Manifolds II
Math 209, MW 9:50 - 11:25 AM
aleel50@ucsc.edu
people.ucsc.edu/~aleel50

Goal: Introduction to integration on manifolds, cohomology.

Consider \(\mathcal{O} \subset \mathbb{R}^3 \) compact. If \(V \) is smooth vector field on \(\mathcal{O} \), natural to ask whether \(V \) is conservative, i.e. \(V = \nabla \Phi \) for some \(\Phi: \mathcal{O} \to \mathbb{R} \).

A necessary condition certainly that \(\text{curl}(V) = 0 \) as \(\text{curl} \circ \nabla = 0 \). But this is not sufficient.

Locally, in \(\mathcal{O} \) at least, we can find an antiderivative for \(V \) by setting some initial value, and integrating along paths \(\gamma: [0,1] \to \mathcal{O}, \gamma(t) = x \) ("Gradient Theorem"),

\[
\Phi(x) = \int_{\gamma} \langle V, \gamma' \rangle
\]

As long as \(\text{curl}(V) = 0 \), one can define an antiderivative by attempting to patch these functions into a globally defined \(\Phi: \mathcal{O} \to \mathbb{R} \) runs into issues if \(\exists \) loops in \(\mathcal{O} \) not contractible to points, i.e. \(\pi_1(\mathcal{O}) \neq 0 \). So integration/differentiation see topology of \(\mathcal{O} \)!
But in order to extend this, need framework for doing calculus (integration) on manifolds. Vector fields can be integrated against paths/loops, get $\text{Hom}(\mathbb{H}, (\mathbb{S}^1, \mathbb{R}))$, the cohomology of \mathbb{S}^1. For higher dimensional information, we need objects to integrate against higher-dimensional cycles.

As usual, start o/ linear model.

Linear Algebra
Let K be a field (for this construction any commutative ring with unit will do).

Def An associative K-algebra A is a K-module equipped with an associative K-linear product $A \times A \to A$, denoted $(a, b) \mapsto a \cdot b$. A is unital if $1 \in A$ such that $1 \cdot a = a \cdot 1 \forall a \in A$.

We say a K-algebra is graded if there is a given decomposition $A = \bigoplus_{n \in \mathbb{Z}} A^n$ into K-submodules A^n with $A^n \cdot A^m \subseteq A^{n+m}$. The grading of $a \in A^n$ is denoted $|a| = n$. We say a is homogeneous of degree n.

A 2-sided homogeneous ideal in A^* is a subset I such that if $x \in I$ and $x = \sum x_n \in A^n$ with $|x_n| = n$, then each $x_n \in I$. Any $I \subset A^n$ generates a homogeneous ideal.
Examples: 1. Polynomial rings $\mathbb{K}[x_1, \ldots, x_n]$. Homogeneous ideals are e.g. $\langle x_i^2 \rangle$, or $\langle x_1^2, x_1 x_2, x_3^5 \rangle$.

2. Tensor algebras: if V is a \mathbb{K}-module, its tensor algebra
 $$T^n V := \bigoplus_{n \geq 0} V \otimes_n$$
 is a unital graded \mathbb{K}-algebra. Product is juxtaposition
 $$V_1 \otimes \cdots \otimes V_n \quad (V_{m_1} \otimes \cdots \otimes V_{m_n}) = V_1 \otimes \cdots \otimes V_{m_1 + \cdots + m_n}$$
 and for any $d \in \mathbb{Z}$, grading on $T^n V$ so $V \otimes_n$ has degree nd for all n. Above product extends linearly to all of $T^n V$.

This algebra has the following universal property: there is a map of \mathbb{K}-modules $\iota: V \rightarrow T^n V$ such that for any graded, associative unital \mathbb{K}-algebra A and any \mathbb{K}-linear map $f: V \rightarrow A^d$, there is a unique extension to \tilde{f} such that $f = \tilde{f} \circ \iota$.

$$
\begin{array}{c}
\uparrow \\
T^n V \xrightarrow{\tilde{f}} A^* \\
V \xrightarrow{f} A^d
\end{array}
$$

The utility of this definition is that it provides a way to construct graded unital associative algebras as quotients of $T^n A$ by homogeneous ideals. In fact any graded unital assoc. \mathbb{K}-algebra generated by a set S of elements of all the same degree d is a quotient of $T^n(\mathbb{K}[S])$ by a
homogeneous ideal.

