Manifolds With Boundary, Transversality
Modeled on half-space $H^k = \{ x_1, \ldots, x_k \in \mathbb{R}^k \mid x_k \geq 0 \}$

Def A subset $X \subseteq \mathbb{R}^n$ is a manifold with boundary if $\forall x \in X$ there is a set $U \subseteq H^k$ open and $\phi : U \to X$ s.t. $\phi : U \to \phi(u)$ is a diffeomorphism (i.e. \exists extension to open sets in \mathbb{R}^k, \mathbb{R}^n so map is smooth).

Def We say that the boundary ∂X of X consists of all $\forall x \in X \mid (U, \phi)$ loc. coord near x, $\phi^{-1}(x) \in \mathbb{R}^k \times \{0\}$

Def The interior of X is $X - \partial X$.

Given $\phi : U \to X$ define $d\phi_x$ for $x \in U \cap \mathbb{R}^n$ by extending U locally to a neighborhood in \mathbb{R}^k as in defn of manifold. The map $d\phi_x$ on the boundary is indep of this extension by continuity of $\frac{\partial \phi}{\partial x_i}$.

Then $T_xX := d\phi_x(\mathbb{R}^k)$ “Tangent space at x point is limit of tangent spaces of interior points”.

Q: Why is defn. of ∂X indep. of chart?

Let If $x \in \partial X$ for chart (U, ϕ) then for every chart (V, χ) from $V \supseteq X$, $V \subseteq H^k$ and $\chi(a) = x$, $a \in \mathbb{R}^{k-1} \times \{0\}$.
Consider the alternative:

Define \(h = \varphi^{-1} \circ \varphi \), a diffeomorphism (can shrink the nbhd of \(x \)) of the "half-open" nbhd \(U \) to the open nbhd \(V \subset \mathbb{R}^k \). Suppose \(u \in U \) satisfies \(h(u) \in \text{Int}(V) \). Then \(h(u) \) lies in an open nbhd \(W \) in \(\mathbb{R}^k \).

Since \(dh_u \) is bijective, by Inverse Function Theorem, there is a diffeom. \(h_u \) defined on open subset of \(W \) to a nbhd of \(u \), also open in \(\mathbb{R}^k \). But then \(u \notin \mathbb{R}^{k-1} \), contradicting assumption 3.

(ax) \(\exists x \) is a manifold, \(\dim \partial X = k-1 \), \(\partial \partial X = \emptyset \).
(b) \text{Int } X \text{ is a manifold.}
(c) \(T_x (\partial X) \) is a codim 1 subspace of \(T_x X \).
(d) If \(f : X \to Y \) smooth denote \(\partial f = f \mid \partial X \). Then \(d(\partial f)_x = df_x \mid T_x (\partial X) \).
Note: If X, Y manifolds with boundary, $X \times Y$ has corners (not manifold with boundary). But if $\partial X = \emptyset$, then $X \times Y$ is manifold with boundary.

\[\text{Corners (IxI)} \]
\[\text{No corners (S' x I)} \]

Lemma: Suppose S is manifold and $\pi: S \to \mathbb{R}$ is smooth with regular value a. Then $\pi^{-1}(-\infty, a]$ is a manifold with boundary and $\partial(\pi^{-1}(-\infty, a]) = \pi^{-1}(a)$.

Proof: $\pi^{-1}(-\infty, a]$ is a manifold by previously shown thus. Now suppose $x \in \pi^{-1}(a)$. Local Submersion \Rightarrow near x, π is canonical submersion.

So subhd looks like half-space by Local Submersion, as needed. \[\blacksquare \]
Ex: Closed unit ball $B^k \subset \mathbb{R}^k$.

Let $\pi: \mathbb{R}^k \to \mathbb{R}$ be $\pi(x) = -\sum x_i^2$ and take
$\pi^{-1}(\mathbb{C}^0, \infty)$. 0 is a regular value, so B^k is
mead w/ boundary.
Transversality and Neat Submanifolds

We define transversality, immersions, etc. as before. But in generalizing PreImage Thm, get extra property on \mathcal{E}.

