Invariance of Morse Homology, Gelfand Theory

Recall: In definition of Morse homology, need to choose smooth Morse function f, Riemannian metric g. The pair (f, g) must be Morse-Smale. To recover cellular homology, want self-inducing.

Q: How common are Morse functions?

Ex: For $T^2 \subseteq \mathbb{R}^3$, consider S^2-family of embeddings

$$v \in S^2 \subseteq \mathbb{R}^3$$

Outside a "small" subset of S^2, all critical points are Morse.

Thus If $f: M \rightarrow \mathbb{R}$ smooth, $M \subseteq \mathbb{R}^N$ embedded, ∂M thin then for almost all $(v; i) \in \mathbb{R}^N$, $f_v(x) = f(x) - i$; $v; x$ is Morse.

Pf: Consider $g = (\frac{\partial}{\partial x_1}(x), \ldots, \frac{\partial}{\partial x_n}(x))$, so $df = g - a$.

Sand \Rightarrow Almost every $a \in \mathbb{R}^n$ is a regular value of g, i.e. dg is an isomorphism. But $dg = \text{Hess}_a(\epsilon)$. \qed
(Genericity)

"Almost all" makes no sense in function spaces; no measure.

Def: Let X be a top. space, $P(X)$ a statement for each $x \in X$ (which could be true or false). We say $P(x)$ is true for generic $x \in X$ if the set $\{ x \in X | P(x) \text{ true} \}$ contains a countable intersection of open dense sets.

Ex: Irrationals are generic in \mathbb{R}; complement of \mathbb{Q} (which is dense)

Polynomials not generic in $C^\infty(\mathbb{R};\mathbb{R})$

We rephrase Morse condition as the transversality of a certain section of a vector bundle to the zero section.

Thm: (Transversality) Let X, Y be separable Banach manifolds, $E \to Y \to Z$ a Banach space bundle, and $s: Y \times Z \to E$ a smooth section. Suppose that $s^{-1}(0) \neq \emptyset$.

1. $D_\gamma| s: T(Y \times Z) \to TE$ is surjective,
2. The restriction $D_\gamma| s: T_\gamma \to TE$ has finite kernel, ok.

Then for generic $y \in Y$, the set $\{ z \in Z | s(y, z) = 0 \}$ is a manifold of dimension ($\text{Ker } D_\gamma - \text{Coker } (D_\gamma)$), and D_γ is surjective on T_γ.

With this we can show Morse functions are generic:
For z closed in \mathbb{R}^d, $k \geq 2$ an integer, a generic C^k func $f: \mathbb{Z} \to \mathbb{R}$ is Morse.

Let $Y = C^k(\mathbb{Z}, \mathbb{R})$, $\pi: Y \times \mathbb{Z} \to \mathbb{Z}$ is projection. Define $E = \pi^*(T^*\mathbb{Z}) \to Y \times \mathbb{Z}$, pullback of cotangent bundle, with canonical section $\sigma: Y \times \mathbb{Z} \to E$, $\sigma(f, z) = (df_z, f, z)$.

If $\sigma(f, z) = 0$, $f \in \mathbb{Z}$ arbitrary, and $v \in T_z(\mathbb{Z})$ of dim \mathbb{Z} note that $z \in \text{Crit}(f)$, since $df = 0$. So $\sigma^{-1}(0) \cap \{f\} \times \mathbb{Z}$ corresponds to $\text{Crit}(f)$, and we must verify that they are non deg.

Claim: $\nabla \sigma = df_i(v) + \nabla v(df_i)$, $\nabla \sigma|_{T_z \mathbb{Z}}: T_z \mathbb{Z} \to T^*_z \mathbb{Z} \cong \text{Hess}(f)$

The two terms of comm. come from d_z and d_Y applied to the section $\sum \frac{\partial f}{\partial x_i} dx_i \in T^*_z(\mathbb{Z})$.

$d_z(df: \mathbb{Z} \to T^*_z \mathbb{Z}) = \sum \frac{\partial^2 f}{\partial x_i \partial x_j} dx_i dx_j \cong \text{Hess}(f)$ at $z \in \text{Crit}(f)$ in the sense that it gives the (i, j)-th entry.

Specifically, need a map $T_z \mathbb{Z} \to T^*_z \mathbb{Z}$. Sections already map into T^*, so lets look at $\nabla_i \sigma$, fixed i. $\nabla_i \sigma = \nabla_i df(z)$.

$df(z)$ is in \mathbb{R}^d, apply ∇_i to get vector $(\frac{\partial^2 f}{\partial x_1 \partial x_i}(z), \frac{\partial^2 f}{\partial x_2 \partial x_i}(z), \ldots, \frac{\partial^2 f}{\partial x_d \partial x_i}(z))$.

i-th row Hes(f). In vectors, $\sum \frac{\partial^2 f}{\partial x_j \partial x_i} e_j dx_i$ where $\{e_j\}$ span E_z.

