃
i∈I ϕ

−1(Zi)
is a union of connected sets which contain a common point (since each Zi contains
the unique closed point). Hence ϕ−1(Z) is also connected. �

5.4. Theorem. Let f∗ : T → S be a fully faithful geometric functor. The fiber
ϕ−1({P}) over any point P ∈ Spc(Tc) is connected.

Proof. Performing corestriction to ϕ−1(gen(P))→ gen(P) we obtain another fully
faithful functor TP → S|ϕ−1(gen(P)) as in Remark 3.2. Thus, we can assume without
loss of generality that T is local and prove that the fiber over the unique closed
point m ∈ Spc(Tc) is connected. We may then invoke Proposition 5.3. �

5.5. Theorem. Let f∗ : T → S be a fully faithful geometric functor. The induced
map ϕ : Spc(Sc)→ Spc(Tc) is a strong spectral quotient map with connected fibers.

Proof. This just puts together Theorem 5.4 and Theorem 4.1. �

5.6. Remark. The strong spectral quotient ϕ : Spc(Sc)→ Spc(Tc) in Theorem 5.5 is
a strong topological quotient if either of the spaces is noetherian. This follows from
Proposition 2.30. In our later discussion, we’ll often use this stronger consequence
of the theorem without further comment.

5.7. Remark. If we only assume that f∗ is faithful (rather than fully faithful) then
the fibers of ϕ need not be connected. For example, if k is a field then the ring
homomorphism k → k × k induces a faithful geometric functor D(k) → D(k × k)
which on spectra is the projection of two disconnected points to a single point. For
another example, see Remark 13.24.
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6. Characterizations of (fully) faithful functors

Since the results of the last two sections concern (fully) faithful geometric functors,
it is worth including some remarks about when this holds.

6.1. Remark. Recall from [BDS16] that the geometric functor f∗ : T → S (Hypothe-
sis 3.1) automatically has a right adjoint f∗ which itself has a right adjoint f !:

f∗ a f∗ a f !

The projection formulas of [BDS16, (2.16) and (2.18)] imply that we have natural
isomorphisms

f∗f
∗ ' f∗1S ⊗− and f∗f

! ' hom(f∗1S,−).

Note that f∗1S is a commutative ring object in T whose unit map u : 1T → f∗1S is
given by the unit η of the f∗ a f∗ adjunction: 1T → f∗f

∗
1T ' f∗1S.

6.2. Lemma. For any t ∈ T, the following two diagrams commute:

t f∗f
∗t

1T ⊗ t f∗1S ⊗ t

ηt

∼= ∼=
u⊗1

and

f∗f
!t t

hom(f∗1S, t) hom(1T, t).

∼=

εt

∼=

hom(u,1)

Proof. The first diagram follows in a routine manner from the definition of the
projection formula in [BDS16, (2.16)]. We guide the reader through the second
diagram as it is perhaps a bit more curious. Note that it relates the counit ε
of the f∗ a f ! adjunction with u which is related to the unit of the f∗ a f∗
adjunction. The isomorphism f∗f

!t ' hom(f∗1S, t) arises from the s = 1S case
of the adjunction isomorphism f∗hom(s, f !t) ' hom(f∗s, t) of [BDS16, (2.18)] as
f∗f

!t ' f∗hom(1S, f
!t) ' hom(f∗1S, t). By definition, the adjunction isomorphism

is the map adjoint to the following composite:

f∗hom(s, f !t)⊗ f∗s
lax−−→ f∗(hom(s, f !t)⊗ s) f∗(ev)−−−−→ f∗f

!t
εt−→ t.

Since the evaluation map hom(1S, f
!t) ⊗ 1S → f !t coincides with the composite

hom(1S, f
!t) ⊗ 1S ' f !t ⊗ 1S ' f !t, one readily checks that the isomorphism

f∗f
!t ' hom(f∗1S, t) is adjoint to the map

(6.3) f∗f
!t⊗ f∗1S

lax−−→ f∗(f
!t⊗ 1S) ' f∗f !t

εt−→ t.

Dinaturality of coevaluation provides

f∗f
!t hom(f∗1S, f∗f

!t⊗ f∗1S)

hom(1T, f∗f
!t⊗ 1T) hom(1T, f∗f

!t⊗ f∗1S).

coev

coev hom(u,1)

hom(1,1⊗u)

Armed with the above, one readily checks that the composite

f∗f
!t ' hom(f∗1S, t)

hom(u,1)−−−−−→ hom(1T, t) ' t
coincides with

f∗f
!t ' f∗f !t⊗ 1T

1⊗u−−−→ f∗f
!
1T ⊗ f∗1S

lax−−→ f∗(f
!t⊗ 1S) ' f∗f !

1T
εt−→ t

and that the composite f∗f
!t→ f∗f

!t coincides with the identity map. �
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6.4. Lemma. Let R be a ring object in a symmetric monoidal category C. If R is
an invertible object then the unit map u : 1→ R is an isomorphism.

Proof. Since R is invertible, the endofunctor R ⊗ − : C → C is an equivalence of
categories. Thus, there exists a morphism θ : R→ 1 such that

R⊗R 1⊗θ−−→ R⊗ 1 ' R

coincides with the multiplication map m : R⊗R→ R. It follows that R⊗ 1
1⊗u−−−→

R⊗R 1⊗θ−−→ R⊗ 1 coincides with idR⊗1 = R⊗ id1. Hence θ ◦ u = id1. On the other
hand, the commutative diagram

R 1

R⊗ 1 1⊗ 1 1

R⊗R 1⊗R R

θ

' '

id

θ⊗1

1⊗u 1⊗u

'

u

θ⊗1 '

shows that u ◦ θ = idR. �

6.5. Proposition. The following are equivalent:

(a) f∗ is fully faithful.
(b) The unit map u : 1T → f∗1S is an isomorphism.
(c) There exists an isomorphism 1T ' f∗1S.
(d) f∗1S is invertible.
(e) f ! is fully faithful.

Proof. The left adjoint f∗ is fully faithful if and only if the unit ηt : t→ f∗f
∗t is a

natural isomorphism. By Lemma 6.2, this is equivalent to u : 1T → f∗1S being an
isomorphism. That is, (a)⇔ (b). The implications (b)⇒ (c)⇒ (d) are immediate
and Lemma 6.4 provides (d)⇒ (b). It remains to deal with (e). The right adjoint f !

is fully faithful if and only if the counit εt : f∗f
!t→ t is a natural isomorphism. By

Lemma 6.2, this is equivalent to

(6.6) hom(u, 1) : hom(f∗1S, t)→ hom(1T, t)

being an isomorphism for all t ∈ T. This is certainly implied by (b). On the other
hand, applying T(1,−) to (6.6), we see that if f ! fully faithful then

T(f∗1, t)
−◦u−−−→ T(1, t)

is a bijection for all t ∈ T. This implies u is an isomorphism by (co)Yoneda. �

6.7. Proposition. The following are equivalent:

(a) f∗ is faithful.
(b) The unit map u : 1T → f∗1S is split monic.
(c) 1T is a direct summand of f∗1S.
(d) f∗1S ⊗− is faithful.
(e) hom(f∗1S,−) is faithful.
(f) f ! is faithful.



THE TENSOR TRIANGULAR GEOMETRY OF FULLY FAITHFUL FUNCTORS 19

Proof. Consider the exact triangle

(6.8) W
ξ−→ 1T

u−→ f∗1S → ΣW.

associated with u. By the unit-counit equations, f∗(u) is split monic; that is,
f∗(ξ) = 0. Thus, f∗ faithful implies ξ = 0, which implies u is split monic. Thus
(a)⇒ (b). The implications (b)⇒ (c)⇒ (d) are immediate. Recall that f∗1S⊗− '
f∗f
∗(−). Hence (d)⇒ (a).

(a) ⇒ (e): Since f∗ is faithful, we know the map ξ in (6.8) is zero. Suppose
that α : a→ b is a morphism in T. Consider the following commutative diagram

hom(f∗1S, a) hom(1T, a) hom(W,a)

hom(f∗1S, b) hom(1T, b) hom(W, b).

hom(1,α)

hom(u,1)

hom(1,α)

0

hom(1,α)

hom(u,1) 0

If hom(f∗1S, α) = 0 then the morphism α ' hom(1T, α) factors through the zero
morphism 0 : a ' hom(1, a)→ hom(W,a).

(e)⇒ (f): This follows from the isomorphism f∗f
!(−) ' hom(f∗1S,−). Finally,

we prove (f)⇒ (a), namely that f ! faithful implies f∗ faithful. We have a natural
isomorphism of two variables f !hom(a, t) ' hom(f∗a, f !t) from [BDS16, (2.19)].
Let α : a→ b be a morphism in T such that f∗(α) = 0. Then for any t ∈ T, we have
f !hom(α, t) = 0. Since f ! is faithful, this implies that hom(α, t) = 0 for all t ∈ T. In
particular, hom(α, b) = 0. Consider an exact triangle on α:

a
α−→ b

β−→ c
γ−→ Σa

Applying hom(−, b) we obtain an exact triangle

hom(c, b)→ hom(b, b)
hom(α,b)=0−−−−−−−→ hom(a, b)→ Σhom(c, b).

Applying T(1T,−) we obtain an exact sequence

T(c, b)→ T(b, b)
0−→ T(a, b).

Hence, there exists a morphism θ : c→ b such that θ ◦ β = idb. In other words, β is
split monic; hence α = 0. �

6.9. Remark. It follows from Proposition 6.7 that a faithful geometric functor is a
descendable geometric functor in the sense that 1T ∈ thickid〈f∗(1S)〉. Hence:

6.10. Proposition. Let f∗ : T → S be a faithful geometric functor. Then f∗ reflects
compact objects.

Proof. This follows from the proof of [Mat16b, Proposition 3.28] using Remark 6.9;
see [BCH+24, Proposition 7.16]. �

6.11. Remark. Another consequence of Remark 6.9 is that homological stratification
in the sense of [BHSZ24] descends along a faithful geometric functor f∗ : T → S.
Hence, stratification in the sense of [BHS23] descends from S to T provided these
categories satisfy the Nerves of Steel conjecture.

6.12. Proposition. Let f∗ : T → S be a geometric functor. If f∗|Tc : Tc → Sc is
fully faithful then f∗ : T → S is fully faithful.
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Proof. According to Proposition 6.5, f∗ is fully faithful if (and only if) u : 1T → f∗1S
is an isomorphism. Since T is compactly generated, this is the case if T(c, 1T) →
T(c, f∗1S) is an isomorphism for each c ∈ Tc. This map is readily checked to coincide
with T(c, 1T)→ S(f∗(c), f∗(1T)) ∼= S(f∗(c), 1S) ∼= T(c, f∗1S). �

6.13. Remark. A fully faithful geometric functor f∗ : T → S is an equivalence if and
only if its right adjoint f∗ : S→ T is conservative. Moreover, the right adjoint f∗ of
a geometric functor f∗ : T → S is conservative if and only if thick〈f∗(Tc)〉 = Sc. It
then follows from Proposition 6.12 that if f∗|Tc : Tc → Sc is an equivalence then
f∗ : T → S is an equivalence.

6.14. Remark. Although the right adjoint f∗ of a nontrivial fully faithful functor
f∗ : T → S is not conservative, we do have the following:

6.15. Proposition. Let f∗ : T → S be a a fully faithful geometric functor. The right
adjoint f∗ is conservative on weak rings.

Proof. Let A be a weak ring in S and let 1S → A be its unit. We have a commutative
diagram

f∗f∗(1S) f∗f∗(A)

1S A

ε ε

and the counit f∗f∗(1S)→ 1S is an isomorphism since f∗ is fully faithful. Thus, if
f∗(A) = 0 then the unit 1S → A vanishes and hence A = 0. �

6.16. Remark. According to Proposition 6.5, f∗ fully faithful is equivalent to f ! fully
faithful, which in turn is equivalent to f∗ : S → T being a Bousfield localization.
Note however that the localizing subcategory of acyclic objects Ker(f∗) ⊆ S need not
be a tensor-ideal. An explicit counter-example is given in Example 8.44. (Bousfield
localizations on tensor-triangulated categories are sometimes assumed to have a
tensor-ideal of acyclic objects. This is the case, for example, in [HPS97].)

6.17. Remark. The author does not know if f∗|Tc faithful implies f∗ faithful. We
just remark in passing that this holds if T is phantomless. Indeed, if f∗|Tc is faithful
then the map ξ in (6.8) is a phantom map.

7. Full sometimes implies faithful

It is well-known that a full exact functor between triangulated categories is
faithful if and only if it is conservative; see the proof of [COS13, Lemma 2.1] for
example. In the context of big tt-categories, we can augment this as follows:

7.1. Proposition. For a full geometric functor f∗ : T → S, the following are
equivalent:

(a) f∗ is faithful.
(b) f∗ is conservative.
(c) ϕ is surjective.
(d) f∗ reflects invertibility of endomorphisms of 1; that is, the ring homomor-

phism EndT(1)→ EndS(1) reflects units.
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Proof. We have (a)⇒ (b)⇒ (c) by [BCHS24, Theorem 1.4].
(c)⇒ (d): Let α : 1T → 1T be a morphism in T. Since ϕ is surjective,

supp(cone(f∗(α))) = ϕ−1(supp(cone(α))) = ∅
implies supp(cone(α)) = ∅. In other words, if f∗(α) is an isomorphism then α is
an isomorphism.

(d)⇒ (a): We claim that f∗ is faithful, which by Proposition 6.7 is equivalent to
the canonical map 1T → f∗(1S) being split monic. Since f∗ is assumed to be full,
there exists a morphism θ : f∗f

∗
1T → 1T such that f∗(θ) is the morphism

f∗f∗f
∗
1T

εf∗1T−−−→ f∗1T.

Thus, the composite 1T
η−→ f∗f

∗
1T

θ−→ 1T becomes the identity morphism f∗1T →
f∗1T after we apply f∗; that is, f∗(θ ◦ η) = idf∗1T . Hypothesis (d) then implies
that θ ◦ η is an isomorphism; hence η is split monic. �

7.2. Proposition. For a geometric functor f∗ : T → S, the following are equivalent:

(a) f∗ is full.
(b) The unit map u : 1T → f∗1S is split epi.

Proof. Using the definition of the projection formula [BDS16, (2.16)], one readily
checks that for any t ∈ T and s ∈ S, the identity map on f∗(s)⊗ t factors as

f∗(s)⊗ t
1⊗η−−→ f∗(s)⊗ f∗f∗(t)

lax−−→ f∗(s⊗ f∗(t)) ' f∗(s)⊗ t.
With this in hand, one then checks that the composite

T(a, b)
f∗−→ S(f∗a, f∗b) ' T(a, f∗f

∗b) ' T(a, f∗1S ⊗ b)

sends α : a→ b to (u⊗ 1) ◦α where u⊗ 1 is shorthand for b ' 1T ⊗ b
u⊗1−−−→ f∗1S⊗ b.

Thus, f∗ is full if and only if, for every a, b ∈ T, the map

(7.3) T(a, b)
(u⊗1)◦−−−−−−−→ T(a, f∗1S ⊗ b)

is surjective. If u is split epi then so is u⊗ 1 and it follows that (7.3) is surjective.
On the other hand, taking a = f∗1S and b = 1T, the surjectivity of (7.3) implies
that there exists α : f∗1S → 1T such that u ◦ α = idf∗1S , so that u is split epi. �

7.4. Example. Let A → B be a map of commutative rings. The induced functor
D(A)→ D(B) is full if and only if A→ B is a split epimorphism in the category
of A-modules if and only if B = A/Ae for an idempotent e ∈ A if and only if
Spec(B)→ Spec(A) is a closed immersion that is also an open immersion. These
are standard exercises in commutative algebra.