The Exterior Algebra

We now construct the appropriate generalization of vector fields that can be integrated against higher chain objects.

Def: A graded algebra A^* is graded commutative if for $a, b \in A^*$, $b \cdot a = (-1)^{\|a\|\|b\|} a \cdot b$ for homogeneous a, b.

The exterior algebra on a K-module V

\[\Lambda^* (V) = \bigoplus_{n \geq 0} \Lambda^n (V) \]

is a graded-commutative, associative K-algebra with a map $i : V \to \Lambda^1 (V)$ satisfying the following universal property: for any graded comm. assoc. K-algebra A^* and K-linear map $f : V \to A^1$, $\exists !$ extension $\tilde{f} : \Lambda^* (V) \to A^*$ such that $\tilde{f} = f \circ i$.

Check: any two realizations of $\Lambda^* (V)$ are related by unique isomorphism. So suffices to show existence of some model.

Consider the quotient $T^* (V) / I$ where I is the 2-sided homogeneous ideal generated by elements of the form $v \cdot v$ for $v \in V$. The product in $T^* V$ descends to a product in $\Lambda^* (V)$, we write $x \Lambda y$.
In low degree: $\Lambda^0 = k$
$\Lambda^1 = V$ using map $\iota: V \rightarrow T^1(V)$

Note $x \otimes y + y \otimes x = 0$, since
$x \otimes y - y \otimes x = (x + y) \otimes (x + y) - x \otimes x - y \otimes y \in I$

Thus the product Λ is graded-commutative. Moreover, there is a map $\iota: V \rightarrow \Lambda^0(V)$, the identity.

Prop $\Lambda^0(V)$ satisfies the universal property of the exterior algebra.

pf: Suppose $f: V \rightarrow A^1$ is a k-linear map. Consider the extension (defined on simple tensors, and extended linearly)
$\tilde{f}^0: T^0(V) \rightarrow A^1$
$\tilde{f}^0(v_1 \wedge \cdots \wedge v_n) = f(v_1) \cdots f(v_n)$

This clearly satisfies $\tilde{f}^0 \circ \iota = f$. To see uniqueness, if \tilde{f}' is any other such lift, it must agree with f and \tilde{f}' on $\Lambda^0(V)$ and be a homomorphism of k-modules, so
$\tilde{f}'(v_1 \wedge \cdots \wedge v_n) = f'(v_1) \wedge \cdots \wedge f'(v_n) = \tilde{f}'(v_1 \wedge \cdots \wedge v_n)$.

This construction is also functorial: if $L: V \rightarrow W$ is a map of k-modules, it induces an obvious map of exterior algebras on simple elements of degree n,
$L^0(v_1 \wedge \cdots \wedge v_k) = L(v_1) \wedge \cdots \wedge L(v_k)$

Check this is well-defined.
One can also think of the exterior algebra as a submodule of the tensor algebra, as follows. This is helpful in calculations.

let $\text{alt}_n : T^n(V) \to T^n(V)$ be the linear map

$$\text{alt}_n (v_1 \otimes \cdots \otimes v_n) = \sum_{\sigma \in S_n} \text{sign} (\sigma) \, v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(n)}$$

so that $\text{alt}_n \circ \text{alt}_n = n! \, \text{alt}_n$. We call the submodule $\text{im} (\text{alt}_n)$ the space of alternating tensors. Also define Λ the wedge product

$$\Lambda^m(V) \otimes \Lambda^n(V) \to \Lambda^{m+n}(V), \quad \lambda_1 \wedge \lambda_2 := \frac{1}{m! \, n!} \, \text{alt}_{m+n} (\lambda_1 \otimes \lambda_2)$$

where the coeff. compensates for stabilizer of $\lambda_1 \otimes \lambda_2$. One can restrict to $\sum_{m+n} \Lambda^m(V) \Lambda^n(V)$ to remove this factor if K does not contain Ω.