For dy, along zero section we can apply standard total derivative. But note ∇_y linear $\Rightarrow d_0 y = \nabla_y$ so $\nabla y = df_i$. //
Now the Transversality Theorem applies: \(\forall \sigma: T(Y \times Z) \rightarrow T^*Z \) is surjective since \(T(C^k(Z, \mathbb{R})) = Y \) and we may choose any \(f, g \in TY \), and \(\forall \sigma: T^*_Z \rightarrow T^*_Y \) is Fredholm since finite dim. But \(\text{Hess}(\varepsilon) \) only surjective if \(\text{Crit} \# \text{p} = 0 \) (Ondey). \(\square \)

To show that a generic metric pairs \(w \) any Morse function to make a Morse-Smale pair, use same Transversality Theorem, \(w \)

\[Y = \text{space of metrics} \]

\[Z = \text{space of smooth functions} \]

\[E \rightarrow Y \times Z \text{ bundle, } E((g, \tau)) = \nabla (-\varepsilon \cdot (w \cdot (TX))) \text{ vector fields} \]

\[\xi((g, \tau)) = \nabla'^{-1} - \nabla \text{ always } \gamma \]

Rmk: Note also that Morse functions aren't generically self-indexing; critical values shouldn't generically coincide. But given \(f, f_i \) differ only by crossing critical values, homotopy can be effected locally near critical points by changing handle decomp.

Such functions \(w \) distinct critical values are called excellent. (Thom).
Q: To what extent does Morse homology M^k depend on choices? Specifically, given any two Morse-Smale pairs (f_0, g_0) and (f_1, g_1), is there a 1-parameter family of Morse-Smale pairs between them?

Consider (f_t, g_t) as function, metric on $[0,1] \times X$:

$$\text{Crit}(f_t)$$

What can happen to handles? Consider $M \times [0,1]$, 1-parameter family (f, g). Then we have families A_p, D_q.

Consider intersection with level set: let $A_p := A_p \cap f^{-1}(t)$, $D_q := D_q \cap f^{-1}(t)$. Also $\text{ind}(p) = k$, $\text{ind}(q) = l$, so $\dim(A_p) = n-k+l$, $\dim(D_q) = l!$. Then $\dim A^+_p = n-k$, $\dim D^-_q = l$, both in $[0,1] \times f^{-1}(t)$.

Moreover, for any isotopy of A^+_p, D^-_q in $f^{-1}(t) \times [0,1]$, we may extend to ambient isotopy in $f^{-1}(t) \times [0,1]$. That is, restrict to class of time-preserving isotopies, and in $S^3 \times M$, alter ∇f in $f^{-1}(t-\varepsilon, t+\varepsilon)$ to extend to M and cut off. All this keeps $S^2(0,1)$ fixed.

This suffices to assume A^+_p transverse to D^-_q, so need only count dimensions.
\[\text{codim } A^*_p \cap D^+_q = k + n - l, \text{ so } \dim = l - k. \]

Case 1: If \(l < k \), \(A^*_p \cap D^+_q = \emptyset \) generically in \(1 \)-parameter families.

Ex: In a 3-diag,

Attaching sphere doesn't intersect belt sphere 'in generic homotopies.'

Con: Let \(M' = (M \cup \{H_a\}) \cup H_b \) with \(H_a, H_b \) handles of index \(a \leq b \). Then \(M' \) can be obtained by attaching \(H_a \) and then \(H_b \). That is, handles can be attached in weakly increasing order of index.

Case 2: \(A^*_p \cap D^+_q = \text{points}, \ l = k \). So at isolated times \(st(\alpha) \) could have \(A^*_p \cap D^+_q \). These are called \underline{handleslides}.

Slide attaching region over belt region.
In gradient flow picture, change metric in $f^{-1}(\text{null of critical value})$.

At critical time, fails to be Morse-Smale.

Case 3: $l-k=1$, $l=k+1$

Consider the following local picture: $f(x,t) = x^3 - tx$.

Two critical points at $t=1$ merge and cancel at $t=0$, so at $t=-1$ no critical points. Note that at $t=0$, f_t not Morse.

Ex: rotationally symmetric sphere in \mathbb{R}^3:

$\mathbf{v} = (1,0,0)$

$\mathbf{CM}(M, f, g) = \{a, b, c, d, e, f\}$
For 1-parameter family $f(t)$, can track paths of critical values

This is called a Cerf graphic. Note that at $t = \tau$, we have a "birth" of two new critical points. In reverse, a pair of critical points cancels: a "death".

In a 3-mfld: Consider $(1-h)$, $(2-h)$.

"Convertible sunroof": retract back down to cancel handle

Worse singularities are possible, but this is all we need for Morse theory.

Theorem (Cerf) In a generic family of Morse functions, all critical values are distinct except for finitely many times when crit. values may cross.
Thm (Thom–Mather) A generic 1-parameter family of functions is generically Morse, outside finitely many times when birth–deaths occur.