7.5. Remark. In light of Proposition 6.12, one may wonder whether f∗|Tc : Tc → Sc

full implies that f∗ : T → S is full. This is false. In [COS13, Section 5], the authors
consider the quotient A→ A/m of a certain non-noetherian commutative ring by a
certain maximal ideal. They prove that D(A)c → D(A/m)c is full. However, since
this m is not finitely generated, A/m is not a finitely presented A-module and hence
is not a direct summand of A. Thus, D(A)→ D(A/m) is not full.
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Part II. Examples and applications

8. Concentration and unitation

Let T be a rigidly-compactly generated tt-category.

8.1. Definition. We say that T is unigenic if it is generated by the unit object:

T = Loc〈1〉.

8.2. Remark. The term “monogenic” is used in [HPS97]. However, it is slightly mis-
leading. For example, the derived category of a quasi-compact and quasi-separated
scheme is always generated by a single compact object by [BvdB03, Theorem 3.1.1]
and yet it is rare for it to be generated by the unit object; see Section 17 below.

8.3. Definition. Let G ⊆ Tc be a set of compact objects such that thick〈G〉 ⊆ Tc

is a rigid tensor-subcategory. The localizing subcategory Loc〈G〉 is then a tensor-
triangulated subcategory of T which is rigidly-compactly generated by G and the
inclusion Loc〈G〉 ↪→ T is a fully faithful geometric functor. We call Loc〈G〉 ⊆ T the
concentration of T at G and denote it by T〈G〉.

8.4. Example. If G ⊆ Tc is a set of objects which contains 1 and is closed under the
⊗-product and taking duals then thick〈G〉 is a rigid tensor-subcategory. This is the
most natural case of Definition 8.3, but there are also examples of interest where G

is not closed under the ⊗-product and yet G⊗ G ⊆ thick〈G〉. Hence we allow more
flexibility in the definition, as above.

8.5. Definition. In particular, we can consider the concentration at G = {1}, which
we call the unitation of T. We also call T〈1〉 := Loc〈1〉 ⊆ T the unigenic core (or

unicore) of T.1

8.6. Example. More generally, we can consider the concentration at any subgroup G

of the Picard group Pic(T).

Various examples of “cellular objects” arise in this way.

8.7. Example. The motivic stable homotopy category SH(C) over the complex
numbers is rigidly-compactly generated. The category of cellular motivic spectra
SHcell(C) is Loc〈Sm,n : m,n ∈ Z〉 ⊂ SH(C). In the above terminology, it is the
concentration of SH(C) at the motivic spheres.

8.8. Example. Let k be a field and let R be a commutative ring in which the expo-
nential characteristic of k is invertible. The derived category of motives DM(k;R)
is rigidly-compactly generated; see [San22, Example 5.17] and the references cited
therein. The derived category DTM(k;R) of Tate motives is Loc〈R(j) : j ∈ Z〉 ⊂
DM(k;R). In other words, it is the concentration of DM(k;R) at the Tate twists.

8.9. Example. The derived category DAM(k;R) of Artin motives is the concentration
of DM(k;R) at the motives of all finite separable extensions L/k. Note that these
generating motives are self-dual dualizable objects of DM(k;R) and so are trivially
closed under taking duals.

1In ancient mythology, a manticore is a man-eating beast with the head of a human, the
body of a lion, and the tail of a scorpion [Rob65, Nic11]. The author hopes that the unicore of a
tt-category will have more in common with a unicorn than a manticore.
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8.10. Example. Combining the above two examples, the category DATM(k;R) of
Artin–Tate motives is the concentration of DM(k;R) at the Tate twists of the
motives of finite separable extensions of k.

8.11. Example. Let G be a finite group. The G-equivariant stable homotopy category
SHG = Ho(SpG) is rigidly-compactly generated by the orbits G/H+ associated to
the subgroups H ≤ G. These generators are self-dual (since we are assuming G is
finite). Let F be a collection of subgroups of G which is closed under conjugation
and consider

(8.12) thick〈G/H+ : H ∈ F〉 ⊆ SHc
G .

It follows from the Mackey formula that F is closed under passage to subgroups if
and only if (8.12) is a thick tensor-ideal of SHc

G. In contrast, (8.12) is a (necessarily
rigid) tt-subcategory of SHc

G if and only if F contains G ≤ G and is closed under
intersection of subgroups. Thus, in the latter case we can consider the concentration
of SHG at G :=

{
G/H+

∣∣H ∈ F
}

.

8.13. Example. Let N �G be a normal subgroup and consider the collection of
subgroups F[⊇N ] :=

{
H ≤ G

∣∣H ⊇ N
}

. Inflation provides a geometric functor
SHG/N → (SHG)〈F[⊇N [〉. In particular, we have a geometric functor SH→ (SHG)〈1〉.
These functors are far from being equivalences in general, as is clear just by consid-
ering the endomorphisms of the unit. We will study the unitation (SHG)〈1〉 in more
detail in Section 13.

8.14. Example. Let Γ be a profinite group and let R be a commutative ring. The
derived category of permutation modules DPerm(Γ;R) defined in [BG23b] is rigidly-
compactly generated by the (transitive) permutation modules R(Γ/H) for each
open subgroup H ≤ Γ. It again follows from the Mackey formula (see [BG23b,
Remark 2.12]) that we can consider the concentration at G =

{
Γ/H

∣∣H ∈ F
}

for
any collection of open subgroups F which contains Γ ≤ Γ and is closed under finite
intersection.

8.15. Example. Let N � Γ be a closed (but not necessarily open) subgroup and
consider the concentration of DPerm(Γ;R) at F[⊇N ] =

{
R(Γ/H)

∣∣H ⊇ N
}

. In-
flation induces an equivalence DPerm(Γ/N ;R) ∼= DPerm(Γ;R)〈F[⊇N ]〉; see [BG23b,
Lemma 3.15]. In particular, the unitation DPerm(Γ;R)〈1〉 ∼= D(R) is just the derived
category of the coefficient ring R. Note that this behaviour differs qualitatively from
the situation in Example 8.13.

8.16. Remark. If Γ is the absolute Galois group of a field k then there is a
tt-equivalence DPerm(Γ;R) ' DAM(k;R) with the derived category of Artin mo-
tives from Example 8.9. This is explained in [BG23b, Sections 5–7]. Note that they
define DAM(k;R) as the analogous localizing subcategory in the derived category

of effective motives DMeff(k;R) rather than in DM(k;R). However, it follows from
Voevodsky’s Cancellation Theorem [Voe10] together with [CD15, Section 8] that

the canonical functor DMeff(k;R)→ DM(k;R) is fully faithful. Thus

LocDMeff 〈L | L/k finite separable〉 → LocDM〈L | L/k finite separable〉
is an equivalence.

8.17. Example. Let G be a finite group and let R be a commutative ring. The
category of derived representations DRep(G;R) = Ho(Rep(G;R)) considered in



24 BEREN SANDERS

[Bar21] is rigidly-compactly generated. If R = k is a field of characteristic p

then DRep(G; k) ∼= K(Inj(kG)) and we have DRep(G; k)c ∼= Db(mod(kG)). More

generally, if R is noetherian then DRep(G; k)c is equivalent to Db
R-perf(mod(RG))

where the latter is the subcategory of Db(mod(RG)) consisting of complexes whose
underlying nonequivariant complex is R-perfect.

8.18. Example. Let R be a noetherian ring. We can consider the concentration of
DRep(G;R) at the (transitive) permutation modules G =

{
R(G/H)

∣∣H ≤ G}:

(8.19) DRep(G;R)〈G〉 ⊆ DRep(G;R).

This category is a finite localization of DPerm(G;R), as established in [BG22a]:

(8.20) DPerm(G;R)� DRep(G;R)〈G〉 ↪→ DRep(G;R).

If R is regular (e.g., R = k a field) then Mathew [Tre15, Theorem A.4] and Balmer–
Gallauer [BG23a, BG22a] prove that DRep(G;R) is generated by permutation
modules, i.e., that (8.19) is an equality.2 In this case (8.20) reduces to a localization

(8.21) DPerm(G;R)� DRep(G;R).

However, (8.19) need not be an equivalence in general; see [Tre15, Example A.3].
In general, the map induced on Balmer spectra by DPerm(G;R) → DRep(G;R)
factors as

(8.22) Spc(DRep(G;R)c)� Spc(DRep(G;R)c〈G〉) ↪→ Spc(DPerm(G;R)c)

where the first map is a quotient map with connected fibers (Theorem 5.5) and the
second map is an embedding.

8.23. Remark. Let T(G;R) denote either DPerm(G;R) or DRep(G;R). If H ≤ G
is a subgroup whose index [G : H] is invertible in R then the restriction functor
resGH : T(G;R)→ T(H;R) is faithful. Indeed, this holds for any R-linear cohomo-
logical Green 2-functor; see [BD24, Del22]. In contrast, the restriction functor
resGH : SHG → SHH is not faithful for any proper subgroup H � G.

8.24. Example. The category of spectra SH = Ho(Sp) is unigenic. More generally,
the derived category D(E) := Ho(E-ModSp) of any commutative ring spectrum
E ∈ CAlg(Sp) is unigenic. For example, the derived category D(R) ∼= D(HR) of any
commutative ring R is unigenic.

8.25. Remark. Suppose T = Ho(C) is the homotopy category of an underlying
presentably symmetric monoidal stable ∞-category. We can consider the essentially
unique symmetric monoidal and colimit-preserving functor i∗ : Sp → C from the
∞-category of spectra. We have an induced ring spectrum

endC(1) := i∗(1) ∈ CAlg(Sp)

and a canonical geometric functor endC(1)-ModSp → C. See [MNN17, Section 5.3],
for example. This induces an equivalence

endC(1)-ModSp
'−→ C〈1〉

of symmetric monoidal stable ∞-categories. In particular, we have a tt-equivalence

T〈1〉 = Ho(C〈1〉) ∼= Ho(endC(1)-ModSp) =: D(endC(1)).

2This also holds if |G| is invertible in R.
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For example, if T = Ho(C) is unigenic then it is the derived category of a highly struc-
tured commutative ring spectrum. This derived Morita theory has its homotopical
origins in [SS03].

8.26. Notation. Let G be a finite group and let SpG denote the ∞-category of
G-spectra. We will denote the right adjoint of the canonical functor trivG : Sp→ SpG
of Remark 8.25 by λG : SpG → Sp. We will also write SG := trivG(S) for the
G-equivariant sphere spectrum.

8.27. Remark. Let E ∈ CAlg(SpG) and consider C := E-ModSpG
. We have a

commutative diagram

Sp SpG

(E-ModSpG
)〈1〉 E-ModSpG

.

trivG

Since the bottom functor is fully faithful, it follows that endC〈1〉(1) ∼= λG(E). Hence
we have an equivalence

(E-ModSpG
)〈1〉 ∼= λG(E)-ModSp

by Remark 8.25.

8.28. Example. Let E ∈ CAlg(Sp). We may construct its associated Borel equivariant
spectrum bG(E) := F (EG+, trivG(E)) ∈ CAlg(SpG) and consider bG(E)-ModSpG

.
We have

(bG(E)-ModSpG
)〈1〉 ∼= F (BG+,E)-ModSp

where the ring structure on λG(bG(E)) ' F (BG+,E) arises from the ring structure
on E together with the coring structure on BG+ provided by the diagonal map.

8.29. Example. If R is a regular noetherian ring of finite Krull dimension then there
is a symmetric monoidal equivalence Rep(G;R) ∼= bG(HR)-ModSpG

explained in
[Bar21, Theorem 3.7] which depends on [Tre15, Theorem A.4]. Hence

DRep(G,R)〈1〉 ∼= Ho(F (BG+,HR)-ModSp).

8.30. Example. Let G be a finite group and let R be a commutative ring. We define
HG,R := trivG(HR) ∈ CAlg(SpG) so that D(HG,R) := Ho(HG,R -ModSpG

) is the
category of derived G-Mackey functors with R-linear coefficients; see [PSW22] and
[BHS23, Part V]. It is rigidly-compactly generated by the images of the genera-
tors G/H+ of SHG. We have an equivalence

D(HG,R)〈1〉 ∼= Ho(HR ∧ λG(SG)-ModSp).

8.31. Remark. We will study these equivariant examples in more detail in Section 13
and Section 15.

8.32. Example. Let k be a commutative ring and let T′ := Motak and S′ := Mot`k
denote the tt-categories of noncommutative motives over k for additive invariants
and localizing invariants, respectively. Although T′ is compactly generated, the
category S′ is not known to be compactly generated. Nevertheless, in either case,
the localizing subcategory generated by the dualizable objects is a rigidly-compactly
generated tt-category: T := T′〈T′d〉 = Loc(T′d) and S := S′〈S′d〉 = Loc(S′d). For

further details, see [CT12, DT12, Tab08].
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8.33. Example. Let X be a quasi-compact and quasi-separated scheme. The derived
category D(X) := Dqc(X) of quasi-coherent complexes of sheaves (i.e. complexes
of OX -modules whose cohomology sheaves are quasi-coherent) is rigidly-compactly
generated. We’ll study these examples in Section 16 and Section 17.

8.34. Remark. We will also use the “concentration” and “unitation” terminology in
the context of a small rigid tt-category K, namely, if G ⊆ K is a set of objects such
that thick〈G〉 is a rigid tensor-subcategory, we will write K〈G〉 := thick〈G〉 and call
it the concentration of K at G. Note that if K = Tc then K〈G〉 = (T〈G〉)

c.

8.35. Remark. Suppose F : K→ L is a tensor-triangulated functor. If thick〈G〉 ⊆ K

is a rigid tt-subcategory then thick〈F (G)〉 is a rigid tt-subcategory of L. Showing
that it is a tt-subcategory of Ld is a routine thick subcategory argument. Moreover,
G∨ ⊆ thick〈G〉 ⊆ F−1(thick〈F (G)〉) implies that F (G)∨ = F (G∨) ⊆ thick〈F (G)〉 so
that thick〈F (G)〉 is rigid.

8.36. Remark. It follows that a geometric functor f∗ : T → S (Hypothesis 3.1)
induces a geometric functor T〈G〉 → S〈f∗(G)〉 of concentrations whose right adjoint
is conservative (Remark 6.13). For example, the right adjoint of T〈1〉 → S〈1〉 is
conservative.

8.37. Example. If T is unigenic then any geometric functor f∗ : T → S factors as

T → S〈1〉 ↪→ S

and the right adjoint of the first functor is conservative. In particular, S is unigenic
if and only if f∗ : S→ T is conservative.

8.38. Example. Any finite localization T|U of a unigenic category T is unigenic.

8.39. Example. If T is unigenic then any fully faithful geometric functor T → S

induces an equivalence T
∼−→ S〈1〉 by Remark 6.13.

8.40. Remark. A geometric functor f∗ : T → S between unigenic categories is an
equivalence if and only if the canonical map 1T → f∗1S is an isomorphism if and
only if End∗T(1T)→ End∗S(1S) is an isomorphism. The first equivalence follows from
Example 8.39 and Proposition 6.5. On the other hand, since T is unigenic, the
map u : 1T → f∗1S is an isomorphism if and only if post-composition by u gives a
bijection T(Σn

1T, 1T) → T(Σn
1T, f∗1S) for all n ∈ Z and one readily checks that

this map coincides with T(Σn1T, 1T)→ S(f∗(Σn1T), f∗(1T)) ∼= S(Σn1S, 1S).

8.41. Remark. If U ⊆ Spc
(
Tc〈1〉

)
is the complement of a Thomason subset then we

have a commutative diagram

T〈1〉 T

(T〈1〉)|U T|ϕ−1(U)

by Remark 3.2. Since the bottom-left category is unigenic (Example 8.38) the fully

faithful bottom functor induces an equivalence: (T〈1〉)|U
∼−→ (T|ϕ−1(U))〈1〉.

