So far, most extensions of the linear model have centered on either a binary choice between two options (work or don’t work) or censoring options.

Many questions in economics involve consumers making choices between more than two varieties of goods

- Ready-to-eat cereal
- Vacation destinations
- Type of car to buy

Firms also have such multinomial choices

- In which country to operate
- Where to locate a store
- Which CEO to hire

Techniques to evaluate these questions are complex, but widely used in practice. Generally, they are referred to as **Discrete Choice Models**, or **Multinomial Choice Models**
Multinomial Choice - The basic framework

- Suppose there are individuals, indexed by i

- They choose from J options of a good, and may only choose one option.

- If they choose option k, then individual i receives U_{ik} in utility, where

$$U_{ik} = V_{ik} + \epsilon_{ik}$$

 - V_{ik} is observable utility (to the econometrician). This can be linked to things like product characteristics, demographics, etc..

 - ϵ_{ik} is random utility. The econometrician doesn’t see this, but knows its distribution. This actually makes the problem a bit more reasonable to characterize empirically

- Utility maximization - individual i chooses option k if

$$U_{ik} > U_{ij} \quad \forall \ j \neq k$$

- This maximization problem involves comparing observable utility for each option, while accounting for random utility.
From here, there are a variety of techniques that one can use to estimate multinomial choice models.

- **Multinomial Logit** is the easiest, and will be derived below.
 - Assumes a particular functional form that has questionable properties, but produces closed form solutions.
 - There are two ways to derive the multinomial logit - we will go over the easier approach, though I have also derived the second approach in the notes.

- **Nested Logit** is more realistic:
 - Consumers choose between larger groups (car vs. truck) before making more refined choices (two-door vs. four-door).
 - Also yields closed form solutions, but results can depend on choices over "nests".

Additional extensions to multinomial choice are beyond this course, but can be used if you understand the basic assumptions:

- **Multinomial Probit** (requires heavy computation).
- **Random coefficients logit** (variation in how agents value attributes of choices).
Multinomial Distribution

- Recall the binomial distribution:
 \[f(y; p) = \frac{n!}{y!(n-y)!} p^y (1 - p)^{n-y} \]

- Remember that \(p \) is the probability some event (e.g. unemployment) occurs, and \(y \) is the number of times the event occurs after \(n \) attempts.
 - \(n - y \) is the number of times the event does not occur.

- When there are more than two choices, the distribution is generalized as **multinomial**

- Defining \(\pi_j \) as the probability that option \(j \) is chosen, the multinomial distribution is written as:
 \[
 f(y; p) = n! \prod_{j=1}^{J} \frac{1}{y_j!} \pi_j^{y_j}
 \]

 \[
 = \frac{n!}{y_1!y_2!\cdots y_{J-1}!y_J!} \pi_1^{y_1} \pi_2^{y_2} \cdots \pi_{J-1}^{y_{J-1}} \pi_J^{y_J}
 \]

- This is the PDF that is used for maximum likelihood. We wish to estimate \(J \) \(\pi_j \)'s.
 - Do you think we can? Or do you think that we need to?

- Let’s now take the next step and link the likelihood function to data.
Multinomial Logit - Derivation

- Recall for the Logit model we link the log odds ratio to data
 \[\log \left(\frac{p_i}{1 - p_i} \right) = x_i^T \beta \]

- We exponentiate and rearrange to get:
 \[p_i = \frac{\exp(x_i^T \beta)}{1 + \exp(x_i^T \beta)} \]

- We must extend this link to having multiple options in the multinomial model.
 - Since there is a linear dependency in our probabilities (ie. they sum to one), we must choose a reference group

- We write the log odds ratio relative to the reference group \((j = 1)\) as:
 \[\log \left(\frac{\pi_{ij}}{\pi_{i1}} \right) = x_{ij}^T \beta_j \]

- Note that the relative probability is specific to \(j\): \(\beta_j\).

 - \(\beta_j\): The effect of some covariate on the choice between \(j\) and 1 may vary by \(j\).

 - \(x_{ij}^T\) is a vector covariates for \(i\) that may vary by \(j\).

