1 \(S^2 \cong \mathbb{C}P^1 \)

Construct a diffeomorphism from \(S^2 \) to \(\mathbb{C}P^1 \).

2 Inclusions

(i) Show that the standard embedding \(i : \mathbb{R}^k \to \mathbb{R}^{k+1} \) given by \(i(x_0, ..., x_{k-1}) = (x_0, ..., x_{k-1}, 0) \) descends to a well-defined function (of sets) \(\iota : \mathbb{R}P^{k-1} \to \mathbb{R}P^k \). Show that \(\mathbb{R}P^k - \iota(\mathbb{R}P^{k-1}) \) is diffeomorphic to \(\mathbb{R}^k \).

(ii) Prove that \(\iota \) is a smooth embedding.

3 Construction of Projective Space

(i) Prove that the canonical map \(\pi : \mathbb{R}^{k+1} - \{0\} \to \mathbb{R}P^k \) is a submersion. Find a basis for \(\text{Ker}(d\pi_{x_0, ..., x_k}) \) and interpret the answer geometrically.

(ii) Prove that \(\pi|_{S^k} : S^k \to \mathbb{R}P^k \) is a local diffeomorphism.

(iii) Given that \(\pi : \mathbb{C}^{k+1} - \{0\} \to \mathbb{C}P^k \) is a submersion, prove that \(\pi|_{S^{2k+1}} : S^{2k+1} \to \mathbb{C}P^k \) is a submersion.

4 Projective Varieties

A polynomial \(p : \mathbb{R}^{k+1} \to \mathbb{R}^k \) is called homogenous if there is a positive integer \(d \) such that for all \(x \in \mathbb{R}^{k+1} \) and \(\lambda \in \mathbb{R} \) we have \(p(\lambda x) = \lambda^d p(x) \).

(i) For \(p \) homogenous, show that the equation \(p(x) = 0 \) specifies a well-defined subset of \(\mathbb{R}P^k \).

(ii) For fixed \(a \in [0, 1] \), let \(V_a \subset \mathbb{R}P^2 \) be the variety determined by the homogenous polynomial \(p_a(x, y, z) = x^2 + ay^2 - z^2 \). Draw \(V_1 \) in each of the three standard local charts on \(\mathbb{R}P^2 \). Show that \(V_1 \) is a manifold. To what familiar manifold is it diffeomorphic?

(iii) What happens to \(V_a \) as \(a \) decreases from 1 to 0? (Draw this in the local charts.) Identify \(V_0 \) as an immersed manifold.
5 Solids in \mathbb{R}^3

(a) Show that the solid hyperboloid $x^2 + y^2 - z^2 \leq a$ is a manifold with boundary ($a > 0$).

(b) For which values of a is the intersection of the solid hyperboloid $x^2 + y^2 - z^2 \leq a$ and the unit sphere $x^2 + y^2 + z^2 = 1$ is a manifold with boundary? What does it look like?

6 Half-Space

Suppose that X is a manifold with boundary and $x \in \partial X$. Let $\phi : U \to X$ be a local parametrization with $\phi(0) = x$, where U is an open subset of H^k. Then $d\phi_0 : \mathbb{R}^k \to T_x(X)$ is an isomorphism. Define the upper half space $H_x(X)$ in $T_x(X)$ to be the image of H^k under $d\phi_0$, $H_x(X) = d\phi_0(H^k)$. Prove that $H_x(X)$ does not depend on the choice of the local parametrization.