8.42. Example. Suppose T = T1 × · · · × Tn is a finite product of rigidly-compactly
generated tt-categories with the pointwise tensor-triangulated structure. Then T is
itself rigidly-compactly generated. Moreover, T is unigenic if and only if each Ti
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is unigenic. Indeed, the projection π∗i : T → Ti is a finite localization whose (fully
faithful) right adjoint (πi)∗ sends x ∈ Ti to (0, . . . , x, . . . , 0). Hence T unigenic
implies that each Ti is unigenic. On the other hand, observe that for every t ∈ T

we have t = ⊕ni=1(πi)∗π
∗
i (t) = ⊕ni=11i ⊗ t where 1i = (0, . . . , 1, . . . , 0). Note that

(πi)∗(t) ∈ Loc〈1〉 in Ti implies 1i ⊗ t ∈ Loc〈1i〉 in T and 1i is a direct summand of
the unit 1 of T. Thus, t ∈ Loc〈1〉 in T and we conclude that T is unigenic.

8.43. Remark. An infinite product of rigidly-compactly generated tt-categories
need not be rigidly-compactly generated; see [Góm24, Example 2.6] and [BCHS24,
Remark 1.6].

8.44. Example. Let T be a nonzero rigidly-compactly generated tt-category and let
T ×Z/2 T be the product triangulated category with the Z/2-graded ⊗-structure
discussed in [San22, Example 4.23]. It is rigidly-compactly generated and the
inclusion x 7→ (x, 0) into the first factor provides a fully faithful geometric functor
T ↪→ T ×Z/2 T whose right adjoint is not conservative. This category T ×Z/2 T is
never unigenic. Indeed, the unit (1, 0) only generates objects concentrated in the
first factor. Note that if T is unigenic, then the unitation (T ×Z/2 T)〈1〉 is T sitting
inside as the first factor.

8.45. Example. Let F be any tt-field in the sense of [BKS19, Definition 1.1]. Then
F ×Z/2 F is again a tt-field. This shows that a tt-field need not be unigenic.

8.46. Remark. Any concentration T〈G〉 of a tt-field T is itself a tt-field by [BKS19,
Proposition 5.22]. Also, every geometric functor defined on a tt-field is faithful; see
[BKS19, Corollary 5.6].

9. Motivic examples

We will now briefly illustrate our results for some motivic categories of interest.

9.1. Example. Gallauer [Gal19] has given a beautiful computation of the spectrum
of the category DTM(Q,Z) of Tate motives over Q. This space is noetherian and
can be regarded as a two-dimensional version of Spec(Z) in which the layer of closed
points corresponds to mod-p motivic cohomology, the middle layer corresponds
to mod-p étale cohomology and the generic point corresponds to rational motivic
cohomology. We have the fully faithful inclusion DTM(Q,Z) ↪→ DM(Q,Z) into the
derived category of all motives over Q. By Theorem 5.5, the map

Spc(DM(Q,Z)c)→ Spc(DTM(Q,Z)c)

is a strong topological quotient map with connected fibers. The problem of determin-
ing the spectrum of the category of all motives over Q boils down to understanding
the connected fibers of this map. ‘

9.2. Example. The spectrum of the category DATM(R;Z) of Artin–Tate motives
over the real numbers (and other real-closed fields) has been studied in [BG22b].
We may observe that the two maps

Spc(DATM(R;Z/2)c) Spc(DTM(R;Z/2)c)

Spc(DAM(R;Z/2)c)
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described in [BG22a, Remark 12.5] have connected fibers as Theorem 5.5 predicts.
They look as follows:

• • •
• • • • •

• •
• •

•

9.3. Example. We can also consider the map induced by the fully faithful inclusion
DATM(R;Z/2) ↪→ DM(R;Z/2) into the category of all motives over R:

• •

Spc(DM(R;Z/2)c) • • •

•

ϕ

In a recent breakthrough, Vishik [Vis24] has increased our knowledge of the myste-
rious left-hand space and shown that it is considerably more complicated than the
right-hand side. This result builds on [Vis19, Vis22, Vis23] and ultimately depends
on proving that — over so-called “flexible fields” — isotropic Chow groups coincide
with Chow groups for numerical equivalence. This leads to the construction of a

family of “isotropic” primes which provide 22ℵ0 distinct points in Spc(DM(R;Z/2)c).
These isotropic points all lie over the top two green points in the figure above.
Since ϕ is surjective, we know that there are more primes that have yet to be dis-
covered. Moreover, by Theorem 5.5, the above map is a strong topological quotient
map whose fibers are connected. In fact, Vishik proved that there are no inclusions
among the isotropic primes. There is tension between this fact and the fact that
the fibers are connected, and this tension provides nontrivial information about the
space. For example, since the fiber of over the top-left green point is connected and
yet the specialization order among the known points of the fiber is trivial, either
(a) there exist additional points in the fiber which make it connected, or (b) the
constructible topology plays a nontrivial role in the fiber’s spectral topology.

9.4. Example. The unitation of the motivic stable homotopy category SH(C) is
equivalent to the classical stable homotopy category SH. This follows from a
theorem of Levine [Lev14, Theorem 1] which establishes that the canonical tt-functor
SH→ SH(C) is fully faithful. Hence it induces an equivalence SH→ SH(C)〈1〉 by
Example 8.39. Therefore, the two maps

Spc(SH(C)c)→ Spc(SHcell(C)c)→ Spc(SHc)

have connected fibers.

9.5. Remark. Further motivic consequences of our results will be given in Exam-
ples 12.13–12.15 below.

10. Applications to the graded comparison map

A fruitful approach to studying the Balmer spectrum of a given category K is
via the (graded or ungraded) comparison map

ρK : Spc(K)→ Spec(RK)
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constructed in [Bal10] from the Balmer spectrum to the Zariski spectrum of the
(graded or ungraded) endomorphism ring of the unit. This map factors through the
unitation:

(10.1)
Spc(K) Spc(K〈1〉) Spec(RK).

ρK

ϕ ρK〈1〉

In a number of interesting examples, the (graded or ungraded) comparison map is a
homeomorphism. For such categories, we immediately obtain:

10.2. Corollary. Let T be a rigidly-compactly generated tt-category. If the graded
or ungraded comparison map ρ : Spc(Tc) → Spc(RT) is injective, then unitation

T〈1〉 ↪→ T induces a homeomorphism Spc(Tc)
'−→ Spc(Tc〈1〉).

Proof. If either comparison map is injective, then it follows from the commutative
diagram (10.1) that the map ϕ induced by unitation is injective and hence a
homeomorphism by Theorem 4.1 and Corollary 2.26. �

10.3. Remark. We will see some explicit examples of this phenomenon in Section 13.
For the remainder of this section, we will go the other way around and use information
about the unitation to gain information about the comparison map. More precisely,
we are able to strengthen the surjectivity results of Balmer [Bal10, Section 7] and
of Lau [Lau23, Section 2].

10.4. Remark. Recall that for each prime ideal p ∈ Spec(R) of the graded or ungraded
endomorphism ring, we have the associated algebraic localization (−)p : T → Tp.
It is the finite localization associated to the Thomason subset ρ−1(gen(p)c) =⋃
s6∈p supp(cone(s)); see [BHS23, Example 1.34] and [Bal10, Section 5]. It has the

effect of localizing the (graded) R-module of (graded) morphisms

Tp(xp,Σ
(•)yp) ∼= T(x,Σ(•)y)p

for any compact x ∈ Tc and arbitrary y ∈ T; see [HPS97, Theorem 3.3.7] or [Zou23,
Proposition 6.5].

10.5. Remark. Consider the map ϕ : Spc(Tc) → Spc
(
Tc〈1〉

)
given by the unitation

and let p ∈ Spec(R). It follows from the factorization (10.1) that

ϕ−1(ρ−1
T〈1〉

(gen(p)c)) = ρ−1
T (gen(p)c).

It then follows from Remark 8.41 that algebraic localization and unitation commute:

T〈1〉 T

(T〈1〉)p (Tp)〈1〉 Tp.
∼

10.6. Proposition. Let K be an essentially small rigid tt-category. Suppose that
K = thick〈1〉 and that the graded ring RK := End•K(1) is coherent. Then the graded
comparison map ρK : Spc(K)→ Spec(RK) is a closed quotient map. Moreover,

(10.7) ρK(supp(x)) =
{
p ∈ Spec(RK)

∣∣xp 6= 0 in Kp

}
for each x ∈ K.
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Proof. First we explain how the equality (10.7) will imply that ρK is a closed quotient
map. The right-hand side of (10.7) is denoted V (x) in [Lau23, Section 2] and we will
use this notation in the proof. Note that V (x) is always specialization closed, since
algebraic localizations nest. Since supp(x) is proconstructible and ρK is a spectral
map, the image ρK(supp(x)) is proconstructible ([DST19, Corollary 1.3.23]). Hence,
if (10.7) holds then ρK(supp(x)) is specialization closed and hence closed ([DST19,
Theorem 1.5.4]). In summary, if the equality (10.7) holds for all x ∈ K, then ρK
sends Thomason closed subsets to closed subsets. This implies ρK is a closed map
by [DST19, Theorem 5.3.3]. Finally, V (1) = Spec(RK), so the x = 1 case of (10.7)
implies that ρK is surjective. Thus, ρK is a closed surjective map, and hence is a
closed quotient map by [DST19, Corollary 6.4.14].

With the above in hand, it remains to establish the equality (10.7). The inclu-
sion ρK(supp(x)) ⊆ V (x) always holds, without any hypotheses on K, by [Lau23,
Proposition 2.7]. We claim that under our hypotheses, this is an equality. To
this end, consider p ∈ V (x). We will show that there exists P ∈ supp(x) such
that ρK(P) = p. As explained in the proof of [Lau23, Proposition 2.7], we can use
algebraic localization to reduce to the case where RK is local and p = m is the
unique homogeneous maximal ideal. Moreover, by that argument, it suffices to
prove that

x⊗n ⊗ cone(f1)⊗ · · · ⊗ cone(fr) 6= 0

for any n ≥ 0 and homogeneous elements f1, . . . , fr ∈ m. Since K is rigid, it is
enough to prove this for n = 0 and n = 1. Thus, it suffices to prove that for
any a ∈ K and homogeneous f ∈ m, if a 6= 0 then a ⊗ cone(f) 6= 0. By [Bal10,
Proposition 7.5], if Hom•K(1, a) is nonzero and coherent as a graded RK-module then
Hom•K(1, a⊗ cone(f)) is nonzero, and hence a⊗ cone(f) 6= 0. Since K is unigenic
by hypothesis, a 6= 0 implies Hom•K(1, a) 6= 0. In general, for a tt-category K, the
collection of objects a ∈ K such that the graded RK-module Hom•K(1, a) is coherent
forms a thick subcategory. Thus, if the graded ring RK is coherent, then Hom•K(1, a)
is a coherent RK-module for every a ∈ thick〈1〉 = K. This observation completes
the proof. �

10.8. Theorem. Let T be a rigidly-compactly generated tt-category. Suppose RT :=
End•T(1) is coherent (e.g., noetherian). Then the graded comparison map

(10.9) ρ : Spc(Tc)→ Spec(RT)

is a strong spectral quotient map. In particular, ρ is a homeomorphism if and only
if it is injective.

Proof. Consider Tc〈1〉 = thick〈1〉 ⊆ Tc. We have the factorization

(10.10) Spc(Tc) Spc(Tc〈1〉) Spec(RT).

ρT

ϕ ρT〈1〉

By Proposition 10.6, ρT〈1〉 is a closed quotient map and, by Theorem 4.1, ϕ is a
strong spectral quotient map. Since every closed quotient map is a strong spectral
quotient map (Example 2.22), it follows that the composite ρT is also a strong
spectral quotient. Finally, an injective spectral quotient map is a homeomorphism
by Corollary 2.26. �
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10.11. Remark. Except for the fact that we work with a big tt-category T, Theo-
rem 10.8 enhances the surjectivity theorem of Balmer [Bal10, Theorem 7.3]. It also
generalizes results in [Lau23, Section 2] which consider the case of an End-finite
(a. k. a. noetherian) category. By passing through the unitation, we are able to show
that one doesn’t need to assume the category is End-finite, and that it is enough
just to make a hypothesis on the endomorphism ring.

10.12. Remark. The map (10.9) in Theorem 10.8 need not have connected fibers
(even when both spaces are finite). A counter-example is provided in Example 17.10
below. Thus, the theorem should be contrasted with Theorem 5.5.

11. Connective categories and weight structures

Our next goal is to prove a result about the ungraded comparison map of a
connective tt-category in the spirit of Theorem 10.8 but whose conclusions are
considerably stronger; see Corollary 12.9 below. For this, we will have need of
Bondarko’s theory of weight structures.

11.1. Definition. We say that a tt-category K is connective if πi(1) := EndK(1,Σ−i1)
is zero for all i < 0.

11.2. Example. The homotopy category of spectra SH = Ho(Sp) is connective.

11.3. Notation. For a collection E of objects in a triangulated category, we write
add(E) for the full additive subcategory consisting of finite direct sums of objects in E

and write smd(E) for the full subcategory of direct summands of objects in add(E).

11.4. Theorem (Bondarko). Let T be a triangulated category. If G ⊂ T is a collection
of objects which is connective in the sense that HomT(a,Σnb) = 0 for all a, b ∈ G

and n > 0, then there is a unique (bounded) weight structure on K := thick〈G〉 whose
heart contains G. Moreover, K♥ = smd(G).

Proof. This follows from [BS18, Corollary 2.1.2]; cf. [Bon10, Theorem 4.3.2]. �

In the presence of an underlying model, a weight structure provides a well-behaved
weight complex functor:

11.5. Theorem (Bondarko–Sosnilo–Aoki). Let K be a tensor-triangulated category
equipped with a bounded weight structure such that Kw≥0 and Kw≤0 are both closed
under the ⊗-product. If K is the homotopy category of an underlying symmetric
monoidal stable ∞-category then there is a conservative tensor-triangulated functor

(11.6) WK : K→ Kb(K♥)

which is the identity on the heart. It is the unique weight-exact tensor-triangulated
functor (up to isomorphism) which arises from an exact symmetric monoidal functor
of underlying ∞-categories whose restriction to the heart is equivalent to the identity.

Proof. This is mostly established by [Bon10, Theorem 3.3.1], [Sos19, Corollary 3.5]
and [Aok20, Corollary 4.5]. We briefly recall the construction for the convenience
of the reader and to explain the uniqueness statement. Let C and D be stable
∞-categories equipped with bounded weight structures and let g : C♥ → D♥

be an additive functor of additive ∞-categories. Sosnilo’s uniqueness theorem
[Sos19, Corollary 3.5] establishes that there is an essentially unique weight-exact
functor G : C→ D which extends g. Now suppose that C and D have symmetric
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monoidal structures C⊗ and D⊗ which are compatible with the weight structure.
If g has a symmetric monoidal refinement g⊗ : (C♥)⊗ → (D♥)⊗ then Aoki [Aok20,
Corollary 4.5] constructs a symmetric monoidal refinement G⊗ : C⊗ → D⊗ of the
corresponding weight-exact functor which restricts to g⊗. Working carefully through
the construction, one sees that G⊗ is in fact the essentially unique refinement of G
which restricts to g⊗.

Now let K := Ho(C). For the additive category A := K♥ = Ho(C♥), we have the

dg-nerve D := Ndg(Chb(A)) with Ho(D) = Kb(A) and D♥ = N(A). It follows from
the above discussion that there is an essentially unique weight-exact symmetric
monoidal functor

(11.7) C→ Ndg(Chb(K♥))

whose restriction to the hearts is the unit

η : C♥ → N(Ho(C♥)) = N(K♥)

of the Ho a N adjunction. By definition, the weight complex (11.6) is the functor
that (11.7) induces on homotopy categories: K = Ho(C)→ Ho(D) = Kb(K♥). It is
conservative by [Sos19, Corollary 3.5] and [Bon10, Theorem 3.3.1]. Finally, one can
readily check that if g : C♥ → N(Ho(C♥)) is a functor such that Ho(g) ' Ho(η) = id
then g ' η. �

11.8. Example. Let R be a commutative ring. The derived category of perfect
complexes D(R)c has a bounded weight structure whose associated weight complex
functor W : D(R)c → Kb(proj(R)) ∼= D(R)c is equivalent to the identity.