The wedge product here is again associative, graded-commutative and by the universal property of $\Lambda^* V$, there is a unique map of graded unital algebras $q : \Lambda^* V \to A^* V$ that extends $V \to \Lambda^1(V)$.

Bases, Dimension of $\Lambda^*(V)$

Suppose V is a free K-module, and $\{ e_i \}$ are a basis. Then $\{ e_i \otimes \cdots \otimes e_i \}$ are a basis for $T^n (V)$, and it is straightforward to check that their images $e_i \wedge \cdots \wedge e_i$ will span $\Lambda^n (V)$. WLOG, all i_j must be distinct, and up to sign we may assume $i_1 < \cdots < i_n$.
Prop. The elements \(\{ e_{i_1}, \ldots, e_{i_n} \} \) for \(i_1 < \cdots < i_n \) are a basis for \(\Lambda^n(V) \).

Cor. For \(V \) a free \(\mathbb{k} \)-module, the map \(\varphi : \Lambda^*V \to \Lambda^*V \) is an isomorphism. When \(V \) is finite dimensional over \(\mathbb{k} \), we have
\[
\dim_{\mathbb{k}}(\Lambda^n(V)) = \binom{d}{n} \quad d = \dim_{\mathbb{k}}(V)
\]

Examples

1. Suppose \(V = \mathbb{R}^2 \), \(\mathbb{R} \)-vector space. Then \(\Lambda^0 = \mathbb{R} \), \(\Lambda^1 = V \), and \(\Lambda^2 = \mathbb{R} \), where the first isomorphism is canonical (using the defn. of the exterior algebra) but the second is not.

Let \(A \in M^{2\times 2}(\mathbb{R}) \), \(A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) with \(a, b, c, d \in \mathbb{R} \). Then \(A \) acts naturally on \(\Lambda^2(V) \); if \(e_1 = (1,0) \) and \(e_2 = (0,1) \), then \(e_1 \wedge e_2 \) is an induced basis for \(\Lambda^2 \) and
\[
A(e_1 \wedge e_2) := A(e_1) \wedge A(e_2)
\]
\[
= (a_{11}, a_{12}) \wedge (a_{21}, a_{22})
\]
\[
= (a_{11} e_1 + a_{12} e_2) \wedge (a_{21} e_1 + a_{22} e_2)
\]
\[
= \left(a_{11} e_1 + a_{12} e_2 \right) \wedge \left(a_{21} e_1 + a_{22} e_2 \right)
\]
\[
+ \left(a_{11} a_{21} - a_{12} a_{22} \right) e_1 \wedge e_2
\]
\[
+ \left(a_{12} a_{21} - a_{11} a_{22} \right) e_2 \wedge e_1
\]
\[
= (aq_{21} - a_{21} q_{11}) e_1 \wedge e_2
\]
\[
+ (aq_{22} - a_{22} q_{11}) e_1 \wedge e_2
\]
\[
+ (aq_{12} - a_{12} q_{11}) e_2 \wedge e_1
\]
\[
+ (aq_{11} - a_{11} q_{11}) e_1 \wedge e_2
\]

\begin{align*}
 &+ (q_{12} q_{22} - q_{22} q_{12}) e_2 \otimes e_2 \\
 &= (q_{11} q_{22} - q_{12} q_{21}) e_1 \otimes e_2 \\
 &- (q_{11} q_{22} - q_{12} q_{21}) e_2 \otimes e_1 \\
 &= \det A \ e_1 \wedge e_2
\end{align*}

This is a key property of the exterior algebra. In fact one can interpret Λ^2 as unit of area (HW). Note that if we changed basis in V using a transformation with determinant 1, "area" stays constant. This will allow us to define integrals over higher dual (smooth) cycles.

Duality

Formalizing idea of $\Lambda^2 \leftrightarrow \text{area}$.

