Omitted Variables Bias
What happens when we omit an important variable?

Need to conjecture regarding the relationship between the omitted variable and included x and y variables

Upward bias:

- Estimate is on average higher than the true parameter: $E(\hat{\beta}|x) > \beta$

Downward bias:

- Estimate is on average lower than the true parameter: $E(\hat{\beta}|x) < \beta$

Let us derive rigorously when these cases occur.
Suppose that a population has the following relationship:

\[y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u \]

However, we forget about \(x_2 \) and estimate:

\[\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 \]

Our equation is *misspecified*.

What is the relationship between the true \(\beta_1 \) and \(\hat{\beta}_1 \)?

How do we quantify the bias?
Multivariate Regression
Omitted variable bias

- Population relationship between \(x_1 \) and \(x_2 \):
 \[
x_2 = \delta_0 + \delta_1 x_1 + \epsilon
\]
- Plug \(x_2 \) into the population equation:
 \[
y = \beta_0 + \beta_1 x_1 + \beta_2 (\delta_0 + \delta_1 x_1 + \epsilon) + u
\]
- Expand:
 \[
y = \beta_0 + \beta_1 x_1 + \beta_2 \delta_0 + \beta_2 \delta_1 x_1 + \beta_2 \epsilon + u
\]
- Group terms:
 \[
y = \underbrace{\beta_0 + \beta_2 \delta_0}_{\hat{\beta}_0} + \underbrace{(\beta_1 + \beta_2 \delta_1)}_{\hat{\beta}_1} x_1 + \underbrace{\tilde{u}}_{\hat{\beta}_2 \epsilon + u}
\]
- \(\hat{\beta}_1 \) is an estimate of \(\beta_1 + \beta_2 \delta_1 \), not \(\beta_1 \).
- Simple formula for the bias:
 \[
 \text{Bias} = \hat{\beta}_1 - \beta_1 = \beta_1 + \beta_2 \delta_1 - \beta_1 = \beta_2 \delta_1
 \]
To quantify the bias, we need the sign of β_2 and δ_1.

If x_2 and x_1 are positively correlated, $\delta_1 > 0$. If not, then $\delta_1 < 0$.

If x_2 has a positive effect on y, $\beta_2 > 0$. If not, then $\beta_2 < 0$.

Put them together:

<table>
<thead>
<tr>
<th>x_2 has a positive effect on y</th>
<th>Corr$(x_1,x_2) > 0$</th>
<th>Corr$(x_1,x_2) < 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$(\delta_1 > 0)$</td>
<td>$(\delta_1 < 0)$</td>
</tr>
<tr>
<td>x_2 has a positive effect on y</td>
<td>positive bias</td>
<td>negative bias</td>
</tr>
<tr>
<td></td>
<td>$(\beta_2 \delta_1 > 0)$</td>
<td>$(\beta_2 \delta_1 < 0)$</td>
</tr>
<tr>
<td>x_2 has a negative effect on y</td>
<td>negative bias</td>
<td>positive bias</td>
</tr>
<tr>
<td></td>
<td>$(\beta_2 \delta_1 < 0)$</td>
<td>$(\beta_2 \delta_1 > 0)$</td>
</tr>
</tbody>
</table>
Example: Effect of class attendance on grades

Population follows:

\[final = \beta_0 + \beta_1 \text{attend} + \beta_2 \text{study} + u \]

We instead forget about \textit{study} and estimate:

\[\widehat{final} = \widehat{\beta}_0 + \widehat{\beta}_1 \text{attend} \]

Suppose we estimate \(\widehat{\beta}_1 > 0 \), and conclude that attendance increases your grade (\(\beta_1 > 0 \)). Is this right?

- Positive correlation between \textit{study} and \textit{final}
- Positive correlation between \textit{study} and \textit{attend}
- \(\widehat{\beta}_1 \) suffers from an upward bias: \(\beta_1 < \widehat{\beta}_1 \)
Intuition

- \(\hat{\beta}_1 > 0 \) suggests that higher attendance improves your grade
- However, students who attend class often tend to study more
- Thus, attend may actually be accounting for the effects of studying, and not attendance.

Overall, given \(\beta_1 < \hat{\beta}_1 \), the result \(\hat{\beta}_1 > 0 \) is insufficient to guarantee that \(\beta_1 > 0 \).
Example: Effect of drugs on crime

Population follows:

\[crime = \beta_0 + \beta_1 \text{educ} + \beta_2 \text{drugs} + u \]

We instead forget about drugs and estimate:

\[\hat{crime} = \hat{\beta}_0 + \hat{\beta}_1 \text{educ} \]

Suppose we estimate \(\hat{\beta}_1 < 0 \), and conclude education reduces your likelihood of committing a crime (\(\beta_1 < 0 \))

Positive correlation between drugs and crime

Negative correlation between drugs and educ

\(\hat{\beta}_1 \) suffers from an downward bias: \(\hat{\beta}_1 < \beta_1 \)
Multivariate Regression
Omitted variable bias - Examples

- **Intuition**
 - $\hat{\beta}_1 < 0$ suggests that education reduces your likelihood of committing a crime
 - However, people who go to school are less likely to abuse drugs
 - Thus, educ may actually be accounting for the propensity of drug use, not the effects of education
 - Overall, given $\hat{\beta}_1 < \beta_1$, the result $\hat{\beta}_1 < 0$ is *insufficient* to guarantee that $\beta_1 < 0$.
Example: Effect of graduate education on wages

Population follows:

\[\log(wage) = \beta_0 + \beta_1 \text{geduc} + \beta_2 \text{Exper} + u \]

We instead forget about \text{Exper} and estimate:

\[\hat{\log(wage)} = \hat{\beta}_0 + \hat{\beta}_1 \log(\text{geduc}) \]

Suppose we estimate \(\hat{\beta}_1 > 0 \), and conclude that graduate education increases your wage (\(\beta_1 > 0 \))

Positive correlation between \text{Exper} and \(\log(wage) \)

Negative correlation between \text{Exper} and \(\text{geduc} \) (by construction)

\(\hat{\beta}_1 \) suffers from an downward bias: \(\hat{\beta}_1 < \beta_1 \)
Multivariate Regression
Omitted variable bias - Examples

- **Intuition**

 - $\hat{\beta}_1 > 0$ suggests that graduate education of some sort increases your wage.

 - However, people who pursue graduate education have lower levels of experience.

 - Thus, people with no graduate education may earn relatively high wages since they have lots of experience.

- Overall, given $\hat{\beta}_1 < \beta_1$, the result $\hat{\beta}_1 > 0$ is *sufficient* to guarantee that $\beta_1 > 0$.