11.9. Example. Let G be a finite group and consider the equivariant stable homotopy
category SHG. The generators

{
G/H+

∣∣H ≤ G
}

form a connective collection of

objects since πHn (G/K+) = 0 for all n < 0 and H,K ≤ G. Hence SHc
G has a unique

weight structure whose heart is smd(G/H+ | H ≤ G). This weight structure has
been studied in [Bon21, Bon24] and will be utilized in the proof of Proposition 13.9.

11.10. Example. Let K be an essentially small and idempotent-complete tt-category
with RK := EndK(1). If K = thick〈1〉 is unigenic and connective then K admits a
bounded weight structure whose heart K♥ = smd(1) is equivalent as an additive
tensor category to the category proj(RK) of finitely generated projective RK-modules.
Moreover, since Kw≥0 and Kw≤0 are the subcategories of K generated by 1 using
direct summands, extensions and either positive or negative shifts, it follows that
Kw≥0 and Kw≤0 are each closed under the ⊗-product, i.e., the weight structure
is compatible with the ⊗-product in the sense of Theorem 11.5. Thus, if K is the
homotopy category of an underlying symmetric monoidal stable ∞-category then
the weight complex provides a conservative tensor triangulated functor

(11.11) W : K→ Kb(K♥) ∼= D(RK)c

which is the identity on the heart. Moreover, if we have two such categories K and L

then any tensor triangulated functor F : K → L is automatically weight-exact.
Assuming this functor arises from a symmetric monoidal exact functor of underlying
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∞-categories, we have a commutative diagram

(11.12)

K Kb(K♥)

L Kb(L♥).

F

WK

Kb(F♥)

WL

11.13. Remark. The right-hand functor in (11.12) is induced by the additive functor
F♥ := F |K♥ : K♥ → L♥. Under the identifications

K♥ ∼= proj(RK) and L♥ ∼= proj(RL)

this is the functor given by base-change along the ring homomorphism RK → RL

induced by F . Applying Theorem 11.5 to Kb(K♥), we conclude that the functor
Kb(K♥)→ Kb(L♥) coincides with the base-change functor D(RK)c → D(RL)c.

11.14. Proposition. Let K be an essentially small idempotent-complete tt-category
which is the homotopy category of a symmetric monoidal stable ∞-category. Suppose
that K is connective and unigenic. If RK is a local ring then K is a local tt-category.

Proof. Since K is connective and unigenic, it admits the bounded weight structure of
Example 11.10. The associated weight complex W : K→ D(RK)c is a conservative
tt-functor to a local tt-category and it follows that K itself is local. �

11.15. Remark. There are plenty of examples of non-local tt-categories K whose
endomorphism ring RK is local. A connective example is the derived category of the
projective line D(P1

k) and a unigenic example is described in Example 17.7. Thus
Proposition 11.14 is false if either of these hypotheses on K is removed.

We end this section by providing an alternative perspective on the weight com-
plexes of Example 11.10.

11.16. Remark. Recall that the∞-category of spectra Sp is endowed with a standard
t-structure defined in terms of the vanishing of homotopy groups. The truncation

τ≤0 : Sp≥0 → Sp♥ ∼= NAb

is a symmetric monoidal localization whose right adjoint sends an abelian group A
to its Eilenberg–MacLane spectrum HA. Thus, for each connective ring spectrum
E ∈ CAlg(Sp≥0), we have a homomorphism E → τ≤0E = H(π0(E)) in CAlg(Sp)
and hence a geometric functor

(11.17) D(E)→ D(H(π0(E))) ∼= D(π0(E))

given by base-change.

11.18. Example. If T = Ho(C) is connective and unigenic then endC(1) ∈ Sp≥0 is a
connective ring spectrum and we have a geometric functor

T ∼= D(endC(1))→ D(RT)

given by base-change along

endC(1)→ τ≤0(endC(1)) = H(π0(endC(1))) = H(RT)

and Remark 8.25.
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11.19. Proposition. If T = Ho(C) is both connective and unigenic, then the weight
complex functor W : Tc → D(RT)c of Example 11.10 coincides as a tt-functor with
the restriction to compact objects of the geometric functor T ∼= D(endC(1))→ D(RT)
of Example 11.18.

Proof. The functor C ∼= endC(1)-ModSp → τ≤0(endC(1))-ModSp is a weight-exact
functor whose restriction to the heart is the unit C♥ → N(Ho(C♥)) of the Ho a N
adjunction. Its restriction to compact objects is thus equivalent to the weight
complex functor by Theorem 11.5. �

11.20. Example. From this perspective, the conservativity of the weight complex
functors of Example 11.10 amounts to the statement that for any connective ring
spectrum E ∈ CAlg(Sp≥0), the induced functor D(E)→ D(π0(E)) is conservative on
compact objects. For E = S this is a straightforward consequence of the Hurewicz
theorem.

11.21. Example. Let E ∈ CAlg(Sp≥0) be a connective ring spectrum. The restriction
of (11.17) to compact objects

D(E)c → D(π0(E))c ∼= Kb(proj(π0(E)))

can be identified with the weight complex functor

D(E)c → Kb(D(E)♥) ∼= Kb(proj(π0(E)))

associated to the canonical bounded weight structure on D(E)c.

11.22. Example. We may apply the above to SH = Ho(Sp), i.e., to E = S. The
restriction of SH→ D(HZ) to compact objects

SHc → D(HZ)c

can be identified with the weight complex functor associated to the canonical
bounded weight structure on SHc.

12. Applications to the ungraded comparison map

We will now apply the above results to the ungraded comparison map of a
connective category.

12.1. Terminology. Recall that a topological space X is local if it is nonempty and
any open cover is trivial: X =

⋃
i∈I Ui implies X = Ui for some i ∈ I. Note that

this is considerably stronger than being connected. A spectral space X is local if
and only if it has a unique closed point. (This follows from the fact that every closed
subset of a spectral space contains a closed point, see [DST19, Proposition 4.1.2]).
We’ll say that a spectral subspace Z ⊆ X has a unique relatively closed point if Z
has a unique closed point when regarded as a spectral space in its own right or,
equivalently, if Z is local in the induced topology.

We isolate the following purely topological observation:

12.2. Lemma. Let g : X → Y be a spectral map of spectral spaces and let f : Y → X
be a function such that g ◦ f = idY . Suppose that

(i) f preserves specializations, equivalently, the preimage f−1(Z) of a (special-
ization) closed set Z ⊆ X is specialization closed; and

(ii) x f(g(x)) for each x ∈ X.
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Then the following hold:

(a) g is a closed quotient map.
(b) f is a topological embedding.
(c) g(Z) = f−1(Z) for every specialization closed set Z ⊆ X.

Proof. (a): A surjective spectral map is a closed quotient map as soon as it is
a closed map ([DST19, Corollary 6.4.14]). Moreover, to establish that g is a

closed map it suffices to establish that g({x}) is closed for each x ∈ X ([DST19,

Theorem 5.3.3]). Finally, since g({x}) is proconstructible, it suffices to prove that

g({x}) is closed under specialization. To this end, suppose x x′ and g(x′) y.
Then f(g(x′)) f(y) by hypothesis (i) and x′  f(g(x′)) by hypothesis (ii). Thus

x f(y) and hence y = g(f(y)) ∈ g({x}) as desired. This proves part (a).
(c): We always have f−1(Z) ⊆ g(Z) for any subset Z ⊆ X simply from the fact

that g ◦ f = idY . On the other hand, hypothesis (ii) implies that f−1(Z) ⊆ g(Z)
if Z is specialization closed.

(b): Note that (a) and (c) together imply that f is continuous and it is standard
that a split monomorphism in the category of topological spaces is an embedding. �

12.3. Remark. The hypotheses of the previous lemma can be reformulated as follows:
Let g : X → Y be a spectral map with the property that each fiber g−1({y}) is a
local space (i.e. contains a unique relatively closed point) and that, moreover, the
map y 7→ f(y) ∈ g−1({y}) which sends y to the unique relatively closed point of the
fiber g−1({y}) is specialization-preserving.

12.4. Proposition. Let K be an essentially small tt-category with the property that
the algebraic localization Kp is local for each p ∈ Spec(RK). Then

(a) The comparison map ρK : Spc(K) → Spec(RK) is a closed quotient map
whose fibers are local.

(b) The map f : Spec(RK) → Spc(K) given by p 7→ Ker(K → Kp) is a well-
defined continuous section to ρK and hence is a topological embedding.

(c) For each a ∈ K, we have

ρK(supp(a)) = f−1(supp(a)) =
{
p ∈ Spec(R)

∣∣xp 6= 0 in Kp

}
.

Proof. Recall from [Bal10, Corollary 5.6] that an algebraic localization provides
a cartesian square on Balmer spectra. From this, one sees that the hypothesis
that Kp is local is equivalent to the assertion that the fiber ρ−1

K ({p}) has a unique
minimum point for inclusion, namely the prime tt-ideal Ker(K → Kp). The

function sending p to this unique minimum point in ρ−1
K ({p}) is denoted f in

part (b). Algebraic localizations nest: If p  q then the p-localization factors
through the q-localization: K→ Kq → Kp, i.e., f(p) f(q). In other words, the
function f preserves specializations. Note also that it follows from the definition
of ρK that the tt-localization K→ K/P factors through the algebraic localization:
K→ Kρ(P) → K/P. In other words, P f(ρ(P)). Thus, we are in the situation of
Lemma 12.2 with g := ρK and the conclusions follow. �

12.5. Theorem. Let K be an essentially small idempotent-complete tt-category
which is unigenic and connective and let RK = EndK(1). Assume that K is
the homotopy category of an underlying symmetric monoidal stable ∞-category.
Let WK : K→ D(RK)c denote the weight complex functor for the weight structure
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of Example 11.10 and let ωK denoted the induced spectral map

Spec(RK) ∼= Spc(D(RK)c)
Spc(WK)−−−−−−→ Spc(K).

Then the following statements hold:

(a) Each fiber ρ−1
K ({p}) is a local space whose unique relatively closed point is

the prime tt-ideal Ker(K→ Kp) ∈ Spc(K).
(b) The function ωK : Spec(RK)→ Spc(K) is given by p 7→ Ker(K→ Kp).
(c) For any a ∈ K we have,

ρK(supp(a)) = ω−1
K (supp(a)) =

{
p ∈ Spec(R)

∣∣xp 6= 0 in Kp

}
.

(d) The comparison map ρK : Spc(K)→ Spec(RK) is a closed quotient map.
(e) The map ωK : Spec(RK)→ Spc(K) is a topological embedding whose image

is the subspace of Spc(K) consisting of the unique relatively closed points of
the fibers of ρK.

Proof. For any p ∈ Spec(RK), the algebraic localization Kp is again unigenic (Ex-
ample 8.38) and connective (Remark 10.4). Therefore Proposition 11.14 establishes
that the tt-category Kp is local. This implies (a) and moreover that Proposition 12.4
applies. Note that (b) asserts that the map ωK coincides with the map denoted f in
Proposition 12.4. Thus, once we establish (b) the rest follows from Proposition 12.4.

Recall from Example 11.10 that the localization K→ Kp is automatically weight-
exact and hence we have a commutative diagram

(12.6)

Spec(RK) Spc(K) Spec(RK)

Spec((RK)p) Spc(Kp) Spec((RK)p).

ωK ρK

ωKp ρKp

The conservativity of the weight complex implies that ωKp
preserves the unique

closed points. Moreover, the middle upwards arrow maps the unique closed point
of Spc(Kp) to Ker(K → Kp) ∈ Spc(K). The commutativity of the diagram then
establishes (b). This completes the proof. We note in passing that since ρK ◦ ωK is
the identity map and the right-hand square in (12.6) is cartesian, it follows that the
left-hand square is cartesian, too. �

12.7. Remark. Thus, in the spectrum of a connective unigenic category K there is
an embedded copy of Spec(RK) which is provided by the weight complex functor
for the canonical weight structure on K. The stable homotopy category K = SHc

provides an informative example of this phenomenon. Indeed, one of the motivations
for [PSW22] was the observation that, on Balmer spectra, the canonical functor
SH → D(HZ) ∼= D(Z) embeds a copy of Spec(Z) into Spc(SHc) covering the top
and bottom layers of points:

� � //•◦ •◦ •◦ •◦ •◦ •◦ •◦ . . .

•◦

•◦
•◦
•◦

...
•◦

•◦
•◦
•◦

...
•◦

•◦
•◦
•◦

...
•◦

•◦
•◦
•◦

...
•◦

•◦
•◦
•◦

...
•◦

•◦
•◦
•◦

...
•◦

•◦
•◦
•◦

...
•◦

. . .

. . .

. . .

. . .

•◦
Spec(Z) ∼= Spec(D(Z)c) �

�
// Spec(SHc)
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Observe that it embeds Spec(Z) precisely onto the subspace consisting of the unique
relatively closed points of the fibers of the comparison map. Theorem 12.5 provides
a general explanation for this phenomenon.

12.8. Remark. Observe that the statement of Theorem 12.5 is considerably stronger
than the result from Proposition 10.6 for the graded comparison map of a unigenic
category whose graded endomorphism ring is coherent. It is natural to ask whether
the latter has an analogous strengthening. This is false. Consider the derived
category of the projective line. The graded endomorphism ring is coherent and
concentrated in degree zero where it is a single point. But the fiber, which is P1

k,
does not have a unique closed point.

12.9. Corollary. Let T be a connective rigidly-compactly generated tt-category which
is the homotopy category of an underlying symmetric monoidal stable ∞-category.
The ungraded comparison map

(12.10) ρ : Spc(Tc)→ Spec(EndT(1))

is a strong spectral quotient map whose fibers are connected. In particular, ρ is a
homeomorphism if and only if it is injective.

Proof. Let RT := EndT(1). As in the proof of Theorem 10.8, we have a factorization
of the ungraded comparison map as

(12.11) Spc(Tc) Spc(Tc〈1〉) Spec(RT).

ρ

ϕ ρ

The first map is a strong spectral quotient map (Theorem 4.1) while the second is a
closed quotient map (Theorem 12.5). Since closed quotient maps are strong spectral
quotient maps (Example 2.22), it follows that the composite is a strong spectral
quotient map. The last statement then follows from Corollary 2.26.

We now establish that the fibers are connected. Recall from Remark 10.5
that algebraic localization “commutes” with unitation. It follows that we have a
commutative diagram

Spc(Tc) Spc(Tc〈1〉) Spec(RT)

Spc(Tcp) Spc((Tp)c〈1〉) Spec((RT)p).

ϕ ρ

ϕ ρ

Since the outer square is cartesian [Bal10, Corollary 5.6], we are reduced to showing
that ϕ−1(ρ−1({m})) is connected where m ∈ Spec((RT)p) is the unique closed point.
Note that (Tp)〈1〉 ∼= (T〈1〉)p is an algebraic localization of a connective category
and hence is still connective (Remark 10.4). Thus, Proposition 11.14 establishes
that (Tp)〈1〉 is a local tt-category. Since the bottom ϕ is induced by the fully faithful

functor (Tp)〈1〉 ↪→ Tp, the fiber ϕ−1(ρ−1({m})) is connected by Proposition 5.3. �

12.12. Remark. If Spec(EndT(1)) is noetherian then the strong spectral quotient of
Corollary 12.9 is a strong topological quotient map by Proposition 2.30.