Suppose V is a free module, basis $\{e_i\}$. Recall that the dual to V, denoted V^*, consists of the set of K-linear homomorphisms $\text{Hom}_K(V, K)$. This has a natural K-mod structure.

We say $\{f_i\} \subseteq V^*$ is a dual basis to $\{e_i\}$ if $f_i(e_j) = \delta_{ij}$, Kronecker delta.

There is a natural isomorphism $F^* : \Lambda^*(V^*) \rightarrow (\Lambda^*(V))^*$ as follows. We have induced bases $\{f_i, \ldots, f_{ik}\}$ and $\{e_i, \ldots, e_{ik}\}$ for $\Lambda^k(V^*)$ and $\Lambda^k(V)$ respectively.
So we define F^k on those basis vectors as

$$F^k(e_i, \ldots, e_i) = (e_i, \ldots, e_i)$$

meaning $(F^k(e_i, \ldots, e_i), e_i, \ldots, e_i) = 1$, and evaluates as 0 on rest of basis. Then extend linearly.

Exercise: Show that F^k is independent of the choice of e_i.

One further observation is necessary. If $L : V \rightarrow W$ is a map of k-modules, there is a natural dual map

$L^* : W^* \rightarrow V^*$, $L^*(\varphi) = \varphi \circ L$. This extends to a map of

$\Lambda^k(W^*) \rightarrow \Lambda^k(V^*)$ via

$L^*(f_i, \ldots, f_i) = L^*(f_i) \wedge \ldots \wedge L^*(f_i)$

which is an algebra homomorphism. Note that if L_1, L_2 are as above, $(L_1 \circ L_2)^* = L_2^* \circ L_1^*$.

Now suppose $V = W$, and take $d = \dim(V)$. Using formula for $\dim(\Lambda^k(V))$, note $\Lambda^d(V)$ is 1-dim. So induced map

$L^* : \Lambda^d(V) \rightarrow \Lambda^d(V)$ is multiplication by constant $\lambda \in k$. We claim $\lambda = \det(A)$ for any choice of basis $B : k^d \rightarrow V$.

For $T \in \Lambda^d(V)$, $L^* B^* (\det) = \lambda B^* (\det)$ so

$$(B^*)^{-1} L^* B^* (\det) = \lambda (B^*)^{-1} B^* (\det) = \lambda (\det)$$

and so $(BLB^*)^* (\det) = \lambda \cdot \det$, in k^d where d makes sense.
But evaluating both sides on basis \(\{ e_i \} \) determined by \(B \) (i.e. checking in \(\mathbb{K}^d \) as in \(V = \mathbb{R}^2 \) example) it is clear that \(\lambda = \det(L) \). Thus, if \(L \) is linear, \(\Lambda^d(T) \) for any \(T \in \Lambda^d(V) \) is simply \(\lambda \det(L) \) for \(\lambda \in \mathbb{K} \). Dually, on \(\Lambda^d(V^*) \), \(\Lambda^d \cdot f_i \Lambda^d \cdot f_{i'j} = \det(L) \cdot f_i \Lambda^d \cdot f_{i'j} \).

Upshot: suppose that \(SC \cdot M^n \) is a \(k \)-dim'l submanifold of \(M^n \) smooth. At \(x \in M \), let \(\varphi : \mathbb{R}^n \rightarrow M \) be local coord. centered at \(x \).

At each \(x \in M \), \(T_x S \) is a 2-dim'l subspace of \(T_x M \); think of as \(d \varphi \cdot (T_x S) \subseteq \mathbb{R}^3 \). Can "integrate" against some alternating tensor \(T \in \Lambda^2(\mathbb{R}^3) \). For different choices of coordinates, result differs by determinant:

\[
T(\cdot d(\varphi_2 \circ \varphi_1) \cdot d \varphi_1(T_x S)) = \det(\varphi_2 \circ \varphi_1) T(d \varphi_1(T_x S))
\]

But if we integrate, answer is unchanged (e.g. \(u \)-sub in \(\mathbb{R} \), \(\int_{a}^{b} \cdot d(u(x)) \cdot u'(x) \cdot dx \)).