Topics covered in this lecture

- K-Means
- Hierarchical Clustering
- DBScan

Tons of resources exist on these topics, but I’ve used sample chapters from this book:

https://www-users.cs.umn.edu/~kumar001/dmbook/index.php
Clustering

- Clustering is a method for arranging objects into like groups
 - Unsupervised Machine Learning

- Clustering can be used to uncover the nature of the data
 - Eg. Correlations in price, neighborhoods of villages

- Can also be used to summarize the data
 - Eg. Mean of similar objects

- Can also be used to speed up other techniques
 - Eg. Applying KNN within clusters
Types of clustering and clusters

- Clustering
 - Partitioned: objects assigned to non-overlapping groups
 - Hierarchical: clusters defined within larger clusters

- Prototype-based clusters
 - A "prototype" defines the cluster - this is often the centroid of a group of points (or some other central tendency)
 - Objects within a cluster are closer to its prototype than a different prototype.

- Graph-based clusters
 - Objects are defined as connections to one another
 - The type of connection defines the shape of the clusters

- Density-based clusters
 - Regions of high density are surrounded by regions of low density
 - Not all points will be within a cluster
Three techniques

- **K-Means**
 - Prototype-based, partitional clustering
 - User-specified number of clusters (K), with clusters represented by their centroids

- **Agglomerative Hierarchical Clustering**
 - Starts with each point as a singleton cluster and then iteratively merging the two closest clusters until a single exhaustive cluster remains.
 - Can be represented with a "Dendrogram", which is an illustration of how clusters are merged. Solution easily determined after choosing the number of clusters.

- **DBSCAN**
 - Density-based partitioned clustering with noise.
 - Number of clusters is automatically determined by the algorithm parameters and the structure of the data.
 - Points in low-density regions are classified as noise and omitted.
Data: Village locations in Kilimanjaro, TZ

- How could village clustering matter?
 - Administrative governance
 - Market catchment areas
 - Agro-climactic variation

- Data is from a service that provides GPS locations of cities, towns, and villages
 - Anonymized version on the website
 - For now, we will use the clustering algorithms to evaluate clusters in space

Questions:
- How do clusters change with each method?
- What happens when we use an optimal cluster size algorithm?
Villages in Kilimanjaro, TZ
K-Means: The approach

- **K-Means**
 - Partition clusters based on their proximity to an iterative set of centroids

- **Basic algorithm**
 - Choose number of clusters, K
 - Start with random cluster centroids
 - Assign points to closest centroid
 - Re-calculate centroids
 - Repeat until convergence

- **Upside:** Very quick, straightforward

- **Downside:** May be sensitive to starting values, number of clusters
K-Means: Code

- **Load Data**
  ```R
  sx<-read.csv("https://people.ucsc.edu/~aspearot/Econ_217/TZ.csv")
  ```

- **Create a color pallete to use in all examples**
  ```R
  color<-c("red","blue","green","gray","yellow","orange",
            "brown","midnightblue","black","lightgray")
  ```

- **Create an empty plot with a title**
  ```R
  plot(sx,pch=3,cex=0.5,col="white",main="K-Means Clusters")
  ```

- **Calculate the K-means clusters, assuming K=10**
  ```R
  results10<-kmeans(sx,10)
  ```

- **Illustrate the results, using different colors for clusters, on a plot**
  ```R
  sx2<-sx
  sx2$res<-results10$cluster
  for(i in 1:10){
    sx3<-subset(sx2,res==i)[,c("longitude","latitude")]
    points(sx3,pch=19,col=color[i])
    points(results10$centers[i,],pch=19,col=color[i])
  }
  ```
Hierarchical Clustering: The approach(es)

- Start with all points as singleton clusters, and join observations based on proximity of existing clusters

- Joining methods:
 - Complete: Smallest maximum pairwise distance between clusters. Tends to create agglomerative clusters
 - Single: Smallest minimum pairwise distance between clusters. Tends to create long, connected clusters

- Basic algorithm
 - Choose number of clusters, K
 - Compute a distance matrix between points
 - Merge the two closest clusters
 - Update the distance matrix according to method and repeat
 - Stop when there is only one cluster

- As with K-Means, results will depend on the number of clusters.
Hierarchical Clustering: Code

- Create a distance matrix between villages

 \[
 \text{distmat} \leftarrow \text{dist}(sx)
 \]

- Run HC using complete and single linkages

 \[
 \text{results.complete} \leftarrow \text{hclust}(\text{distmat, method} = \text{"complete"})
 \]

 \[
 \text{results.single} \leftarrow \text{hclust}(\text{distmat, method} = \text{"single"})
 \]

- Results can be represented as a dendrogram

 - Essentially like a tree diagram, starting from singleton clusters, aggregated to one cluster

- Sample of a Dendrogram for the complete linkage

 \[
 \text{plot(results.complete)}
 \]
Illustrate the "complete" results, using different colors for clusters, on a plot

```r
plot(sx,pch=3,cex=0.5,col="white",main="Hierarchical Clustering - Complete Linkage")
sx2<-sx
sx2$res<-as.numeric(cluster.complete)
for(i in 1:10){
    sx3<-subset(sx2,res==i)[,c("longitude","latitude")]
    points(sx3,pch=19,col=color[i])
}
```

Illustrate the "single" results, using different colors for clusters, on a plot

```r
plot(sx,pch=3,cex=0.5,col="white",main="Hierarchical Clustering - Single Linkage")
sx2<-sx
sx2$res<-as.numeric(cluster.single)
for(i in 1:10){
    sx3<-subset(sx2,res==i)[,c("longitude","latitude")]
    points(sx3,pch=19,col=color[i])
}
DBSCAN: The approach

- Group observations into high density areas, with outliers considered noise. Density determined by:
  - $eps$ is the radius to determine density.
  - $MinPoints$ determines a minimum number of points within a radius

- Three types of points:
  - Core: The interior. A point is a core point if there are at least $MinPoints$ within a distance of $eps$.
  - Border: A border point is not a core point, but falls within $eps$ of a core point.
  - Noise: Neither a core point nor a border point.

- Basic algorithm
  - Eliminate noise points.
  - Group of connected core points into a separate cluster.
  - Assign each border point to one of the clusters of its associated core points.
DBSCAN: Code

- Load dbscan library
  ```r
 install.packages("dbscan")
 library(dbscan)
  ```

- Calculate distance matrix
  ```r
 distmat <- dist(sx)
  ```

- Create plot with all points
  ```r
 plot(sx, pch=3, cex=0.5, main="DBSCAN Clustering")
  ```

- Some of these points will not be assigned to a cluster

- Illustrate the results, using different colors for clusters, on a plot
  ```r
 sx2 <- sx
 sx2$res <- results.dbscan$cluster
 for (i in 1:10) {
 sx3 <- subset(sx2, res==i)[, c("longitude", "latitude")]
 points(sx3, pch=19, col=color[i])
 }
  ```