12.13. Example. The derived category of motives DM(k;R) is connective, since
the motivic cohomology groups End(1,Σn

1) = Hn,0(k;R) vanish for n > 0;
see [MVW06, Theorem 3.6]. Therefore, by Corollary 12.9, the comparison map
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ρ : Spc(DM(k;R)c)→ Spec(R) is a strong spectral quotient map whose fibers are
connected. Moreover, this statement is also true for the comparison map of each of the
concentrations DTM(k;R), DAM(k;R) and DATM(k;R); see Examples 8.8–8.10.

12.14. Example. Let k be a field of characteristic zero. The motivic stable homotopy
category T = SH(k) is connective (see [Mor05]) and its ungraded endomorphism
ring is isomorphic to the Grothendieck–Witt ring GW(k) by [Mor04, Theorem 6.2.1].
Moreover, the Zariski spectrum of GW(k) is known; see [Bal10, Remark 10.2]. By
Corollary 12.9, the comparison map ρ : Spc(SH(k)c) → Spec(GW(k)) is a strong
spectral quotient map whose fibers are connected.

12.15. Example. Let k be a commutative ring and let T denote the concentration
of Motak at the dualizable noncommutative motives; see Example 8.32. The graded
endomorphism ring of the unit is the algebraic K-theory of the ring k by [Tab08,
Theorem 15.10]. More precisely

πn(1) = HomT(Σn1, 1) =

{
Kn(k) for n ≥ 0

0 for n < 0.

In particular, the tt-category T is connective. By Corollary 12.9, the comparison
map ρ : Spc(Tc)→ Spec(K0(k)) is a strong spectral quotient map with connected
fibers. The unitation of T has been studied in [DT12]. They prove that if k is a finite
field or the closure of a finite field, then ρ : Spc

(
Tc〈1〉

)
→ Spec(K0(k)) = Spec(Z) is

a bijection, and hence a homeomorphism by Corollary 2.26. Moreover, for a field k
of characteristic zero, they also consider the concentration T〈G〉 generated by 1 and
the noncommutative motive of k[t]; see [DT12, Section 5].

12.16. Example. Let T = SHG or T = D(HG,Z) for any finite group G. By Corol-
lary 12.9, the comparison map ρ : Spc(Tc)→ Spec(A(G)) is a topological quotient
map whose fibers are connected. The fact that it is a quotient map (for T = D(HG,Z))
was observed by direct methods in [PSW22, Corollary 2.42].

12.17. Remark. The stronger consequences of Theorem 12.5, namely that the fibers
are local (rather than just connected), need not be true if T is not unigenic; see
Example 17.24 below.

12.18. Remark. The fibers of the ungraded and graded comparison maps can fail to be
connected if the category is not connective, even if it is unigenic. See Example 17.10.

12.19. Remark. It remains an open question in general, whether the comparison map
of a tt-category is a homeomorphism if and only if it is a bijection. This is known
to be true under some hypotheses; see [Lau23, Corollary 2.5] and [DS22]. Our
Theorem 10.8 and Corollary 12.9 give further sufficient conditions for the question
to have an affirmative answer.

13. Unitation in equivariant higher algebra

We now turn to explicit examples arising in equivariant higher algebra starting
with the modular representation theory of finite groups.

13.1. Proposition. Let G be a finite group and let k be a field of characteristic p > 0.
The derived category of representations DRep(G, k) ∼= K(Inj(kG)) is unigenic if and
only if G is a p-group.
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Proof. Recall that DRep(G, k)c ∼= Db(mod(kG)). Note that finitely generated kG-

modules are of finite length. Hence Db(mod(kG)) is generated by the collection of
simple kG-modules. More precisely, if S is any set of simple kG-modules then the
full subcategory AS ⊆ mod(kG) consisting of those modules whose composition
factors lie in S forms an abelian subcategory which is closed under extensions.
Hence Db

S(mod(kG)) :=
{
t ∈ Db(mod(kG))

∣∣Hi(t) ∈ AS for all i ∈ Z
}

is a thick

subcategory. Thus, if Db(mod(kG)) is unigenic then, taking S = {k}, we have

that Db(mod(kG)) = thick〈k〉 ⊆ Db
{k}(mod(kG)) which implies that k is the only

simple module. In summary, Db(mod(kG)) is unigenic if and only if k is the only
simple module. Now recall that the Jacobson radical J(G) := rad(kG) is the
largest nilpotent ideal [Wei03, Proposition 3.2] and J(G) ⊆ I(G) := Ker(kG→ k).
Moreover, J(G) is the intersection of the annihilators of all the simple modules
[Wei03, Proposition 2.2]. Hence, the trivial representation k is the unique simple
module if and only if J(G) = I(G) if and only if the augmentation ideal I(G)
is nilpotent if and only if G is a finite p-group [Pas77, Chapter 3, Lemma 1.6,
page 70]. �

13.2. Example. Let G be a finite group and let k be a field of positive characteristic.
As explained in Example 8.29, the unitation of DRep(G; k) ∼= K(Inj(kG)) is equiva-
lent as a tt-category to the derived category of the ring spectrum F (BG+,Hk) ∈
CAlg(Sp). Recall that this is equivalent to the derived category of the dg-algebra
C∗(BG; k) of k-valued cochains on the classifying space BG:

DRep(G; k)〈1〉 ∼= D(F (BG+,Hk)) ∼= Ddg(C∗(BG; k)).

See [BCHV22] and [BK08]. On Balmer spectra, the unitation of DRep(G, k) induces
a homeomorphism

Spc(Db(mod(kG)))
∼=−→ Spc(Db(mod(kG))〈1〉).

This is an instance of Corollary 10.2 since the graded comparison map is a homeo-
morphism; see [Bal10, Proposition 8.5].

13.3. Remark. Note that if G is not a p-group then the unitation of DRep(G,Fp) is
an example of a fully faithful geometric functor, which is not an equivalence, but
which induces a homeomorphism on Balmer spectra.

13.4. Example. Let G be a finite group and let k be a field of positive characteristic.
The unitation of StMod(kG) induces a homeomorphism on Balmer spectra

Spc(stmod(kG))
∼=−→ Spc(stmod(kG)〈1〉).

Again this is an instance of Corollary 10.2 since the graded comparison map is
injective; see the proof of [Bal10, Proposition 8.5].

13.5. Remark. Let G be a finite group and let k be a field of positive characteristic.
We have already observed in Example 8.15 that the unitation of DPerm(G; k) is
equivalent to D(k). From a different perspective,

DPerm(G; k) ∼= Ho(Hk-ModSpG
)

where Hk denotes the Eilenberg–MacLane G-spectrum associated to the constant
G-Mackey functor k. By Remark 8.27, we have

(Hk-ModSpG
)〈1〉 ∼= λG(Hk)-ModSp
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and it is immediate from the definitions that λG(Hk) ∼= Hk.

13.6. Proposition. Let G be a finite group and let k be a field of characteristic p > 0.
The derived category of permutation modules DPerm(G; k) is unigenic if and only
if G is the trivial group.

Proof. Recall that we have a localization DPerm(G; k) � DRep(G; k) and that
D(k) ∼= DPerm(G; k)〈1〉. Thus, if DPerm(G; k) is unigenic then we would have a
localization D(k) � DRep(G; k). Since any exact functor on D(k) is faithful, we
would thus have D(k) ∼= DRep(G; k) which is false unless G = 1 since any nontrivial
finite group has nontrivial cohomology. �

13.7. Remark. More generally, consider DPerm(G;R) and DRep(G;R) for any
noetherian ring R. Recall from Example 8.18 that we have a factorization

DPerm(G;R)� DRep(G;R)〈G〉 ↪→ DRep(G;R)

of the canonical functor DPerm(G;R) → DRep(G;R) and that the inclusion
DRep(G;R)〈G〉 ↪→ DRep(G;R) can be strict if R is non-regular. Since the graded
comparison map for DRep(G;R) is a homeomorphism by [Lau23, Theorem 1.3],
it follows as above that the concentration DRep(G;R)〈G〉 ↪→ DRep(G;R) induces
a homeomorphism on Balmer spectra. We conclude that although the canonical
functor DPerm(G;R) → DRep(G;R) is not always a localization it nevertheless
always induces an embedding

Spc(DRep(G;R)c) ↪→ Spc(DPerm(G;R)c).

13.8. Remark. We now turn to the equivariant stable homotopy category and related
categories of spectral Mackey functors. We will take for granted some familiarity
with the notation and results of [BS17] and [PSW22]. Our first goal is to prove
that the unitation of the category of derived Mackey functors identifies, on Balmer
spectra, with the spectrum of the Burnside ring. We will reduce this theorem to the
following proposition:

13.9. Proposition. Let G be a finite p-group and let

ϕ : Spc(D(HG,Z)c)→ Spc(D(HG,Z)c〈1〉)

be the map induced by unitation. Then ϕ(P(H, p)) = ϕ(P(K, p)) for all H,K ≤ G.

Proof. Because unitation commutes with algebraic localization (Remark 10.5), we are
reduced to the analogous statement for D(HG,Z)(p)

∼= D(HG,Z(p)
). In the spectrum

of the category of derived Mackey functors we have P(K, p) ⊆ P(H, p) if and only
if K is G-conjugate to a p-subnormal subgroup of H. Thus, in the case where G is
a p-group we have P(1, p) ⊆ P(H, p) ⊆ P(G, p) for any H ≤ G. Hence ϕ(P(1, p)) ⊆
ϕ(P(H, p)) ⊆ ϕ(P(G, p)). It thus suffices to prove that ϕ(P(G, p)) ⊆ ϕ(P(1, p)).
Recall that the prime P(G, p) is the kernel of the geometric fixed point functor

ΦG : D(HG,Z(p)
)c → D(HZ(p))

c.

We claim that ϕ(P(G, p)) = thick〈1〉 ∩Ker(ΦG) is the zero ideal. Recall from Exam-
ple 11.9 that SHc

G has a bounded weight structure generated by the orbits G/H+.
In a similar fashion, D(HG,Z(p)

)c admits a weight structure generated by the (images

of) the orbits. In particular, its unitation D(HG,Z(p)
)c〈1〉 = thick〈1〉 admits a weight

structure generated by 1 = G/G+ as in Example 11.10. The heart of this weight
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structure is the the additive tensor-category proj(A(G)(p)) of finitely generated
projective A(G)(p)-modules. Since the two functors

(13.10) D(HG,Z(p)
)c〈1〉 ↪→ D(HG,Z(p)

)c
ΦG

−−→ D(HZ(p))
c

are weight-exact, we have a commutative diagram

D(HG,Z(p)
)c〈1〉 D(HZ(p))

c

Kb(proj(A(G)(p))) Kb(proj(Z(p)))

W W

where the vertical functors are the weight complex functors. By Remark 11.13, the
bottom functor

D(A(G)(p))
c ∼= Kb(proj(A(G)(p)))→ Kb(proj(Z(p))) ∼= D(Z(p))

c

may be identified with extension-of-scalars with respect to the ring homomorphism
on endomorphism rings induced by ΦG. This is the p-localization of the ring
homomorphism A(G) → Z which sends a finite G-set [X] to |XG|; see [BS17,
Remark 3.8]. Since G is a p-group, the p-local Burnside ring A(G)(p) has a unique
closed point which is hit by the unique closed point of Z(p); see [BS17, Theorem 3.6]
or [Dre69]. It then follows, for example from [Bal18, Theorem 1.2], that the
bottom functor is conservative. Since the weight complex functors are conservative
(Theorem 11.5), it follows that the top functor (13.10) is conservative. That is,
ϕ(P(G, p)) = (0), which proves the result. �

13.11. Theorem. Let G be a finite group. The comparison map

ρ : Spc
(

D(HG,Z)c〈1〉
)
→ Spec(A(G))

is a homeomorphism.

Proof. Consider the commutative diagram

Spc(D(HG,Z)c)

Spc
(

D(HG,Z)c〈1〉
)

Spec(A(G)).

ρ

ϕ

ρ

It suffices to prove that the bottom comparison map is injective since Theorem 12.5
establishes that it is a closed quotient map; cf. Corollary 12.9. Since ϕ is surjective, it
suffices to prove that for any P,Q ∈ Spc(D(HG,Z)c), if ρ(P) = ρ(Q) then ϕ(P) = ϕ(Q).
By the explicit description of ρ given in [PSW22, Corollary 2.42], this reduces to
the following claim: For any prime p and subgroup H ≤ G, we have ϕ(P(H, p)) =
ϕ(P(Op(H), p)). Considering the restriction

D(HG,Z) D(HH,Z)

D(HG,Z)〈1〉 D(HH,Z)〈1〉

resGH
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and recalling [PSW22, Lemma 2.12], we can assume without loss of generality that
H = G. Similarly, for any normal subgroup N �G we have

D(HG,Z) D(HG/N,Z)

D(HG,Z)〈1〉 D(HG/N,Z)〈1〉.

Φ̃N

Taking N = Op(G) and recalling [PSW22, Lemma 2.15] we are reduced to the
claim that in the p-group G/Op(G) we have ϕ(P(1, p)) = ϕ(P(G/Op(G), p)) which
is provided by Proposition 13.9. �

13.12. Remark. The quotient map

Spc(D(HG,Z)c) Spc(D(HG,Z)〈1〉)

Spec(A(G))
ρ

ϕ

ρ∼=

is explicitly described in [PSW22, Corollary 2.42]. In particular, for any two
primes P,Q ∈ Spc(D(HG,Z)c), we have ρ(P) = ρ(Q) if and only if P = P(H, p) and
Q = P(K, p) for some prime number p and subgroups H,K ≤ G such that H ∩K is
a p-subnormal subgroup of H and K.

13.13. Remark. The above results show that for the category of derived Mackey
functors unitation effects a nontrivial quotient on the Balmer spectrum. In contrast,
we will next show that unitation does not change the Balmer spectrum at finite
heights.

13.14. Definition. Let 0 ≤ n < ∞. Then Yn :=
{
Cp,h

∣∣h > n
}
⊆ Spc(SHc) is a

Thomason subset with an associated idempotent triangle en → S → fn → Σen.
Consider the canonical functor trivG : SH → SHG from Notation 8.26 and let
ϕ := Spc(trivG) : Spc(SHc

G) → Spc(SHc). We have an induced finite localization
on SHG with idempotent triangle trivG(en)→ SG → trivG(fn)→ Σ trivG(en) which
corresponds to the Thomason subset

YG,n := ϕ−1(Yn) =
{
P(H, p, h)

∣∣h > n
}
⊆ Spc(SHc

G).

We call SH≤n := SH|Y c
n

and SHG,≤n := SHG |Y c
G,n

the chromatic truncations of SH

and SHG below height n. A p-localized version of this truncation construction is
discussed in [ABHS25, Example 6.15 and Warning 6.16].

13.15. Theorem. Let G be a finite group and 0 ≤ n <∞. Let SHG,≤n denote the
truncation at chromatic height ≤ n. The unitation induces a homeomorphism

Spc(SHc
G,≤n)

∼=−→ Spc
(
(SHG,≤n)c〈1〉

)
.

Proof. The functor trivG : SH→ SHG induces a corresponding functor on trunca-
tions SH≤n → SHG,≤n which, since SH≤n is unigenic, factors as

SH≤n → (SHG,≤n)〈1〉 ↪→ SHG,≤n .

Consider the induced maps on Balmer spectra:

Spc(SHc
G,≤n)

ϕ−→ Spc
(
(SHG,≤n)c〈1〉

) ψ−→ Spc(SHc
≤n).
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For any P ∈ Spc(SHc
G,≤n), we have the inclusion

ϕ−1({ϕ(P)}) ⊆ ϕ−1(ψ−1({ψ(ϕ(P))}).
Any such prime P is of the form P = P(H,C) for a subgroup H ≤ G and nonequivari-
ant prime C ∈ Spc(SHc

≤n). Moreover, ψ(ϕ(P(H,C))) = C by [BS17, Corollary 4.6].