 - Eg. Price matters for choice between compact cars, but not between compact and luxury.
Multinomial Logit - Derivation

- Exponentiate and solve for π_{ij}

$$\pi_{ij} = \pi_1 \exp(\mathbf{x}_i^T \beta_j)$$

- Next, use the requirement that all probabilities sum to 1

$$\pi_{i1} + \sum_{j=2}^{J} \pi_j = 1$$

- Substituting for π_{ij}, we get:

$$\pi_{i1} + \sum_{j=2}^{J} \pi_1 \exp(\mathbf{x}_i^T \beta_j) = 1$$

- Solving for π_{i1}

$$\pi_{i1} = \frac{1}{1 + \sum_{j=2}^{J} \exp(\mathbf{x}_i^T \beta_j)}$$

- Thus, the probability of option j, π_{ij}, is

$$\pi_{ij} = \frac{\exp(\mathbf{x}_i^T \beta_j)}{1 + \sum_{s=2}^{J} \exp(\mathbf{x}_{is}^T \beta_s)}$$
The multinomial logit formula is pretty simple

$$\pi_{ij} = \frac{\exp(x_{ij}^T \beta_j)}{1 + \sum_{s=2}^{J} \exp(x_{is}^T \beta_s)}$$

The multinomial logit has a pretty sharp property that is usually not good in practice: Independence of Irrelevant Alternatives (IIA)

Precisely, when choosing between two goods, substitution with other goods does not matter

To see IIA in practice, take the ratio of probabilities between some good j and another k

$$\frac{\pi_{ij}}{\pi_{ik}} = \frac{\exp(x_{ij}^T \beta_j)}{\exp(x_{ik}^T \beta_k)}$$

Thus, the relative probabilities of two outcomes do not depend on the other $J - 2$ outcomes.

Techniques such as multinomial probit, and nested logit, avoid this strong prediction.
There are a few packages in R to estimate the multinomial logit.

- **mlogit** is the best.

The package also includes a number of datasets that we can use to demonstrate the model. Since it is pretty simple, we will use the dataset "Cracker".

After loading mlogit, you can call the data internal to the package via the following command:

```r
data("Cracker", package = "mlogit")
str(Cracker)
```

Each row represents an individual, and "choice" represents the chosen brand. This will be the outcome variable.

For each brand of cracker, the dataset contains the following information

- **price** observed for individual \(i\)
- Whether or not there was an in-store display observed by individual \(i\), **disp**.
- Whether or not there was a newspaper ad observed by individual \(i\), **feat**.
To setup the data.frame for estimation, you must create an mlogit data object.

```r
data_c <- mlogit.data(Cracker, shape="wide", choice="choice",
                      varying=c(2:13))
```

"data_c" is the mlogit data object in "wide" formate

- "Cracker" is the original data frame
- "shape="wide"" tells us to list the data in a format that I will describe with R.
- "varying=c(2:13)" indicates the variables from the dataset that vary by individual (prices they observe, advertisements they see)

To estimate the model, run:

```r
m <- mlogit(choice~price+disp+feat, data_c)
summary(m)
```

Can estimate the model with product specific coefficients using

```r
m2 <- mlogit(choice~0|price+disp+feat, data_c)
summary(m2)
```
Choices are independent of one another, and ϵ_{ik} follows an extreme value I distribution (also known as the Gumbel distribution).

$$f(\epsilon_{ik}) = \exp(-\epsilon_{ik})\exp(-\exp(-\epsilon_{ik}))$$

$$\Pr(\epsilon < \epsilon_{ik}) = F(\epsilon_{ik}) = \exp(-\exp(-\epsilon_{ik}))$$

Recall that from utility maximization - individual i chooses option k if

$$U_{ik} > U_{ij} \quad \forall \ j \neq k$$

We now seek the probability that this outcome occurs, which can then be compared empirically to the share of agents that choose option k over all other j.
First, let’s consider option k against some other option j. The probability the consumer purchases k:

$$\Pr(U_{ik} > U_{ij}) = \Pr(V_{ik} + \epsilon_{ik} > V_{ij} + \epsilon_{ij})$$

Rearranging to isolate ϵ_{ij}

$$\Pr(U_{ik} > U_{ij}) = \Pr(V_{ik} - V_{ij} + \epsilon_{ik} > \epsilon_{ij})$$

This simply says that the difference in observable utility plus ϵ_{ik} is greater than ϵ_{ij}. Put differently, unobserved utility in option j is not sufficient to make-up for the other factors influencing the decision between k and j.

Imposing the CDF of the Gumbel distribution, and treating ϵ_{ik} as a conditioning variable, we have:

$$\Pr(U_{ik} > U_{ij} | \epsilon_{ik}) = F(V_{ik} - V_{ij} + \epsilon_{ik})$$

Given ϵ_{ik}, what is the probability that this occurs for all $j \neq k$?
Since unobserved utility is independent across goods, the intersection of these events is just their probabilities multiplied together.

So, the probability that k is chosen over j for all $j \neq k$, conditional on ϵ_{ik}, is:

$$\Pr\left(U_{ik} > U_{ij} \forall j \neq k \mid \epsilon_{ik}\right) = \prod_{j \neq k} F\left(V_{ik} - V_{ij} + \epsilon_{ik}\right)$$

For the final step before some algebra, recall that this is a conditional probability. We still need to account for the possible values of ϵ_{ik}.

