Topics covered in this lecture

- Pattern matching
- Anomaly Detection
- Optimal clusters with the "Gap Statistic"
- Textual Analysis

General Question: How do we find similar and dissimilar time series?
Our previous treatment of clustering tried to group geo-coordinates by their proximity

- Each observation was paired with a latitude and longitude

One can, of course, define observations by their time series

- Financial data or macroeconomic data
- Textual data (a ordering of alpha-numeric characters, or words)
- Medical data (eg. EKG, etc..)

Technique is similar - define a distance, and clustering method

Distance

- **Numeric**: Similar to before (Euclidean distance, other metric)
- **Textual**: Measures of similarity (eg. intersection of words/characters)
Data: US Housing Prices by MSA

- Like your first exam, a housing price index by metropolitan statistical area
 - Housing prices normalized the 1990
 - Only complete series are included (no missing prices)

- Objectives
 - Find similar series
 - Detect "outliers" or anomalous series
 - Find optimal housing clusters
Data Processing

- **Load Data**
  ```r
data <- read.csv("/Users/acspereot/Documents/HPI_AT_metro.csv", header=TRUE, na="-")
```

- **Restrict years to 1990 and onward**
  ```r
data <- subset(data, Year >= 1990)
```

- **Create a Year-Quarter dummy**
  ```r
data$YearQuarter <- paste(data$Year, data$Quarter, sep="-")
```

- **Create a list of MSAs**
  ```r
MSAs <- sort(unique(as.character(data$MSA)))
```

- **Create a matrix**
  ```r
y <- matrix(nrow = length(MSAs), ncol = nrow(subset(data, MSA == MSAs[1])))
for (i in 1:length(MSAs)){
  sx <- subset(data, MSA == MSAs[i])
  y[i,] <- sx$Index / sx$Index[grep("2000-1", sx$YearQuarter)]
}
```

- **Keep observations with a complete time series since 1990**
  ```r
completeseries <- grep(0, rowSums(is.na(y)))
y2 <- y[completeseries,]
MSAs <- MSAs[completeseries]
```
Use hclust to find housing clusters

- Use the hierarchical clustering procedure to find similar housing time series.
- Define distance matrix between series:

  ```r
  distmat <- dist(y2)
  ```
- Run the full hierarchical clustering procedure:

  ```r
  results.complete <- hclust(distmat, method = "complete")
  ```
- "Cut the tree" at 10 clusters:

  ```r
  cluster.complete10 <- cutree(results.complete, 10)
  ```
- Create data frame to view the results:

  ```r
  res <- data.frame(MSAs, cluster.complete10)
  ```
- Do these clusters look sensible? Where are the metro areas you've heard of?
- Try with 50 clusters:

  ```r
  cluster.complete50 <- cutree(results.complete, 50)
  res <- data.frame(MSAs, cluster.complete50)
  ```
Outlier Detection with DBSCAN

- DBSCAN groups observations into high density areas, with outliers considered noise. Density determined by:
 - eps is the radius to determine density.
 - MinPoints determines a minimum number of points within a radius.

- Three types of points:
 - Core: The interior. A point is a core point if there are at least MinPoints within a distance of eps.
 - Border: A border point is not a core point, but falls within eps of a core point.
 - Noise: Neither a core point nor a border point.

- For our purposes, we wish to use these parameters to iteratively find the most dissimilar observations (or anomalous time series). To do this, we will:
 - Start with a very high value of eps, such that there is only 1 cluster.
 - Sequentially reduce eps until outliers are identified.
Outlier Detection with DBSCAN (cont.)

- **Load dbscan library**

  ```r
  library(dbscan)
  ```

- **Loop through different values of eps to find the first outlier,**

  ```r
  for(i in seq(10,1,by=-0.1)){
    results.dbscan<-dbscan(distmat,eps=i)
    count<-sum(results.dbscan$cluster==0,na.rm=TRUE)
    if(count>0)break
  }
  ```

- **Collect the results**

  ```r
  res$dbscan1<-results.dbscan$cluster
  ```

- **Loop through different values of eps to find the 10 first outliers**

  ```r
  for(i in seq(10,1,by=-0.1)){
    results.dbscan<-dbscan(distmat,eps=i)
    count<-sum(results.dbscan$cluster==0,na.rm=TRUE)
    if(count>10)break
  }
  ```

  ```r
  res$dbscan2<-results.dbscan$cluster
  ```
There are a number of methods to evaluate the optimal number of clusters