Theorem 5.5 implies that the fiber ϕ−1({ϕ(P(H,C))}) is a connected subset of

ϕ−1(ψ−1({ψ(ϕ(P(H,C)))})) = ϕ−1(ψ−1({C})) =
{
P(K,C)

∣∣K ≤ G}
but the latter space is discrete by [BS17, Proposition 8.1]. We thus conclude that
ϕ−1({ϕ(P(H,C))}) = {P(H,C)}. This establishes that ϕ is injective and hence is a
homeomorphism since it is a spectral quotient map (Corollary 2.26). �

Putting Theorem 13.11 and Theorem 13.15 together, we obtain:

13.16. Theorem. Let G be a finite group. The unitation (SHG)〈1〉 ↪→ SHG is, on
Balmer spectra, a topological quotient

(13.17) ϕ : Spc(SHc
G)→ Spc((SHG)c〈1〉)

which identifies those points at chromatic height ∞ which become identified in the
spectrum of the Burnside ring. More precisely, two points P and Q are identified
if and only if P = P(H, p,∞) and Q = P(K, p,∞) for a prime p and subgroups
H,K ≤ G such that H ∩K is a p-subnormal subgroup of H and K.

Proof. Let P = P(H, p, n) and Q = P(K, q,m) be arbitrary points of Spc(SHc
G).

First, suppose n and m are finite, say with m ≤ n. Consider the commutative
diagrams

(13.18)

SHG SHG,≤n Spc(SHc
G) Spc(SHc

G,≤n)

(SHG)〈1〉 (SHG,≤n)〈1〉 Spc
(
(SHG)c〈1〉

)
Spc
(
(SHG,≤n)c〈1〉

)7→ ∼=

Recall from Definition 13.14 that the Thomason subset defining the truncation
SHG → SHG,≤n is pulled back from SH via the functor trivG : SH → SHG. Since
SH is unigenic, this functor factors through the unitation: SH→ (SHG)〈1〉 ↪→ SHG.
Hence the Thomason subset defining the truncation is pulled back through (SHG)〈1〉.
This implies (Remark 8.41) that (SHG,≤n)〈1〉 ∼= ((SHG)〈1〉)≤n and the bottom functor
of (13.18) is a finite localization. In particular, the bottom tt-functor in (13.18)
induces an embedding on Balmer spectra, as displayed on the right-hand side. On
the other hand, Theorem 13.15 establishes that the right vertical functor induces a
homeomorphism on spectra. Thus, the composite map is injective. Since our two
points P and Q both arise in the top-right corner, an equality ϕ(P) = ϕ(Q) would
imply that P = Q. This establishes that two distinct points of finite chromatic
height are not identified by ϕ.

We may similarly show that a point of finite chromatic height is not identified
with a point of infinite chromatic height. Indeed, suppose that ϕ(P(H, p, n)) =
ϕ(P(K, q,∞)). Since the comparison map ρ : Spc(SHc

G) → Spec(A(G)) factors
through ϕ we may assume p = q without loss of generality (see [BS17, Proposi-
tion 6.7 and Theorem 3.6]). Then, since P(K, p,∞) ⊆ P(K, p, n) we would have
ϕ(P(H, p, n)) ⊆ ϕ(P(K, p, n)) and we can again contemplate the diagram above.
Note that the inclusion P(H, p, n) ⊆ P(K, p, n) does not hold in SHG,≤n (see [BS17,
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Proposition 8.1]). Hence, since the composite of the diagram is a homeomorphism
followed by an embedding, we cannot have ϕ(P(H, p, n)) ⊆ ϕ(P(K, p, n)). We thus
have a contradiction.

Finally, suppose n = m =∞. Consider the diagram

SHG D(HG,Z)

(SHG)〈1〉 (D(HG,Z))〈1〉

Applying the Balmer spectrum, we have

Spc(SHc
G) Spc(D(HG,Z)c)

Spc((SHG)c〈1〉) Spc((D(HG,Z))c〈1〉)

Spec(A(G)).

ϕ

ρ

ρ
ρ

∼=

where the bottom-right arrow is a homeomorphism by Theorem 13.11. Since the
primes P(H, p,∞) and P(K, q,∞) are the image of unique primes in the top-right
(see [PSW22, Corollary 2.19 and Corollary 2.40]), it follows from the diagram
that ϕ(P(H, p,∞)) = ϕ(P(K, q,∞)) if and only if ρ(P(H, p,∞)) = ρ(P(K, q,∞)).
By [BS17, Proposition 6.7], this is the case if and only if p(H, p) = p(K, q) in
Spec(A(G)) and by Dress’ Theorem ([Dre69] and [BS17, Theorem 3.6]) this is the
case if and only if p = q and H ∩K is a p-subnormal subgroup of both H and K;
cf. Remark 13.12. �

13.19. Example. Let G = Cp be the cyclic group of order p. In this case, unitation
glues together a single pair of points, namely the points at chromatic height ∞ at
the prime p for the two subgroups. See Figure 1 on page 3.

13.20. Example. Let G be a finite p-group and let SHG,(p) be the p-local G-equivariant
category. The unitation Spc(SHc

G,(p))→ Spc((SHG,(p))
c
〈1〉) is the topological quotient

which glues together all the points at chromatic height ∞.

13.21. Remark. We may illustrate the relation between the above results p-locally
for G = Cp as follows:

GH

GH

...
... . .

. . . .

In the bottom-left we have the spectrum of the p-localization of D(HCp,Z) and in the
bottom-right we have the spectrum of the p-localization of A(Cp). In the top-left
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we have the spectrum of the p-localization of SHCp
and in the top-right we have the

spectrum of its unitation. The two maps to the bottom-right are the comparison
maps, the top map is unitation, and the left map is the embedding induced by the
canonical functor SHCp

→ D(HCp,Z); cf. Remark 12.7. Note that the bottom map
can also be regarded as the unitation of the p-localization of D(HCp,Z).

13.22. Remark. In light of Theorem 13.11, it is worth emphasizing that the unitation
D(HG,Z)〈1〉 is not tt-equivalent to D(A(G)). Indeed,

End−•D(HG,Z)(1) = π•(λ
G(trivG(HZ))) = π•(HZ ∧ λG(SG)) = HZ•(λG(SG)).

By the tom Dieck splitting, λG(SG) contains a copy of the classifying space BG and
hence the homology is not concentrated in degree 0. Indeed, recall from Example 8.30
that we have a tt-equivalence

D(HG,Z)〈1〉 ∼= Ho(HZ ∧ λG(SG))-ModSp) =: D(HZ ∧ λG(SG)).

On the other hand, we may also consider the derived category D(Mack(G;Z)) of the
abelian category of G-Mackey functors. As established in [PSW22, Theorem 5.10],

D(Mack(G;Z)) ∼= Ho(HAG-ModSpG
)

where HAG is the Eilenberg–MacLane G-spectrum associated to the Burnside ring
G-Mackey functor AG. Again, by Remark 8.27, its unitation D(Mack(G;Z))〈1〉 is

equivalent to modules over the ordinary Eilenberg–MacLane spectrum λG(HAG) =
HA(G) associated to the Burnside ring. That is, the unitation

D(Mack(G;Z))〈1〉 ∼= D(A(G))

is equivalent to the derived category of the Burnside ring A(G). Thus, we are in
the curious situation where D(HG,Z) and D(HAG) have inequivalent unitations, and
yet their unitations have the same Balmer spectrum.

13.23. Remark. On the other hand, if we take rational coefficients then

D(HG,Q)〈1〉 ∼= D(Mack(G;Q))〈1〉 ∼= D(A(G)Q).

Indeed, λG(trivG(HQ))→ λG(H(AG ⊗Q)) is an equivalence essentially because the
cohomology of a finite group is torsion.

13.24. Remark. As we already mentioned in Example 8.13, and as the above results
also demonstrate, for a normal subgroup N �G, the inflation functor SHG/N → SHG

is not fully faithful and hence does not induce an equivalence SHG/N → (SHG)〈F[⊇N ]〉.
The inflation functor is, however, faithful (since it is split by geometric fixed points,
for example). Hence Spc(SHc

G)→ Spc(SHc
G/N ) is a spectral quotient. For example,

taking N = G, the map Spc(SHc
G)→ Spc(SHc) induced by trivG : SH→ SHG is a

spectral quotient map. Note that the fibers are disconnected. Indeed, each fiber is a
discrete space with one point for each conjugacy class of subgroups of G. This lies
at the heart of our proof of Theorem 13.15. In any case, this is another example
showing that faithful functors need not have connected fibers.

13.25. Remark. Recall the sequence of tt-functors displayed in (1.3). In summary,
we have determined the unitation of SHG and seen that it sits properly between
Spc(SHc

G) and Spec(A(G). In contrast, we showed that the unitation of D(HG,Z) is
homeomorphic to Spec(A(G)) while the unitation of D(HAG) is actually equivalent
to D(A(G)) as tt-categories. On the other hand, the unitation of DPerm(G; k)
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is equivalent to D(k) essentially because inflation in this setting is fully faithful.
Finally DRep(G; k) coincides with its unitation (categorically for p-groups and on
spectra in general) essentially because its comparison map is a homeomorphism.
Note that each of these examples exhibits qualitatively different behaviour.

14. Twisted cohomology and the Picard group

14.1. Remark. The most general comparison map

ρu : Spc(Tc)→ Spec(Ru)

constructed by Balmer in [Bal10] depends on the choice of an element u ∈ Pic(T)
in the Picard group. The target is the homogeneous spectrum of the Z-graded
ring Ru = HomT(1, u⊗•). For u 6= 1, this map ρu does not (necessarily) factor
through the unitation of T. Instead we may consider the concentration of T at the
subgroup of the Picard group generated by u: T〈G〉 ↪→ T for G =

{
u⊗n

∣∣n ∈ Z}.
For simplicity, we’ll just denote this by T〈u〉. We then have a commutative diagram

Spc(Tc)

Spc(Tc〈u〉) Spec(Ru).

ϕ

ρu

ρu

Moreover, note that all of these comparison maps factor through the concentration
of T at the Picard group: T〈Pic(T)〉. For categories that are not generated by their
Picard group, it is then of interest to consider the maps

Spc(Tc)� Spc(Tc〈Pic(T)〉)� Spc
(
Tc〈1〉

)
.

14.2. Example. For T = DPerm(G; k), we have DPerm(G; k)〈1〉 ' D(k) by Exam-
ple 8.15 and the usual graded comparison map provides very little information.
However, in their computation of the spectrum of T in [BG23c], Balmer and Gal-
lauer reduce to the case of an elementary abelian p-group G = E and then use
a multi-graded generalization of ρu. More precisely, let N1, . . . , N` be the maxi-
mal subgroups of E. For each 1 ≤ i ≤ `, there is an associated invertible object
ui ∈ Pic(T). Also let u0 = Σ1. They construct a continuous map

ρ : Spc(Tc)→ Spec(H•,•(E))

to the homogeneous spectrum of the “twisted cohomology” ring

H•,•(E) := HomT(1, u⊗q00 ⊗ u⊗q11 ⊗ u⊗q22 ⊗ · · ·u⊗q`` )

which is graded over the monoid Z×N`. In general, the functoriality of this graded
ring under a tt-functor involves a grading shift which depends on the particular
tt-functor. However, this detail doesn’t arise for a fully faithful functor. In particular,
we may consider the concentration of T at the subgroup of the Picard group generated
by the ui: G = 〈u0, u1, . . . , u`〉 = {⊗`i=0u

⊗qi
i | qi ∈ Z for 0 ≤ i ≤ `}. We have a

factorization

Spc(Tc)

Spc
(
Tc〈G〉

)
Spec(H•,•(E)).

ϕ

ρ

ρ
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The top ρ is an open embedding by [BG23c, Corollary 15.6]. Hence the vertical ϕ
is injective. Since it is a spectral quotient by Theorem 4.1, we conclude that ϕ
is a homeomorphism. It follows that any intermediate concentration also induces
a homeomorphism. For example, the concentration T〈Pic(T)〉 ↪→ T to the entire
Picard group induces a homeomorphism on Balmer spectra. However, this is not
particularly interesting since Balmer and Gallauer prove that T = T〈Pic(T)〉 in this
example. Nevertheless, the above discussion provides some ideas that could be of
interest in other examples.

14.3. Remark. Another approach to understanding the concentration T〈G〉 at a
subgroup G ≤ Pic(T) is via the comparison map

Spc(Tc)→ Spec(RG)

constructed by Dell’Ambrogio and Stevenson in [DS14]. In their terminology, the
tt-subcategory thick〈G〉 is a central 2-ring of T and Spec(RG) is its associated Zariski
spectrum. By construction, this map factors through Spc(Tc)→ Spc(Tc〈G〉).

14.4. Remark. An expansive and general investigation of Spc(Tc)� Spc
(
Tc〈Pic(T)〉

)
will not be provided in this work, but let us give the following result:

14.5. Proposition. Let T be a rigidly-compactly generated tt-category and let H

be a directed poset of subgroups of the Picard group Pic(T). For G :=
⋃
H∈HH, we

have Spc
(
Tc〈G〉

) ∼= limH∈H Spc
(
Tc〈H〉

)
.

Proof. The assignment H 7→ T〈H〉 forms a (strict) diagram of tt-categories and (fully
faithful) tt-functors indexed on the directed post H. We claim that

(14.6) T〈G〉 =
⋃
H∈H

T〈H〉

so that T〈G〉 is the colimit of the diagram. The proposition will then follow from
[Gal18, Proposition 8.2]. First observe that the right-hand side of (14.6) is a
localizing subcategory of T. It then follows that Loc〈

⋃
H∈H Tc〈H〉〉 =

⋃
H∈H T〈H〉

and thus it suffices to establish that

(14.7) Tc〈G〉 ⊆
⋃
H∈H

Tc〈H〉.

If x ∈ Tc〈G〉 = thick〈G〉 then x ∈ thick〈u1, . . . , un〉 for some collection u1, . . . , un ∈ G.

Since G =
⋃
H∈HH and H is directed under inclusion, there exists an H ∈ H which

contains all of these ui. This establishes (14.7) and the proof is complete. �

14.8. Example. The theorem applies to G = Pic(T) and H the family of finitely
generated subgroups.

14.9. Example. We can also take G to be the torsion subgroup of Pic(T) and H the
collection of finite subgroups of Pic(T). Just note that since Pic(T) is abelian, the
subgroup 〈H ∪K〉 = HK is finite for any two finite subgroups H,K ≤ Pic(T).

14.10. Remark. We note in passing that since the functors in the filtered diagram are
fully faithful, it follows from Proposition 2.32 that the canonical maps Spc

(
Tc〈G〉

)
→

Spc
(
Tc〈H〉

)
are spectral quotient maps — but of course we already know this directly

since these maps are induced by fully faithful functors.
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15. Local unigenicity3

We saw in Section 13 that a fully faithful functor can induce a homeomorphism
on Balmer spectra without being an equivalence (Remark 13.3). We now investigate
this phenomenon more closely.

15.1. Definition. We say that T is locally unigenic if the local category TP := T|gen(P)

is unigenic for each P ∈ Spc(Tc).

15.2. Example. For any quasi-compact and quasi-separated scheme X, the derived
category D(X) is locally unigenic.

15.3. Proposition. Let f∗ : T → S be a fully faithful functor such that ϕ : Spc(Sc)→
Spc(Tc) is a homeomorphism. Assume Spc(Sc) is noetherian. If S is locally unigenic
then f∗ is an equivalence.

