1 Contractible Manifolds

(a) If \(f : X \to Y \) is homotopic to a constant map, show that \(I_2(f, Z) = 0 \) for all complementary dimensional closed \(Z \) in \(Y \), except if \(\text{dim}(X) = 0 \).

(b) Prove that intersection theory is vacuous in contractible manifolds: if \(Y \) is contractible and \(\text{dim} Y > 0 \), then \(I_2(f, Z) = 0 \) for every \(f : X \to Y \), \(X \) compact and \(Z \) closed, \(\text{dim} X + \text{dim} Z = \text{dim} Y \).

(c) Prove that no closed manifold (compact without boundary) - other than the 1-point space - is contractible.

2 Cobordism and Intersection Number

Prove that if \(X \) and \(Z \) are cobordant in \(Y \), then for every compact manifold \(C \) in \(Y \) with dimension complementary to \(X \) and \(Z \), the intersection number \(I_2(X, C) = I_2(Z, C) \).

3 Intersections in \(S^2 \times S^2 \)

In \(S^2 \times S^2 \), let \(X = S^2 \times \{a\} \) and \(Z = \{a\} \times S^2 \), where \(a \) is a given point in \(S^2 \). Are \(X \) and \(Z \) cobordant? Are their inclusion maps (with domain identified with \(S^2 \) in the obvious way) homotopic? Prove or disprove.

4 Ordered Bases

Let \(\beta = \{v_1, ..., v_k\} \) be an ordered basis for \(V \). Show that

(a) replacing one \(v_i \) by a multiple \(cv_i \) yields an equivalently oriented ordered basis if \(c > 0 \), and an oppositely oriented one if \(c < 0 \);

(b) transposing two elements (i.e. interchanging the places of \(v_i \) and \(v_j \), \(i \neq j \)) yields an oppositely oriented basis;

(c) subtracting from one \(v_i \) a linear combination of the others yields an equivalently oriented ordered basis.
5 Orientations on Half-Space

H^k is oriented by the standard orientation of \mathbb{R}^k. Thus ∂H^k acquires a boundary orientation. But ∂H^k may be identified with \mathbb{R}^{k-1}. Show that the boundary orientation agrees with the standard orientation of \mathbb{R}^{k-1} if and only if k is even.

6 Derivations

Here we explain an important alternative perspective on tangent spaces. A vector $v \in \mathbb{R}^n$ determines a directional derivative $f \mapsto D_x f(v)$. The idea is that we can identify operators satisfying the Leibniz rule with tangent vectors by thinking of them as directions in which we can differentiate a function.

Definition 6.1 The space of derivations a/t x, $\operatorname{Der}_x(\mathcal{O}_{M,x})$, is the \mathbb{R}-vector space of \mathbb{R}-linear maps $\delta : \mathcal{O}_{M,x} \to \mathbb{R}$ satisfying the Leibniz rule

$$\delta(fg) = (\delta f)g(x) + f(x)(\delta g)$$

Note also that this definition makes perfect sense even for modules over rings. It has the following concrete interpretation over \mathbb{R}; given f a smooth function on \mathbb{R}^n and a vector $v \in \mathbb{R}^n$, we have the derivation

$$\delta f = \sum_i v_i \frac{\partial f}{\partial x_i}(x) = \langle v, \nabla_x f \rangle.$$

6.1

Recall that we defined the cotangent space at $x \in M$ to be m_x/m_x^2. For δ a derivation, show that $\delta(m_x^2) = 0$, and thus δ descends to a linear map $\overline{\delta}$ on $T^*_x(M)$.

6.2

Show that for any linear map $T^*_x(M) \to \mathbb{R}$, the extension to $\mathcal{O}_{M,x}/m_x^2 \to \mathbb{R}$ given by $\delta(f) = \overline{\delta}(f - f(x))$ defines a derivation.

6.3

Conclude that the space of derivations is canonically isomorphic to $T_x M$ (defined as the space of arcs modulo the tangency relation) by constructing an explicit isomorphism.

Extra Problems

7 Sections of the Normal Bundle

Suppose that Z is a compact submanifold of Y with $\dim Z = \frac{1}{2} \dim Y$. Prove that if Z is globally definable by independent functions, then $I_2(Z, Z) = 0$.

2
8 Neighborhoods of $\mathbb{C}P^1$

Show there is no neighborhood of $\mathbb{C}P^1$ in $\mathbb{C}P^2$ where $\mathbb{C}P^1$ is globally cut out by independent functions. What do you conclude about the normal bundle?