Formally, the unconditional probability that k is chosen, P_{ik}, is written as:

$$P_{ik} = \Pr\left(U_{ik} > U_{ij} \forall j \neq k\right) = \int \Pr\left(U_{ik} > U_{ij} \forall j \neq k \mid \epsilon_{ik}\right) f\left(\epsilon_{ik}\right) d\epsilon_{ik}$$

Basically, what we’re doing is taking each $\int \Pr\left(U_{ik} > U_{ij} \forall j \neq k \mid \epsilon_{ik}\right)$, and then weighting by the pdf $f\left(\epsilon_{ik}\right)$.
Imposing the solution for the choice of k conditional on ϵ_{ik}:

$$P_{ik} = \int_{-\infty}^{\infty} \prod_{j \neq k} F(V_{ik} - V_{ij} + \epsilon_{ik}) f(\epsilon_{ik}) d\epsilon_{ik}$$

Imposing the parameterization of the extreme value distribution, we have:

$$P_{ik} = \int_{-\infty}^{\infty} \prod_{j \neq k} \exp \left(-\exp \left(-\left(V_{ik} - V_{ij} + \epsilon_{ik} \right) \right) \right) \exp(-\epsilon_{ik}) \exp(-\exp(-\epsilon_{ik})) d\epsilon_{ik}$$

Note that since $\exp(-\exp(-\epsilon_{ik})) = \exp(-\exp(-\left(V_{ik} - V_{ik} + \epsilon_{ik} \right)))$, we can simply as:

$$P_{ik} = \int_{-\infty}^{\infty} \prod_{j} \exp \left(-\exp \left(-\left(V_{ik} - V_{ij} + \epsilon_{ik} \right) \right) \right) \exp(-\epsilon_{ik}) d\epsilon_{ik}$$

Simplifying this is not too hard, once you note a few convenient features of the extreme value distribution.
Remember that the product of exponentials is just the exponential of the sums of the exponents

\[
\prod_j \exp x_j = \exp \left(\sum_j x_j \right)
\]

Thus,

\[
P_{ik} = \int_{-\infty}^{\infty} \prod_j \exp \left(-\exp \left(-(V_{ik} - V_{ij} + \epsilon_{ik}) \right) \right) \exp (-\epsilon_{ik}) d\epsilon_{ik}
\]

\[
= \int_{-\infty}^{\infty} \exp \left(-\sum_j \exp \left(-(V_{ik} - V_{ij} + \epsilon_{ik}) \right) \right) \exp (-\epsilon_{ik}) d\epsilon_{ik}
\]

Using a similar rule, we can factor out \(\exp(\epsilon_{ik}) \)

\[
P_{ik} = \int_{-\infty}^{\infty} \exp \left(-\exp (-\epsilon_{ik}) \sum_j \exp \left(-(V_{ik} - V_{ij}) \right) \right) \exp (-\epsilon_{ik}) d\epsilon_{ik}
\]

The next step is tricky. What is the relationship between \(-\exp (-\epsilon_{ik}) \) and \(\exp (-\epsilon_{ik}) \)?
Time for a change of variables, where

\[t = -\exp(-\epsilon_{ik}) \]
\[dt = \exp(-\epsilon_{ik}) \, d\epsilon_{ik} \]

where \(t \in (-\infty, 0) \)

Thus,

\[P_{ik} = \int_{-\infty}^{\infty} \exp\left(-\exp(-\epsilon_{ik}) \sum_j \exp(-(V_{ik} - V_{ij}))\right) \exp(-\epsilon_{ik}) \, d\epsilon_{ik} \]

\[= \int_{-\infty}^{0} \exp\left(t \sum_j \exp(-(V_{ik} - V_{ij}))\right) \, dt \]

Completing the integral:

\[P_{ik} = \left(\frac{\exp\left(t \sum_j \exp(-(V_{ik} - V_{ij}))\right)}{\sum_j \exp(-(V_{ik} - V_{ij}))}\right)^0 \left|_{-\infty} \right. \]
And finally, simplify

\[
P_{ik} = \frac{1}{\sum_j \exp\left(-\left(V_{ik} - V_{ij}\right)\right)}
\]

\[
= \frac{1}{\sum_j \exp(-V_{ik}) \exp(V_{ij})}
\]

use exponent rule

\[
= \frac{1}{\exp(-V_{ik}) \sum_j \exp(V_{ij})}
\]

factor out \(\exp(-V_{ik})\)

\[
= \frac{\exp(V_{ik})}{\sum_j \exp(V_{ij})}
\]

multiply top and bottom by \(\exp(V_{ik})\)

From here, we usually assume that observed utility is a function of covariates

\[
V_{ij} = X_{ij} \beta
\]

Thus,

\[
P_{ik} = \frac{\exp(X_{ik} \beta)}{\sum_j \exp(X_{ij} \beta)}
\]