- Compare clusters to existing classifications.
- Use a modified cross-validation, other ad-hoc techniques

One particular method, the "Gap Statistic", is more theoretically motivated

- Tibshirani, Walther, and Hastie (2001), *Journal of the Royal Statistical Society*

The Gap Statistic is based on the idea that a clustering algorithm will find clusters from random data

- Random points can be arranged in clusters, by chance
- Compare how a clustering procedure on real data compares to a clustering procedure on random data
- Choose the smallest number of clusters such that the algorithm maximizes the "tightness" of clusters on the real data compared to fake data. (there is a specific metric for this)

The Gap statistic can be used with any clustering technique that requires the choice of number of clusters to begin with.
Calculating the Gap Statistic

- Define:
 - x_{ij}, $i = 1, 2, .., n$, $j = 1, 2, .., p$, where i are observations and j are characteristics
 - $d_{ii'}$ is the distance between i and i'
 - C_r is defined as a set of observations in a cluster, r.
 - n_r is the number of observations in a cluster, r.

- The Gap statistic is defined as:
 \[
 \text{Gap}_n(k) = E_n^* (\log (W_k)) - \log (W_k)
 \]

where

- $E_n^* (\log (W_k))$: the null within-cluster average distance with k clusters
- $\log (W_k)$: the model within-cluster average distance with k clusters

- To calculate using the model:
 \[
 W_k = \sum_{r=1}^{k} \frac{1}{2n_r} \sum_{i,i' \in C_r} d_{ii'}
 \]
Fig. 1. Results for the two-cluster example: (a) data; (b) within sum of squares function W_k; (c) functions $\log(W_k)$ (O) and $\hat{E}_n(\log(W_k))$ (E); (d) gap curve.
The Idea Behind the Gap Statistic

- For the null, use a bootstrap with \(B \) replications.
 - Draw random data from a distribution similar to each \(j \) (e.g., from the same range of data for each \(j \))

- Then calculate the "null" log within-cluster average distance:

\[
E_n^* (\log(W_k)) = \frac{1}{B} \sum_{b=1}^{B} \log \left(\sum_{r=1}^{k} \frac{1}{2n^b_r} \sum_{i,i' \in C^b_R} d^b_{ii'} \right)
\]

where \(sd_k \) is the standard deviation of the null statistic at \(k \).

- **Optimal Cluster Rule**: Use smallest \(k \) such that:

\[
\text{Gap}(k) > \text{Gap}(k+1) - sd_{k+1}
\]

- Intuition:
 - We want the tight clusters relative to the null: larger \(\text{Gap}(k) \)
 - If we are to accept more clusters, we need the new \(\text{Gap}(k+1) \) to be sufficiently higher than \(\text{Gap}(k) \)
 - If there exist multiple \(k \) such that this condition is satisfied, choose parsimony (fewer clusters)
An Example with the Gap Statistic

- The library NbClust has techniques to test for cluster performance

- Load NbClust library

  ```r
  library(NbClust)
  ```

- Assign row names to the data matrix:

  ```r
  row.names(y2) <- MSAs
  ```

- Run a hierarchical clustering procedure (with the complete linkage), and determine optimal clustering via the gap statistic

  ```r
  GapComplete <- NbClust(y2, index = "gap", method = "complete")
  ```

- Report number of clusters

  ```r
  GapComplete$Best.nc
  ```

- Report clusters

  ```r
  as.matrix(GapComplete$Best.partition)
  ```

- Report smallest cluster

  ```r
  SmallCluster <- GapComplete$Best.partition == 2
  as.matrix(GapComplete$Best.partition[SmallCluster])
  ```
In the course of your data science career, you may be increasingly asked to engage on textual data to compare objects or extract information.

Edit-based distances

- Distance is represented by the number of edits to turn one string into another
- Eg. Insertions, substitutions, deletion, etc..