Def Let M^n be a manifold with boundary. $N \subset M$ a submanifold is neat if for every $p \in N$, \exists a chart (U, φ) of M s.t. $N \cap U = \varphi(R^n_{<0})$, where $R^n_{<0}$ means

\[\{ (0, \ldots, 0, x_{n+1}, \ldots, x_{m}) \mid x_{m+1} < 0 \} \]

Neat

Not neat

This guarantees:
1. $N \cap \partial M = \partial N$
2. $N - \partial M$

Thm Given $f: X \to Y$, $\exists Y \subset Y$, $\exists Y = \partial Y$. Suppose $f(\partial Y)$ and $f(\partial Y)$ (recall $f\partial = f\partial_\partial$). Then $f(\partial)$ is a neat submanifold of X.

pf: Interior of X is manifold ∂ / ∂, and by hyp. $f(\text{Int}(X)) = \partial Y$. Thus $f^{-1}(Y) \cap \partial \text{Int}(X)$ is a manifold with codim same as codim Y, by previous Preimage Thm.
So, suffices to look at $x \in \partial X \cap f^{-1}(z)$. We reduce to case of reg. values by locally cutting out $f^{-1}(z)$ near $f(x)$ by $\phi : V_{x,z} \to \mathbb{R}^l$, $l = \text{codim} \, z$.

Let h be local parametrization with $h(0) = x$, so $g^{-1}(0) = h^{-1}(f^{-1}(z))$.

Now it suffices to work locally to prove neatness. Since $\exists f \in \mathcal{Z} \implies 0$ is reg. value of g, e.g. Since g smooth at 0, it extends to a smooth map \tilde{g} on an open subset \tilde{U} to \mathbb{R}^l. Since $d \tilde{g}_0 = dg_0$, we see $d \tilde{g}_0$ is surjective so \tilde{g} is a submersion at 0.

Thus $S = \tilde{g}^{-1}(0)$ is a submanifold of \tilde{U} with codim l and $\tilde{g}^{-1}(0) \cap \tilde{U} = S \cap H^k$.

We claim $S \cap R^{k-1} \times \{0\} \subseteq H^k$. As $d(g|_{R^{k-1}\times \{0\}})$ and $d(g_o)$ are both surjective, there is some $v \in \ker d(g_o)$ but not in $R^{k-1} \times \{0\}$ (in kernel of restriction).

Need $\ker(d(g_o) + R^{k-1} \times \{0\}) = T_o(H^k)$. Since R^{k-1} is codim 1, $\text{span}(v) + T(R^{k-1} \times \{0\})$ spans R^k as needed.

For $g^{(1)}(0, \exists x = q(g^{(0)})$, let $\pi : S \to R$ be projection to the k^{th} coordinate. Then 0 is regular value of S, as we found $V \notin R^{k-1} \times \{0\}$ but in $\ker d(g)$. By Lemma shown previously, $\pi^{-1}(0) = S \cap H^k = g^{(0)}(\bar{U})$.

We also have genericity of regular values.

Thm (Sard) Given $f : X \to Y$ where $\partial Y = \emptyset$, almost every $y \in Y$ is a regular value of f and ∂f.

Pr: $y \in Y$ is a regular value of both f and ∂f unless it is a crit. value of either f or ∂f. So x is regular for $\partial f \iff x$ regular for f. Since ∂X, int(X) are manifolds without boundary, Sard applies.
Then Every compact, connected 1-manifold is diffeomorphic to $[0,1]$ or S^1.

pf: Milnor, etc.

Cor Any compact 1-manifold has an even number of boundary points.

Then If X is a compact 1-manifold with boundary then if any smooth retraction $g: X \to \partial X$ (meaning $g|_{\partial X}$ cannot be inclusion).

pf: Suppose such a g exists, and let $x \in \partial X$ be a regular value of both $g, \partial g$. What is $g^{-1}(x)$? Has to be 1-manifold since ∂X is codim 1. Also, $g^{-1}(x)$ compact so it even # of 2 points.

On the other hand, $\partial g^{-1}(x) = \partial g^{-1}(x) = x$ as $\partial g \subseteq \text{Id}_{\partial X}$. But this is not even.