Thm (Kirby) In a generic \mathbb{R}^2-fan of pairs (F_t, g_t), all are Morse–Smale except at finitely many times when handleslides or birth–deaths occur.

Cor. Any two handle decompositions of M are related by a sequence of handleslides, cancellations, and isotopy of attaching maps.

More generally: Can think of homotopy H in terms of the vector field induced on $M \times [0,1]$ by $-\nabla f_t$ on each slice. H counts index 0 flow lines asymptotic to critical points (necessarily of the same index!), i.e. map $\mathcal{D}: \mathbb{R} \to M \times [0,1]$ s.t.

1. $\mathcal{D}_t \left(\frac{d\mathcal{D}}{dt} \right) \geq 0$
2. $\lim_{s \to -\infty} \mathcal{D}(s) \in \text{Crit}(f_0), \lim_{s \to \infty} \mathcal{D}(s) \in \text{Crit}(f_1)$

Continuation map argument works for isotopies $\{f_t\}$ as well since these don't affect #/index of critical points.

Arbitrary homotopies? By Cerf, we only consider cases 1, 2, 3.
(Changing critical values) Doesn't affect $|\text{Crit}(f)|$, homotopy can be supported in neighborhoods of critical points.

(Handleslides) Consider attaching 2-h to $(1-h)U(0-h)$

Note homology class of $[\mathcal{D}(M) \cap D_q] \in H_1(M, 0-h)$ is the image of q under differential. So here we get $\varphi(q) = b, \varphi(p) = a$.

Slide H_p over H_q: isotope attaching region of H_q over belt region of H_p.

Now $\varphi(p) = a$, but $\varphi(q) = a+b$. Taking change of basis $\langle a, b \rangle \mapsto \langle a, atb \rangle$, differential is same.

In fact, handleslides realize arbitrary changes of basis in $C_\ast(X, f, g)$ when $\ast > 0$.

(Reaching-Deaths) Note that pair of crit. points differs in index by 1. Want to show that φ maps one to the other. Recall that $\dim(A^+_{a, b} \cap D_f^+) = 1$, so $A^+_{a, b} \cap D_f^+ = 2$. Both transverse to every $X \times S^3$, we get trajectory from p to q.
After accounting for these changes, suppose to show

Theorem: Given Morse-Smale pairs \((f_i, g_i)\) there is a canonical isomorphism

\[\Phi^0 : \mathcal{H}_*(M, f, g) \to \mathcal{H}_*(M, f, g) \]

such that \(\Phi^0 \circ \Phi^0 = \text{Id}\), \(\Phi^0 \circ \Phi^1 = (\Phi^0)^{-1}\), and if \((f_2, g_2)\) Morse-Smale, \(\Phi^0 \circ \Phi^1 \circ \Phi^0 = \Phi^0 \circ \Phi^1 \circ \Phi^0 \).

Want to formulate something that works for infinite dimensions as well.

Let \((f_0, g_0), (f_i, g_i)\) be Morse-Smale pairs, \((C^i, \partial_i)\) be Morse complexes. For \(I\) generic path of Morse-Smale pairs there is a vector field on \([0,1] \times X\) given by

\[V := \frac{\partial}{\partial t} (V_{f_0} - \frac{1}{2} t) \partial_t + V_t \]

where \(t \in [0,1]\) and \(V_{f_0} = -\nabla f_0\), so \(\partial_t\)-component nonzero on \((0,1)\). Then \(V_t\) has zeros at \(\text{Crit}(f_i)\), ascending/descending manifolds which are \(M\) for generic \(I\). Using \(V\) we may define \(M(p,q)\) as usual for \(p \in \text{Crit}(f_0), q \in \text{Crit}(f_i)\) also zeroes of \(V\).

We consider maps \(\gamma : \mathbb{R} \to [0,1] \times X\) st.

\[\gamma = V(\gamma(t)) \]

\[\lim_{s \to -\infty} \gamma(s) \in \text{Crit}(f_0), \lim_{s \to \infty} \gamma(s) \in \text{Crit}(f_i) \]
Then we have

$$\Phi^{0}_p : C^\infty(M, f, g) \to C^\infty(M, f, g)$$

where

$$\Phi^{0}_p (\rho) = \sum_{q \in \text{Crit}_0^f} \text{deg}_q \cdot (f, g) q.$$

Φ^{0}_p is called a continuation map.

Then given Morse-Smale pairs (f, g), there is a canonical isomorphism

$$\Phi^{0}_* : H_* (M, f_0, g_0) \to H_* (M, f, g)$$

such that $\Phi^{0}_* = \text{Id}$, $\Phi^{0}_* = (\Phi^{0}_*)^{-1}$, and if (f_2, g_2) Morse-Smale, $\Phi^{0}_* \Phi^{0}_2 = \Phi^{0}_2$.