Interaction Variables with Panel Data

- Continuous and Categorical Interactions

Limited Dependent Variables

- Review of Linear Probability
- Probit/Logit Models
- Tobit Models
- Count Models
Handling Interactions in Stata

- So far, when interacting two variables, we have done so manually before running a regression
 - Sometimes there can be many interactions, so doing so manually is not the best use of time.

- For example, consider the following:
 \[
 \log(wage_{it}) = \beta_0 + \beta_t manu_{it} + \alpha_i + \alpha_t + u_{it}
 \]

- Within individuals and years, the effects of being in a manufacturing industry can vary by year.
 - \(\beta_t\) is year specific.
 - This can be estimated in a number of ways, so let’s write them out.
Precisely, defining d_t as a dummy variable identifying each year t, the equation is written as:

$$\log(wage_{it}) = \beta_0 + \sum_t \beta^m_t \cdot d_t \cdot manu_{it} + \sum_t \beta_t \cdot d_t + \alpha_i + u_{it}$$

To estimate this equation, use the interaction operator, #.

- `xtreg lwage manu#year, fe`
- `xtreg lwage manu##year, fe`

The first produces average effects of each manu-year pair relative to an outside group (the constant)

- Eg. Within individuals, working in manufacturing in 1986 earns X in relative to non-manufacturing in 1980.

The second technique produces something very similar to the written specification above.

- Test whether there are yearly differences between manufacturing and non-manufacturing.
Handling Interactions in Stata

- Interactions can also involve a continuous variable,
 \[
 \log(wage_{it}) = \beta_0 + \beta_1 manu_{it} + \beta_2 year_t + \beta_3 manu_{it} \cdot year_t + \alpha_i + u_{it}
 \]

- This is reasonably easy to program manually, but try the interaction operators to see the differences in Stata conventions when using a continuous variable.

- Must impose that a variable is continuous using 'c.varname'

 - xtreg lwage manu#c.year, fe
 - xtreg lwage manu##c.year, fe

- The first is an *incomplete interaction* specification.

 - This is also called "wrong".

 - Must instead run xtreg lwage manu manu#c.year, fe

- The second technique automatically includes the full interaction
Handling Interactions in Stata

- Continuous interactions are useful when trying to account for time effects at a very detailed level.

- Consider the following within-individual regression with individual-specific time trends.

 \[\log(wage_{it}) = \beta_0 + \beta_1 manu_{it} + \beta_i \cdot year_t + \alpha_i + u_{it} \]

- Writing out in dummy variable form:

 \[\log(wage_{it}) = \beta_0 + \beta_1 manu_{it} + \sum_i \beta_i d_i + \sum_i \beta^y_i d_i \cdot year_t + u_{it} \]

- Why should this regression be considered in the within-individual wage regression?

 - Individuals that are moving to manufacturing and earning higher wages might be doing so for some unobserved reason within the individual.

- `xtreg lwage manu nr#c.year, fe`
Recall the linear probability model:

\[y = \beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k + u \]

where \(y \) either equals 1 or 0.

Note that:

\[\Pr(y = 1|x) = E(y|x) \]

The estimates:

\[\Pr(y = 1|x) = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \cdots + \hat{\beta}_k x_k \]

Are there conditions on \(\hat{y} \)?

→ No restrictions on \(\hat{y} \).
Discrete Dependent Variables

- Best way does not use OLS
 \[
 \Pr(y = 1|x) = G (\beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k)
 \]
- \(G\) is a symmetric distribution of the unobservables:
 \[
 G(a) = \Pr(u < a)
 \]
- Framework derived from a "latent variable model"
 \[
 y^* = \beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k + u
 \]
 \[
 y = I(y^* > 0)
 \]
- Use latent model to derive \(\Pr(y = 1|x)\):
 \[
 \Pr(y = 1|x) = \Pr(y^* > 0)
 \]
 \[
 = \Pr(\beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k + u > 0)
 \]
 \[
 = \Pr(u > -(\beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k))
 \]
Probit-Logit

- Using the definition of $G(a)$, and that G is symmetric:
 \[
 \Pr(y = 1|x) = 1 - G\left(-(\beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k)\right)
 = G\left(\beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k\right)
 \]

- **Logit** uses the Logistic Distribution
 \[
 G(z) = \frac{\exp(z)}{1 + \exp(z)}
 \]

- **Probit** uses the standard normal distribution.
 \[
 G(z) = \Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{v^2}{2}\right) dv
 \]

- These models require "maximum likelihood estimation".