Then (Brouwer) Every smooth $f: B^n \to B^n$ has a fixed point.

pf: Suppose f without fixed points, so $f(x) \neq x$ for any $x \in B^n$. We construct a retraction $g: B^n \to \partial B^n$ contradicting the above thin.
If \(f(x) \neq x \), there is a ray pointing from \(f(x) \) to \(x \) that intersects \(\partial B^n \) once:

![Diagram](image)

Call this intersection point \(g(x) \). If \(x \in \partial B^n \) then let \(g(x) = x \), so \(g \mid_{\partial B^n} = \text{Id}_{\partial B^n} \).

Why is \(g \) smooth? Note \(x \in \text{span} \left(g(x) - f(x) \right) \), so \(g(x) - f(x) = t (x - f(x)) \). Moreover, \(x \) is between \(f(x) \) and \(g(x) \) so \(t \geq 1 \) and

\[
g(x) = tx + (1 - t)f(x)
\]

If \(t \) depends smoothly on \(x \), done. Take the norm of both sides (suppose WLOG \(\| g(x) \| = 1 \)) so

\[
0 = t^2 \| x - f(x) \|^2 + 2 t \langle x - f(x) \mid f(x) \rangle + \| f(x) \|^2 - 1
\]

This is quadratic in \(t \) with a unique positive root and hence depends smoothly on \(x \). \(\square \)

Def: A smooth family \(f_s : X \to Y \) parameterized by \(S \) is a smooth map \(F : X \times S \to Y \) s.t. \(f_s \in S, F(x,s) = f_s(x) \)
The (Transversality) Given \(F : X \times S \to Y \), with \(dS = \phi = dY \) suppose \(F, \partial F \pitchfork Z \subseteq Y \). Then for almost every \(s \) in \(S \), \(F_s \) and \(\partial F_s \pitchfork Z \).

Claim is that almost all vertical slices are transverse to \(Z \).

pf: Let \(W = F^{-1}(Z) \times S \).

Then \(W \) is a submanifold with boundary, and
\[
\partial W = W \cap (\partial X \times S)
\]

Need to show that \(\circ \ F_s \pitchfork Z \) when \((\pi : X \times S \to S)_W \) has \(s \in S \) as a reg. value, and \(\circ \partial F_s \pitchfork Z \) when
\(\pi |_{\omega w} \) has \(s \) as a reg. value. Then by Sard, done.
Also note (1) \(\Rightarrow \) (2) using case of boundanless \(\alpha x \) and map \(\exists F. \ 2x \times s \Rightarrow y \).

So to show \(f_s \subseteq \mathbb{Z} \), let \(s \) be reg. value of \(\pi |_{\omega w} \).
Let \(x \in f_s^{-1} (z) \), \(z \in f_s (x) \). Transverse iff
\[d(f_s)_x [T_x X] + T_{f_s (z)} (z) = T_{f_s (z)} Y \]

Now, given that \(dF (x, s) \) satisfies this condition, then
for any \(a \in T_{f_s (x)} Y \), \(\exists b \in T_{s, y} (x \times s) \) with
\[dF_{s, y} (b) - a = e T_{f_s (x)} Z \]

We wish to show that \(\exists \nu \in T_s (X) \) with
\[dF_s (\nu) - a = e T_{s, x} \]

Since \(T_{s, y} (x \times s) = (T_x X) \times (T_s S) \), write \(b = (w, e) \)
for \(w \in T_x X \) and \(e \in T_s S \). If \(e = 0 \), done since
\[d(f_s) = d \neq d(pr_s) \]

If not, since \(d(pr_s) \) surjective, can find \((u, e)\) in \((T_x X) \times (T_s S) \) with \(d(pr_s) (u, e) = e \). Moreover
\((u, e)\) can be taken to lie in \(TW \) since we assumed
\(s \) is reg. value of
Applying $dF_{(x,e)}(u,e)$ we get element of $T_{f,x}(Z)$ since $F: W \rightarrow Z$ by construction. Thus

$$T_{x,X} \exists V : = W - U \leftarrow \text{anything } \pi_1|_U \text{ sends to } e$$

from $b = (w,e)$

$$T_{(x,e)}(x,x)$$

is our required vector in $T_{x,X}$, as

$$dF_{(x,e)}(v) - a = dF_{(x,e)}[w,e] - (u,e] - a$$

$$= \left[dF_{(x,e)}(w,e) - a \right] - dF_{x}(u,e)$$

both in $T_{f,x}(Z)$ by construction. \[\square\]