Proof. It suffices to establish that the right adjoint f∗ is conservative (Remark 6.13).
To this end, consider any P ∈ Spc(Sc). Since ϕ is a homemorphism, we have

(15.4) ϕ−1(gen(ϕ(P))) = gen(P)

and the associated corestriction

(15.5) Tϕ(P) = T|gen(ϕ(P)) → S|gen(P) = SP

is fully faithful by Remark 3.2. Moreover, since SP is unigenic, its right adjoint is
conservative. Thus, (15.5) is an equivalence. Consider the commutative diagram

T S

Tϕ(P) SP.

f∗

∼=

A diagram chase shows that if f∗(s) = 0 then fgen(P)c ⊗ s = 0 so that Supp(s) ⊆
gen(P)c where Supp denotes the Balmer–Favi support [BF11, BHS23]. In particular,
P 6∈ Supp(s). Since this is true for all P ∈ Spc(Sc), we conclude that s = 0 since
the Balmer–Favi support has the detection property when Spc(Sc) is noetherian by
[BHS23, Theorem 3.22]. �

15.6. Corollary. If Spc(Tc) is noetherian and unitation T〈1〉 ↪→ T induces a homeo-
morphism Spc(Tc)

∼−→Spc(Tc〈1〉) then T is unigenic if and only if T is locally unigenic.

Proof. Apply Proposition 15.3 to T〈1〉 ↪→ T. �

15.7. Example. Let G be a finite group and k a field of characteristic p. It follows
from Corollary 15.6 and Example 13.2 that DRep(G; k) is unigenic if and only if
it is locally unigenic. Moreover, this is the case if and only if G is a p-group by
Proposition 13.1.

15.8. Remark. Similarly, Corollary 15.6 and Example 13.4 imply that StMod(kG) is
unigenic if and only if it is locally unigenic. Moreover, this holds if G is a p-group,
for example, by the localization DRep(G; k)� StMod(kG). However, it is possible
for StMod(kG) to be unigenic more generally:

3See [AL14].
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15.9. Example. Let G = S3 and k = F2. There are two simple modules: the trivial
representation k and the two-dimensional standard representation V . The regular
representation decomposes as

k(S3) ' k(S3/A3)⊕ V ⊕2.

In particular, the two-dimensional simple representation is projective and hence
annihilated in the stable module category. It follows that StMod(F2S3) is unigenic.

With the above results in mind, it will be convenient to introduce:

15.10. Definition. The unigenic locus of T is
{
P ∈ Spc(Tc)

∣∣TP is unigenic
}

. It is
a generalization-closed subset of Spc(Tc).

15.11. Example. It follows from Theorem 13.11 that the category of derived Mackey
functors D(HG,Z) is not unigenic (unless G = 1) since the comparison map to the
Burnside ring is not injective.4 What is its unigenic locus?

15.12. Proposition. Let G be a finite p-group. The unigenic locus of D(HG,Z(p)
) is{

P(G, p)
}
∪
{
P(H, 0)

∣∣H ≤ G}.
Proof. The category of derived Mackey functors with rational coefficients splits as a
product of semisimple categories (see [Wim19, BDR24] for instance):

D(HG,Z(p)
)� D(HG,Q) ∼=

∏
(H)

D(Q[WGH]).

The target is unigenic by Example 8.42. Hence D(HG,Z(p)
) is unigenic at each height

zero point P(H, 0), H ≤ G. On the other hand, the geometric fixed points functor
ΦG : D(HG,Z(p)

) → D(HZ(p)) exhibits D(HZ(p)) as the local category at P(G, p).

Hence D(HG,Z(p)
) is unigenic at P(G, p). Then consider P(H, p) for a proper subgroup

H � G. Since G is a p-group, there exists a p-subnormal tower from H to G. In
particular, there exists a subgroup K ≤ G of index p which contains H. If the
unigenic locus contains P(H, p) then it also contains P(K, p) since P(H, p) ⊆ P(K, p).
Thus, it suffices to prove that P(K, p) is not contained in the unigenic locus for each

index p subgroup of G. Since Φ̃K : D(HG,Z(p)
) → D(HG/K,Z(p)

) is a localization,

D(HG,Z(p)
) is unigenic at P(K, p) if and only if D(HCp,Z(p)

) is unigenic at P(1, p).

But note that P(1, p) is the unique closed point of D(HCp,Z(p)
), so this would be

saying that D(HCp,Z(p)
) is unigenic. This is not the case. For example, it follows

from the fact that the map on Balmer spectra of the unitation identifies with the
comparison map to the Burnside ring (Theorem 13.11), which is not injective. �

15.13. Corollary. Let G be a finite group which is not perfect. Then D(HG,Z) is
not locally unigenic.

Proof. Since G is not perfect there exists a prime p such that Op(G) is a proper
subgroup of G. We have localizations D(HG,Z) → D(HG,Z(p)

) → D(HG/Op(G),Z(p)
)

where the first is p-localization and the second is geometric fixed points. The
local category of D(HG,Z) at PG(Op(G), p) then identifies with the local category
of D(HG/Op(G),Z(p)

) at PG/Op(G)(1, p). Since G/Op(G) is a nontrivial p-group, this
local category is not unigenic by Proposition 15.12. �

4For any prime p dividing |G| and Sylow p-subgroup S ≤ G, we have p(S, p) = p(1, p) in the
Burnside ring but P(S, p) 6= P(1, p) in D(HG,Z); see [PSW22, Section 2] and [BS17, Section 3].
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15.14. Remark. Stated differently, Example 15.9 demonstrates that it is possi-
ble for the unigenic locus of DRep(G; k) to be a non-empty proper subset of
Spc(DRep(G; k)c). For G = S3 and k = F2, it consists of the entirety of the

spectrum Spc(DRep(G; k)c) ∼= Spech(H•(G; k)) except for the unique closed point.

15.15. Example. We have already observed in Proposition 13.6 that DPerm(G; k)
is unigenic if and only if G = 1 is the trivial group. On the other hand, if G is a
p-group then the unigenic locus of DPerm(G; k) is non-empty. Indeed, it is unigenic
at every prime P in the so-called “cohomological open” VG ⊆ Spc(DPerm(G; k)c) of
[BG23c, Proposition 3.22]. Indeed, these are precisely those primes pulled back via
the localization DPerm(G; k)� DRep(G; k) and DRep(G; k) is unigenic when G is
a p-group.

15.16. Remark. If T is not unigenic, then it is natural to attempt to construct a uni-
genic localization of T. For a p-group G, the localization DPerm(G; k)� DRep(G; k)
of Example 15.15 is an illustrative example. However, as the next example demon-
strates, it is possible for the unigenic locus to be empty. For such categories, the
only (locally) unigenic localization is the zero category.

15.17. Example. Let T be a nonzero rigidly-compactly generated tt-category and let
T×Z/2 T denote the product triangulated category with the Z/2-graded ⊗-structure
discussed in Example 8.44. The inclusion x 7→ (x, 0) of the first factor is a fully
faithful geometric functor which is a homeomorphism on spectra; indeed, the primes
in Spc((T ×Z/2 T)c) are all of the form P× P for some P ∈ Spc(Tc). As pointed out
in [San22, Remark 4.24], T ×Z/2 T is not unigenic at P × P. That is, its unigenic
locus is empty.

15.18. Remark. Nevertheless, assuming that the unigenic locus is non-empty, it is
natural to attempt to find a unigenic localization of T = Loc〈G〉 by annihilating
generators. For example, the finite localization which annihilates Locid〈G \ {1}〉 is
unigenic, although it is of course very possible for it to be the zero category; for
example, this will be the case if G \ {1} contains an invertible object. All of these
caveats notwithstanding, a situation where things work well arises in equivariant
homotopy theory (and related examples) in connection with geometric fixed point
functors:

15.19. Remark. Let E ∈ CAlg(SpG). The category E-ModSpG
is rigidly-compactly

generated by
{
FE(G/H+)

∣∣H ≤ G} where FE : SpG → E-ModSpG
is the canonical

functor. The finite localization which annihilates the generators FE(G/H+) for all
proper subgroups H � G can be identified with ΦG(E)-ModSp. In other words, the
analogue for E of the geometric fixed point functor is the localization

E-ModSpG
→ ΦG(E)-ModSp.

This localization singles out a certain open piece of Spc(E-ModcSpG
) homeomorphic

to Spc(ΦG(E)-ModcSp) which we might call the “geometric open” following [BG23c].
As we have already seen, for some specific choices of E (such as E = SG or E =
trivG(HZ)) the resulting geometric fixed points are well-understood, whereas for
other examples (such as E = HAG or E = HZ) the resulting geometric fixed points
are more mysterious; see further discussion in [PSW22, Section 5] and [BCH+25,
Section 3.2]. Nevertheless, even if we do not have a good understanding of the ring
spectrum ΦG(E), the category of modules ΦG(E)-ModSp is unigenic. In other words,
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the unigenic locus of E-ModSpG
contains the geometric open. Thus, the unigenic

locus is non-empty provided the geometric open is non-empty, that is, provided
that ΦG(E) 6= 0.

15.20. Example. The geometric open of D(HG,Z) is
{
P(G, p)

∣∣ p prime
}
∪
{
P(G, 0)

}
.

Compare with Proposition 15.12.

15.21. Example. Recall from Example 8.29 that DRep(G; k) ∼= bG(Hk)-ModSpG
.

If G is not an elementary abelian p-group, then ΦG(bG(Hk)) = 0. This follows from
the theory of derived defect bases [Mat16a, MNN19]. In other words, the geometric
open is empty if G is not an elementary abelian p-group.

15.22. Example. The geometric open of DPerm(G; k) is discussed in [BG23c]. It is
a copy of the spectrum of ΦG(Hk)-ModSp which is currently not well-understood.
However, see [BCH+25, Example 8.1] for some positive results. Note that if G is
not a p-group then the geometric open is empty, in other words ΦG(Hk) = 0. This
follows from the fact that restriction to a p-Sylow subgroup is faithful due to the
“cohomological Mackey” nature of DPerm(G; k); see Remark 8.23.

15.23. Example. The derived category of permutation modules T = DPerm(G; k) is
locally unigenic for any elementary abelian p-group. For a cyclic group of order p,
the cohomological open and the geometric open cover the spectrum, so in this case
the claim follows from Example 15.15 and Remark 15.19. More generally, Balmer
and Gallauer [BG23c, Section 13] construct an open cover of the spectrum which
contains the cohomological and geometric opens and has the property that T|U is
unigenic for each open U in the cover; see the proof of [BG23c, Theorem 15.3].

16. Examples in algebraic geometry

We now discuss some examples of (fully) faithful functors in algebraic geometry.

16.1. Remark. Any morphism f : X → Y of quasi-compact and quasi-separated
schemes induces a geometric functor f∗ : D(Y ) → D(X) which in turn induces a
morphism Spec(D(X)c) → Spec(D(Y )c) of locally ringed spaces. Moreover, the
diagram

X Y

Spec(D(X)c) Spec(D(Y )c)

f

∼= ∼=
Spec(f∗)

commutes. This can be checked from the definition of the classifying map [Bal05,
Theorem 3.2] together with [Tho97, Lemma 3.3(b)].

16.2. Example. Let A→ B be a homomorphism of commutative rings. It follows
from Proposition 6.5 that the base-change functor f∗ : D(A)→ D(B) is fully faithful
if and only if A→ B is an isomorphism. We thus need to go beyond affine schemes
to find non-trivial examples.

16.3. Example. Let P1
k → Spec(k) be the projective line over a field k. The structure

morphism induces a fully faithful functor D(k) → D(P1
k) which by Example 8.39

identifies with the unitation: D(k) ∼= D(P1
k)〈1〉. Thus, the map on spectra induced

by the unitation of D(P1
k) is just P1

k → Spec(k).
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16.4. Example (Projective bundles). More generally, let E be a vector bundle on a
smooth projective variety S and let p : P1

S(E) → S be its projectivization. Then
the pullback p∗ : D(S) → D(P1

S(E)) is fully faithful. See [Orl92, Lemma 2.1], for
example, bearing in mind Proposition 6.12. Note that in this example, the fibers are
copies of projective space and hence are, in particular, connected as Theorem 5.5
asserts must be the case.

16.5. Example (Birational morphisms). If f : X → Y is a proper birational morphism
of smooth varieties over a perfect field then f∗ : D(Y )→ D(X) is fully faithful; see
[CR11, CR15]. For historical context, see [Gro60, Problem B] and [CS04, p. 55].

16.6. Example (Singularities). Let X be a variety over a field of characteristic zero.
If X has rational singularities then any resolution of singularities f : X̃ → X
induces a fully faithful functor f∗ : D(X)→ D(X̃). This is essentially the definition
of rational singularities; see [Ish14, Section 6.2] or [KM98, Chapter 5]. Since
rational singularities are known to be a weak type of singularity, many other types
of singularities (such as log-canonical or stronger [Ish14, Theorem 6.2.12]) give
examples of fully faithful functors. An explicit class of examples are quotient
singularities (e.g. Du Val singularities).

16.7. Remark. Although it does not play a role in our work, we would be remiss
not to mention the celebrated result of Orlov [Orl97, Ola24] asserting that if X
and Y are smooth proper varieties over a field k then any fully faithful k-linear
exact functor D(Y )c → D(X)c is a Fourier–Mukai transform.

16.8. Remark. Although nontrivial morphisms of affine schemes do not provide
examples of fully faithful functors (Example 16.2), there are interesting examples of
faithful functors:

16.9. Example. Let A → B be a homomorphism of commutative rings. For this
example only we will use f∗ := B ⊗A − : Mod(A) → Mod(B) to denote the
underived base-change functor. According to Proposition 6.7, the derived functor
Lf∗ : D(A)→ D(B) is faithful if and only if A→ B is a split monomorphism in D(A)
which is the case if and only if A → B is a split monomorphism in the category
Mod(A). This certainly implies that the underived functor f∗ : Mod(A)→ Mod(B)
is faithful. The converse is not true. As explained by Mesablishvili [Mes00],
f∗ : Mod(A)→ Mod(B) is faithful if and only if A→ B is a so-called pure monomor-
phism. This is a ring homomorphism which is “universally injective” in the sense
that for every A-module M , the map M → B ⊗A M is injective. Faithfully flat
maps are precisely the flat pure monomorphisms; see [Bou98, Ch. I, § 3.5, Prop. 9].
In summary:

• Lf∗ : D(A)→ D(B) is faithful if and only if A B is a split monomorphism
of A-modules.

• f∗ : Mod(A)→ Mod(B) is faithful if and only if A B is a pure monomorphism
of A-modules.

16.10. Remark. An example of a faithfully flat map A → B which is not a split
monomorphism is given in [CGM16, Example 5.10]. Examples of non-flat morphisms
which are pure but not split can be found in the study of non-regular F -pure rings;
see [MP25], for example.

16.11. Example. Let G be a finite group acting on a commutative ring R such that
the order of G is invertible in R. The inclusion RG ↪→ R of the ring of invariants
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is a split monomorphism (using the Reynolds operator) hence D(RG) → D(R) is
faithful. Thus Spec(R)→ Spec(RG) is a spectral quotient map; cf. [MFK94, § I.2].

16.12. Remark. If the order of G is not invertible in R then RG ↪→ R need not be
a split monomorphism. For example, [Sin98, Theorem 5.5] establishes that if the
alternating group An acts on the polynomial ring R = k[X1, . . . , Xn] by permuting
the coordinates and the field k has characteristic p > 2, then RAn ↪→ R is a split
monomorphism if and only if the order |An| = n!/2 is relatively prime to p.

16.13. Example. The homomorphism of noetherian commutative rings A → B
described in [Bre03, Example 7] is a split monomorphism in Mod(A) and has the
property that Spec(B) → Spec(A) has neither the going-up nor the going-down
property. Recall from [DST19, Section 5.3] that for a surjective spectral map the
going-up property is equivalent to being a closed quotient map while the going-
down property is equivalent to being a closed quotient map for the Hochster dual
topologies. Moreover, any open map satisfies the going-down property. Thus this
gives an example of a faithful functor f∗ : D(A)→ D(B) for which the associated
topological quotient is neither a closed quotient map nor an open quotient map,
which completes Remark 4.2.

