The Big Picture

Labor Markets

 Labor Force Participation

 The "Wage Gap"
The Big Picture

• What have we been studying, and why do we care?

 • The world is comprised of things we see, and things we do not

 • Econometrics is only meaningful when we have some sense of the things we do not see.

 • Put differently, if we have a reasonably understanding of what we are controlling for, we can make sensible recommendations based on the data.

• In recent lectures, "Fixed Effects" help carve down the world into something manageable

 • We’ve mostly thought of fixed effects as "individual effects"

 • But, they can technically represent any group of dummy variables for which we’d like to de-mean the data.

• We will do so today using a common cross-sectional dataset from the "Current Population Survey"
Current Population Survey

- The CPS is a widely used and influential dataset from the US Bureau of Labor Statistics.

- The Center for Economics and Policy Research (CEPR) has cleaned this data for use in a way which is consistent over time.

 - Data on Wages, Demographics, locations, Industries, Occupations, Labor Force Participation, Education, etc...

 - We’ll combine surveys from 1983, 1988,...2008, 2013 to a "pooled cross-section".

- We will focus on two outcomes, and the use of fixed effects in establishing "facts" for these outcomes.

 - Labor force participation rates

 - The "wage gap" across groups.
Suppose we estimate the following:

\[\log(wage_i) = \beta_0 + \beta_1 educ_i + u_i \]

But, we’d also like to control for the fixed effects of individuals being in some "group".

Using a trick with xtreg, one can estimate a (potentially large) group of fixed effects.

For example, to estimate 50 state fixed effects, write:

- `xtreg lwage educ, fe i(state)`

To look within state-year pairs, write:

- `egen state_year = group(state year)`
- `xtreg lwage educ, fe i(state_year)`

This type of regression is very important - controls for state specific shocks, such as recessions, tech booms, natural disasters, etc...
Labor force participation

- Labor Force Participation is an important part of the calculation of unemployment.
 - The denominator of the unemployment rate is the "labor force", which is the population that participates in employment or job search.
 - The participation rate is a measure of "discouraged workers"

- We will use the CPS ORG pooled cross sections to study the basic characteristics of labor force participation:
 \[NLF_i = \beta_0 + \beta_1 educ_i + \beta_2 age_i + \beta_3 age^2_i \]
 \[+ \beta_4 female_i + \beta_5 black_i + \beta_6 hispanic_i + \beta_7 other_i + u_i \]

- Run with year and with state-year fixed effects
 - Within Years (that is, the year individuals were surveyed)
 - Within State-Year groups
Labor force participation

- First, run the within year model
 - `xtreg nlf educ age age2 female black hispanic other, fe i(year)`
 - Where might not controlling for states produce an omitted variable problem for these estimates?
- Next, run the within state-year model
 - `egen state_year = group(state year)`
 - `xtreg nlf educ age age2 female black hispanic other, fe i(state_year)`
- Next, run on the unemployment indicator, but for only those searching for work:
 - `xtreg unem educ age age2 female black hispanic other if nlf==0, fe i(year)`
 - `xtreg unem educ age age2 female black hispanic other if nlf==0, fe i(state_year)`
The Wage Gap

- One of the most hotly debated issues of policy
 - Most estimates put the wage gap at around 80 cents on the dollar for women vs. men.
 - Some estimate that the wage gap exists within the Obama administration, who actively champion for its elimination.
 - Are wages different across gender and other groups for otherwise similar workers that do the same task?
- The key issues are pretty obvious:
 - What defines "otherwise similar"?
 - What defines "same task"?
 - How does one assess productivity within the workplace?
- This question speaks to the core of econometrics - how to eliminate all relevant unobserved factors that may complicate the assessment of the wage gap.
The Wage Gap

- Data rarely allows us to disentangle these things, but we’ll try with the CPS ORG dataset.

- Estimate the following basic equation:

\[wage_i = \beta_0 + \beta_1 educ_i + \beta_2 age_i + \beta_3 age_i^2 + \beta_4 female_i + \beta_5 black_i + \beta_6 hispanic_i + \beta_7 other_i + u_i \]

- Within Years

 - `xtreg lwage educ age age2 female black hispanic other, fe i(year)`

- Within State-Years

 - `xtreg lwage educ age age2 female black hispanic other, fe i(state_year)`
The Wage Gap

- Evaluate how the gender gap has changed over time

- It’s helpful to dummy all this out explicitly

\[
 wage_i = \beta_0 + \beta_1 \text{educ}_i + \beta_2 \text{age}_i + \beta_3 \text{age}_i^2 + \beta_4^{83} d_i^{83} \text{female}_i + \beta_4^{88} d_i^{88} \text{female}_i + \beta_4^{93} d_i^{93} \text{female}_i + \beta_4^{98} d_i^{98} \text{female}_i + \beta_4^{03} d_i^{03} \text{female}_i + \beta_4^{08} d_i^{08} \text{female}_i + \beta_4^{13} d_i^{13} \text{female}_i + \beta_5 \text{black}_i + \beta_6 \text{hispanic}_i + \beta_7 \text{other}_i + \cdots + u_i
\]

- Eg. \(d_i^{88}\): respondent was surveyed in 1988.

- Since \(d_i^{83} + d_i^{88} + d_i^{93} + d_i^{98} + d_i^{03} + d_i^{08} + d_i^{13} = 1\), do not need to include \(\text{female}_i\) on its own.

- Interpretation: \(\beta_t^4\) measures the wage gap in year \(t\)

- See detailed notes for the code required to do this.
The Wage Gap

- Let’s try to get at the "same task" assumption by adding industries and occupations to our "within" analysis.

- Industry and occupation questions were only asked for 2003, 2008, and 2013 for our sample.

- **Within Industry-State-Years**
 - `egen ind_state_year = group(ind_2d state year)`
 - `xtreg lwage educ age age2 female black hispanic other, fe i(ind_state_year)`

- **Within Occupation-Industry-State-Years**
 - `egen occ_ind_state_year = group(occ03 ind_2d state year)`
 - `xtreg lwage educ age age2 female black hispanic other, fe i(ind_state_year)`

- Can do this using even more detailed industry classifications and occupation classifications. And we probably should.