Q-grams

- Comparison of q-character sequences between strings
- Eg. (q-gram), Jaccard, and cosine

Hueristics - practical rules

We’ll given some examples for each using the "stringdist" library

```r
install.packages("stringdist")
library(stringdist)
```
Edit Distances

- The basic types of edits:
 - Substitution: 'foo' → 'boo'
 - Deletion: 'foo' → 'oo'
 - Insertion: 'foo' → 'floo'
 - Transposition: 'foo' → 'ofo'

- **Generalized Levenshtein Distance:**
 - Weighted number of insertions, deletions, and substitutions to turn one string into another

- **Damerau-Levenshtein Distance:**
 - Allows for adjacent characters to be transposed

Levenshtein distance comparing "alan" and "allen"

```python
stringdist('alan', 'allen', method='lv')
```
Q-Grams

- Q-gram based distances deal with matching strings of q consecutive characters

- **Jaccard Distance** is a simple comparison of the intersection and union of all unique q-length sequences

\[
\text{Distance} = 1 - \frac{|Q(s; q) \cap Q(t; q)|}{|Q(s; q) \cup Q(t; q)|}
\]

where \(Q(s; q)\) is the set of q-length sequences in \(s\)

- **Q-gram distance** calculates the number of non-shared q-grams between the two strings

- In both Jaccard and Q-gram, you can use the functions "intersect" and "union" after vectorizing text strings, but there are packages that do this automatically

- **Example with "alan" and "allen"**

```python
stringdist('alan', 'allen', method='jac',1)
stringdist('alan', 'allen', method='qgram',1)
stringdist('alan', 'allen', method='jac',2)
stringdist('alan', 'allen', method='qgram',2)
```
Q-Grams (cosine)

- **Cosine distance**: measures one minus the cosine of the angle between two vectors
- Translate text into vectors using "term frequency"
- Eg: "alan" vs. "allen", q=1
 - Vector space: \((a, e, l, n)\)
 - \(v('alan', q = 1) = (2, 0, 1, 1)\)
 - \(v('allen', q = 1) = (1, 1, 2, 1)\)
- Eg, "alan" vs. "allen", q=2
 - Vector space: \((al, la, an, ll, le, en)\)
 - \(v('alan', q = 2) = (1, 1, 1, 0, 0, 0)\)
 - \(v('allen', q = 2) = (1, 0, 0, 1, 1, 1)\)
- Formula:

\[
\text{CosDistance} = 1 - \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}}
\]

where \(A_i\) and \(B_i\) are vectors for two strings based on term frequency.
Application: Textual Analysis of Fed Statements

- Textual Analysis is used in economics and business
 - Analyzing fed minutes/transcripts
 - Analyzing corporate earnings calls
 - An unsurprisingly, your posts on any social media

- On the website, I have compile 6 opening paragraphs of fed statements from 2013

 \[
 \texttt{x<-read.delim("/Users/acspearot/Documents/Classes/Econ 217/Fed Statement", sep="\t")}
 \]

 \[
 \texttt{x$Date<-as.character(x$Date)}
 \]

 \[
 \texttt{x$Text<-as.character(x$Text)}
 \]

- As a basic command, you can search for phrases using "grep"

 \[
 \texttt{grep("economic activity has been expanding",x$Text[1])}
 \]

 \[
 \texttt{grep("economic activity has been expanding",x$Text[2])}
 \]

 \[
 \texttt{grep("economic activity has been expanding",x$Text[3])}
 \]

 \[
 \texttt{grep("economic activity has been expanding",x$Text[4])}
 \]

 \[
 \texttt{grep("economic activity has been expanding",x$Text[5])}
 \]

 \[
 \texttt{grep("economic activity has been expanding",x$Text[6])}
 \]
There are countless ways of analyzing textual data for economic information, but let’s just measure their distance.

The Fed is careful with their language - analyzing deviations could indicate changes in economic conditions.

Compare fed minutes with a 20 character cosine distance

```
stringdist(x$Text[1],x$Text[2], method='cosine', q=20)
stringdist(x$Text[1],x$Text[3], method='cosine', q=20)
stringdist(x$Text[1],x$Text[4], method='cosine', q=20)
stringdist(x$Text[1],x$Text[5], method='cosine', q=20)
stringdist(x$Text[1],x$Text[6], method='cosine', q=20)
```

Obviously this is overly simplistic, but can imagine enriching this in a number of dimensions.