16.14. Remark. The notion of a faithful geometric functor does not encompass all
topological quotients of schemes. This is related to the potential non-faithfulness
of Zariski localization. Indeed, suppose X and Y are quasi-compact and quasi-
separated schemes. Any surjective flat morphism f : X → Y is a topological quotient
[Gro67, Corollaire 2.3.13]. For example, if Y =

⋃n
i=1 Ui is a Zariski cover by affine

opens then the disjoint union tni=1Ui admits a surjective flat map X := tni=1Ui → Y .
However, the induced functor D(Y ) → D(X) need not be faithful. Indeed, any
short exact sequence of vector bundles splits over an affine scheme. Thus, if Y
admits a non-split short exact sequence of vector bundles 0→ a→ b→ c→ 0, then
the morphism c → a[1] is a nonzero morphism in D(Y ) which vanishes in D(X).
This occurs even with Y = P1

k; see [Bal12, Example 2.1]. On the other hand, some
surjective flat morphisms do provide faithful functors, such as the next example:

16.15. Example. Let k be an algebraically closed field of characteristic p > 0.
The absolute Frobenius morphism f : P1

k → P1
k on the projective line induces

a faithful functor f∗ : D(P1
k) → D(P1

k) for which, topologically, Spc(f∗) = f
is the identity. It is not a full functor; in fact, it is an affine morphism with
f∗(OP1

k
) ' OP1

k
⊕ OP1

k
(−1)⊕(p−1); see [Tho00] for example.

16.16. Example. More generally, let X be a variety over an algebraically closed
field of characteristic p > 0. The absolute Frobenius morphism f : X → X is a
finite morphism, hence the higher cohomology of the direct image f∗(OX) vanishes.
Thus, f∗ : D(X)→ D(X) is faithful if and only if the variety X is Frobenius split.
For further details and numerous examples of Frobenius split varieties, see [BK05,
Section 1.1].

16.17. Remark. Finally, according to Proposition 6.7, the faithfulness of derived
pullback functors in algebraic geometry is related to the notion of a derived splinter;
see [Bha12].
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17. Affinization

For derived categories of schemes, the property of being unigenic is related to
the property of being affine. We would like to study this relationship more closely.

17.1. Remark. The inclusion of the category of affine schemes into the category of all
locally ringed spaces has a left adjoint, which sends a locally ringed space (X,OX)
to its affinization Aff(X,OX) := Spec(OX(X)). The unit of the adjunction provides
a canonical morphism of locally ringed spaces (X,OX) → Aff(X,OX). Explicitly,
this map sends a point x ∈ X to the image under Spec(OX,x) → Spec(OX(X)) of
the unique closed point of Spec(OX,x).

17.2. Proposition. Let X be a quasi-compact and quasi-separated scheme. Under the
identification Spec(D(X)c) ∼= X of locally ringed spaces, the affinization X → Aff(X)
coincides with the comparison map Spec(D(X)c)→ Spec(OX(X)).

Proof. This is straightforward using the naturality of the comparison map with
respect to the geometric functor f∗ : D(OX(X)) → D(X) induced by affinization
X → Spec(OX(X)) bearing in mind Remark 16.1. �

17.3. Example. The affinization of the projective line P1
k is the structure morphism

P1
k → Spec(k).

17.4. Example. Let X = A2
k \ {0} be the affine plane with the origin removed. The

affinization is the embedding A2
k \ {0} ↪→ A2

k. Thus, D(A2 \ {0}) is an example of a
tt-category whose comparison map is not surjective; cf. [Bal10, Example 8.3].

17.5. Proposition (EGAII). Let X be a quasi-compact and quasi-separated scheme.
The following conditions are equivalent:

(a) X is quasi-affine; that is, X is isomorphic to a (quasi-compact) open sub-
scheme of an affine scheme.

(b) The affinization map X → Aff(X) is an open immersion.
(c) The affinization map X → Aff(X) is a topological embedding.
(d) The structure sheaf OX is ample.

Proof. This is (part of) [Gro61, Proposition 5.1.2, p. 94] which is stated for a scheme
that is either topologically noetherian or quasi-compact and separated, but it holds
more generally for a quasi-compact and quasi-separated scheme; cf. [Sta20, Tag 01P5
and 01QD]. �

17.6. Remark. If L is an ample line bundle on X then X is separated and D(X) is
compactly generated by

{
L⊗n

∣∣n ∈ Z}; see [Nee96, Example 1.10]. Hence, if X
is quasi-affine then Proposition 17.5 implies that D(X) is unigenic. The following
example shows that the converse is false:

17.7. Example. Let X be the “smallest nonaffine scheme” considered in [EH00,
Exercise I-25]. It has three points X = {p, q1, q2} where q1 and q2 are closed
points and p is a generic point. The sheaf of rings is given by OX({p}) = k(t) and
OX({p, q1}) = OX({p, q2}) = OX(X) = k[t](t) for some field k. It is an example of a
noetherian scheme which is not separated. In particular, it is not quasi-affine.

17.8. Proposition. Let X be the 3-point scheme of Example 17.7. The derived
category D(X) is unigenic.
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Proof. The affinization X → Spec(k[t](t)) is (topologically) the map

(17.9)
• •

•
→

•

•
Now consider the unitation D(X)〈1〉 ↪→ D(X). Its spectrum fits between these two
spaces by Proposition 17.2 and (10.1):

• •

•

ϕ−→ Spc(D(X)c〈1〉)
ρ−→

•

•
Either ϕ or ρ must be a homeomorphism, since ϕ is surjective. But Theorem 5.5
asserts that the fibers of ϕ are connected. Hence we must have that ϕ is a homeo-
morphism. Thus, the unitation induces a homeomorphism on spectra. Since the
category D(X) is locally unigenic, this implies that the functor is an equivalence by
Corollary 15.6. We conclude that D(X) is unigenic. �

17.10. Example. In the above example, observe that one of the fibers of the compari-
son map ρ : X → Spec(k[t](t)) is not connected. Note moreover that in this example
the graded comparison map coincides with the ungraded comparison map since for
dimension reasons all elements in H1(X;OX) are nilpotent. Moreover, by computing
the cohomology one readily checks that H•(X;OX) is a graded-noetherian ring.
This thus provides an example showing that the fibers of the map in Theorem 10.8
need not be connected. It also shows that Corollary 12.9 fails in general if the
category is not connective.

17.11. Question. For which quasi-compact and quasi-separated schemes X is D(X)
unigenic? The above discussion shows that this class of schemes properly contains
the quasi-affine schemes.

17.12. Remark. From the perspective of Remark 8.25, D(X) is unigenic if and only if
it is equivalent Ddg(end(OX))

'−→D(X) to the derived category of the E∞-dg-algebra
end(OX) ∈ CAlg(HZ-Mod); see [Shi07, RS17].

17.13. Example. The Balmer spectrum of an essentially small tt-category K is
a locally ringed space Spec(K) = (Spc(K),OK) and we may also consider its
affinization Aff(Spec(K)) = Spec(OK(Spec(K))). Let us avoid such heavy-handed
notation by defining AK := OK(Spec(K)) to be the global sections of the structure
sheaf so that Aff(Spec(K)) = Spec(AK). By the universal property, the ungraded
comparison map ρK factors uniquely through the affinization:

(17.14) Spec(K) Aff(Spec(K)) Spec(RK).α

ρ

∃!β

Recall from [Bal10, Section 6] that the structure sheaf OK of Spec(K) is the sheafi-
fication of the presheaf pOK defined on a quasi-compact opens by pOK(U) := RK|U
with stalks OK,P

∼= RKP
. Explicitly, the global sections (i.e. the elements of AK)

are locally compatible families of germs (sP ∈ RKP
)P∈Spc(K). The morphism β

in (17.14) is given by the ring homomorphism RK → AK which sends f ∈ RK to
(fP)P. Its kernel consists entirely of nilpotent elements by [Bal05, Proposition 2.21].
However, there is no a priori reason for β to be an isomorphism since morally there
is no a priori reason why the ring of endomorphisms of 1 in K need behave like a



56 BEREN SANDERS

sheaf with respect to the Balmer topology. Thus, our next aim is to provide some
sufficient criteria for the affinization and the comparison map to coincide. We start
with the following cheap observation:

17.15. Lemma. If K is local then the canonical map RK → AK is an isomorphism.

Proof. Recall that the map of commutative rings RK → AK := OK(Spec(K)) sends
an element a ∈ RK to the collection of germs (aP ∈ RKP

)P∈Spec(K). Since K is local
it has a unique closed point M. Hence RK → AK is injective since a = aM. On the
other hand, the only open neighbourhood of M is the whole space Spec(K). Thus
the local compatibility of an element (sP)P at M implies that there exists t ∈ RK

such that tP = sP for each P. In other words, the ring homomorphism RK → AK

is surjective. �

17.16. Proposition. If K is local then the following are equivalent:

(a) Spec(K) is a scheme;
(b) Spec(K) is an affine scheme;
(c) The comparison map ρK : Spc(K)→ Spec(RK) is a homeomorphism.

Proof. The equivalence of (1) and (2) follows from the fact that any open cover of
Spc(K) includes U = Spc(K) itself since K is local. On other hand, the affinization
coincides with the comparison map by Lemma 17.15. This provides (2)⇒ (3). The
converse (3)⇒ (2) then follows from the fact that ρK is an isomorphism of locally
ringed spaces if it is a homeomorphism; see [Bal10, Proposition 6.11(b)]. �

17.17. Example. The spectrum of SH(p) is not a scheme.

17.18. Example. It follows from Proposition 17.16, Theorem 13.11 and [Bal10, Propo-
sition 6.11] that Spec(D(HG,Z)〈1〉) ∼= Spec(A(G)) is an affine scheme even though
the tt-categories D(HG,Z)〈1〉 and D(A(G)) are not equivalent for any nontrivial G;
see Remark 13.22.

17.19. Proposition. Suppose that the algebraic localization Km is local for each
closed point m ∈ Spec(RK). If RK is a domain then the affinization of Spec(K)
coincides with the comparison map.

Proof. In this proof we will write K/P for the local category KP in order to
distinguish it more clearly from the algebraic localization Kp. The map β : RK → AK

is injective since RK has no nilpotents (Example 17.13). Consider a family of
compatible germs (aP ∈ RK/P)P∈Spc(K) ∈ AK. Note that if Q P then the germ
aP determines the germ aQ via the localization RK/P → RK/Q. Thus, to show that
RK → AK is surjective, it is enough to construct r ∈ RK such that rM = aM for
every closed point M ∈ Spc(K). By our hypothesis, the closed points of Spc(K)
are all of the form f(m) for closed points m of Spec(RK) using the notation of
Remark 12.3. Recall also that K/f(m) = Km. Thus, we need to construct an r ∈ R
such that rf(m) = af(m) ∈ RK/f(m) = Rm for each closed point m ∈ Spec(Rm). Let
η = (0) ∈ Spec(RK) be the generic point so that Rη = K is the field of fractions. It
follows from the commutative diagram

R A

Rm Rη = K
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that aη belongs to
⋂

mRm = R ⊂ K (see [Mat89, Theorem 4.7]) and thus that there
exists r ∈ R such that rm = am for each m. �

17.20. Example. The affinization of Spec(SHc) coincides with the comparison map
Spec(SHc)→ Spec(Z). In particular, Spec(SHc) is not an affine scheme.

17.21. Proposition. Let K be an idempotent-complete rigid tt-category. Suppose
that every open cover of Spc(K) by quasi-compact opens can be refined into an
open cover Spc(K) =

⋃
i∈I Ui with the property that HomK|Ui∩Uj

(Σ1, 1) = 0 for

each i, j ∈ I. Then the presheaf pOK is separated and the canonical map RK → AK

is an isomorphism. Thus the affinization of K coincides with its comparison map.

Proof. The key to this result is the Mayer–Vietoris gluing of [BF07]. Let U be a
quasi-compact open set and let U =

⋃
i∈I Ui be a cover by quasi-compact opens.

Let f ∈ pOK(U) = R(K|U ) be such that f |Ui
= 0 in R(K|Ui

) for each i ∈ I. We
may assume without loss of generality that this cover of U has the property in
the hypothesis, namely that Hom(Σ1, 1) = 0 in K|Ui∩Uj

for each i, j ∈ I. We can
also assume that it is a finite cover by the quasi-compactness of U . An inductive
application of the Mayer–Vietoris exact sequence of [BF07, Corollary 5.8] then
implies that f = 0. This establishes that the partially-defined presheaf pOK is
separated. Moreover, recall that R(KP) is the stalk at P by [Bal10, Lemma 6.3].
Thus, if f ∈ R(K|U ) is such that fP = 0 in R(KP) for all P ∈ U then f = 0. In
particular, the map RK → AK is injective.

Finally, consider a family of compatible germs (aP)P ∈ AK. The compatibility
of these germs implies that there is an open cover Spc(K) =

⋃
i∈I Ui by quasi-

compact opens and elements si ∈ R(K|Ui
) such that (si)P = aP for each P ∈ Ui.

Moreover, since pOK is separated, we have that (si)|Ui∩Uj = (sj)|Ui∩Uj for each
i, j ∈ I. Since we may assume the cover is finite, an inductive application of the
Mayer–Vietoris exact sequence of [BF07, Corollary 5.8] implies that there exists a
global section s ∈ RK such that s|Ui

= si for each i ∈ I. It maps to our germ (aP)P
under the canonical map RK → AK. Thus the canonical map is surjective. �

17.22. Example. If X is a quasi-compact and quasi-separated scheme then D(X)c

satisfies the hypotheses of Proposition 17.21. Thus Proposition 17.2 follows from
the more general Proposition 17.21.

17.23. Remark. Since the comparison map ρ : Spc(K)→ Spec(RK) factors through
both the affinization Spc(K)→ Spec(AK) and the unitation Spc(K)→ Spc(K〈1〉),
one may wonder what relation these two constructions have with each other. Note
that they need not coincide, since the affinization is not always surjective whereas
the unitation always is. In general, there is no a priori reason why either map need
factor through the other. For example, if X is the 3-point scheme of Example 17.7

then the unitation X
'−→ Spc(D(X)c〈1〉) does not factor through the affinization

depicted in (17.9).

17.24. Example. For a quasi-compact and quasi-separated scheme X, the affinization
X → Aff(X) induces a geometric functor D(Aff(X)) → D(X)〈1〉 which is an

equivalence if and only if Hi(X,OX) = 0 for i > 0. (Recall Remark 8.40.) There are
plenty of examples of smooth projective varieties whose structure sheaf is exceptional.
For example, smooth Fano varieties over a field of characteristic zero have this
property by the Kodaira vanishing theorem. For such varieties, the unitation and
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the derived category of the affinization coincide — they are just the derived category
of the base field. Although this may seem trivial, these are examples where the
unitation, the affinization and both the graded and ungraded comparison maps all
coincide and the fibers of this map need not be local. They demonstrate that the
unigenic hypothesis in Theorem 12.5 cannot be dropped.
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[CD15] Denis-Charles Cisinski and Frédéric Déglise. Integral mixed motives in equal character-

istic. Doc. Math., (Extra vol.: Alexander S. Merkurjev’s sixtieth birthday):145–194,

2015.
[CGM16] S. Chakraborty, R. V. Gurjar, and M. Miyanishi. Pure subrings of commutative rings.

Nagoya Math. J., 221(1):33–68, 2016.
[COS13] Alberto Canonaco, Dmitri Orlov, and Paolo Stellari. Does full imply faithful? J.

Noncommut. Geom., 7(2):357–371, 2013.
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2004.
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