- However, they bound the dependent variable, so produce theoretically sensible estimates.
When we estimate the β’s in the probit and logit models, this is not the marginal effect on the outcome, y.

It is the marginal effect on the latent variable.

To see this, differentiate $\Pr(y = 1|x)$ with respect to x_1:

$$\frac{d \Pr(y = 1|x)}{dx} = g \left(\beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k \right) \beta_1$$

Since we are bounding the dependent variable using a non-linear function, the marginal effect depends on all the estimates and their values.

It is typical to evaluate the marginal effect at the sample means:

$$\frac{d \Pr(y = 1|\bar{x})}{dx} = g \left(\beta_0 + \beta_1 \bar{x}_1 + \cdots + \beta_k \bar{x}_k \right) \beta_1$$
Probit-Logit
Smoking habits of expectant mothers

- Model:
 \[
 Pr(\text{Smoke}=1 \mid x) = G(\beta_0 + \beta_1 \text{faminc} + \beta_2 \text{motheduc} + \beta_3 \text{fatheduc})
 \]

- \text{Smoke}=1 \text{ if Cigs} > 0, \text{ otherwise 0}

- Estimate \(\beta_1, \beta_2, \beta_3 \), using 'probit' and 'logit'.

- Differentiate to find "marginal effects"
 \[
 \frac{\partial Pr(\text{Smoke}=1 \mid x)}{\partial \text{faminc}} = g \left(\beta_0 + \beta_1 \text{faminc} + \beta_2 \text{motheduc} + \beta_3 \text{fatheduc} \right) \beta_1
 \]

- To calculate marginal effects at the mean, use the command 'mfx' directly after 'probit' or 'logit'.
 \[
 \frac{\partial Pr(\text{Smoke}=1 \mid x)}{\partial \text{faminc}} = g \left(\beta_0 + \beta_1 \text{faminc} + \beta_2 \text{motheduc} + \beta_3 \text{fatheduc} \right) \beta_1
 \]
In a earlier example, we evaluated the effect of cigarette prices on cigarettes consumed using:

\[Cigs = \beta_0 + \beta_1 \text{price} + \beta_2 \text{faminc} + u \]

There are two big problems with this:

- We’re regressing quantities on prices, where prices could be endogenous.
- \(Cigs \) is not bounded, but predictions could be negative.

We have a technique to deal with the latter: the Tobit model

The Tobit model is again built on a latent variable framework, but differs in that the outcome is not discrete.

\[y^* = \beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k + u \]

\[y = \max(y^*, 0) \quad , \quad u \sim \text{Normal} \left(0, \sigma^2 \right) \]

Estimation is again by maximum likelihood.
Tobit

Though the details are left for advanced reading, the estimated β’s are for the latent variable specification, and not the expected value.

The marginal effect of a variable on the observed outcome can be written as:

$$\frac{\partial E(y|x)}{\partial x_i} = \beta_1 \Phi \left(\frac{\beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k}{\sigma} \right)$$

- This is the coefficient estimate scaled by $\Pr(y > 0)$

Estimate the following model by OLS and Tobit

$$Cigs = \beta_0 + \beta_1 price + \beta_2 faminc + u$$

Use ’tobit’ command to compute parameters

Use ’mfx, pred(e(a, b))’, to compute marginal effects, where

$$\frac{\partial E(y|x, a < y < b)}{\partial x_k}$$
In the smoking example, Cigs is actually a count variable.

The normal distribution is not appropriate for count data, since it is continuous and the data are not.

A common count data model is the "Poisson Regression", which uses the (discrete) Poisson Distribution as it’s base:

\[
Pr (y = h) = \exp (-\lambda) \cdot \frac{\exp (\lambda)^h}{h!}
\]

where \(\lambda = E(y) \)

The distribution is completely specified by its mean, \(\lambda \).

It is common to use the exponential distribution to estimate the mean.

\[
E \left(y \mid x_1, \ldots, x_k \right) = \exp \left(\beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k \right)
\]

Does not give negative values, but in the limit includes zero.
Poisson Regression

- Estimate this equation using the 'poisson' command

\[E(y|x_1, ..., x_k) = \exp(\beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k) \]

- 100\(\beta_1 \) is approximately \(\% \Delta E(y|x_1, ..., x_k) \) given \(\Delta x_1 = 1 \).

- If you’re feeling adventurous, defining \(x\beta = \beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k \), you can calculate the probability of each count:

\[\Pr(y = h|x) = \exp(-\exp(x\beta)) \cdot \frac{\exp(x\beta)^h}{h!} \]