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The main goal

Introduce a new framework integrating generative
theories, ACT-R models, and Bayesian methods.

i. Generative theories + ACT-R: competence-level generative
theories are embedded in performance-level processing
ACT-R models
(Anderson and Lebiere 1998, Lewis and Vasishth 2005 a.o.)

- this enables us to explicitly and fully model the behavior of
human participants in standard experimental tasks
(lexical decision, forced-choice, self-paced reading, eye-tracking)

This is computationally implemented in a new Python3 library:
pyactr, https://github.com/jakdot/pyactr.
(If you use this Python3 library, please cite it as Brasoveanu and
Dotlačil (2018, in prep.) and include the github url.)
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The main goal

ii. ACT-R + Bayes: the ACT-R models are embedded in
Bayesian models; we can then fit them to experimental
data and do quantitative comparison for qualitative theories

- pyactr enables us to easily interface ACT-R models with
standard statistical estimation methods implemented in
widely-used Python3 libraries

- we use ACT-R models as the likelihood component of full
Bayesian models, and fit the ACT-R parameters to
experimental data

- upshot: we are able to consider alternative generative
grammar theories and quantitatively compare how well
they fit experimental data
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The main goal
The ability to do quantitative comparison for qualitative
generative theories on this scale is unprecedented (as far as
we know).

• even in ACT-R, subsymbolic/quantitative parameters are usually
set by hand instead of estimated from the data using standard
statistical estimation methods

A detailed introduction to the framework will be available soon
in Brasoveanu and Dotlačil (2018, in prep.). Today, a case
study:

• the lexical decision task in Murray and Forster (2004)
• we model their data with 3 different ACT-R models that

differ qualitatively / symbolically or quantitatively /
subsymbolically

• we fit these models to data and compare the results
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Road map for the talk
• we introduce the lexical decision task and the data we want

to model
• we discuss a basic Bayesian log-frequency model for this

data; this model
- highlights the imperfect data fit of the log-frequency

assumption
- and introduces the basic structure of a Bayesian model we

will need later

• we introduce a series of 3 ACT-R models of a participant
completing the lexical decision task and quantitatively
compare them

• these lexical access models are particularly simple – the
framework can accommodate much more realistic
linguistic theories

- (if there’s time) we demo an incremental left-corner parser
& interpreter (using DRT on the semantics side) with visual
and motor interfaces
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The lexical decision task in Murray and Forster (2004)

• word frequency: one very robust parameter affecting
latencies and accuracies in lexical decision tasks (Whaley,
1978)

• frequency effects have been found in many if not all tasks
that involve some kind of lexical processing (Forster, 1990;
Monsell, 1991)

• specific functional form: lexical access latency can be well
approximated as a log-function of frequency (Howes and
Solomon 1951)

• Murray and Forster (2004) studied the role of frequency in
detail and identified various issues with the log-frequency
model

• their data consisted of collected responses and response
times in a lexical decision task using words from 16
frequency bands – see table on the next slide
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The lexical decision task in Murray and Forster (2004)
The 16 word-frequency bands (in tokens per 1 million words)
investigated in Murray and Forster (2004), Exp. 1:

Frequency range Mean frequency Latency (ms) Accuracy (%)
315–197 242.0 542 97.22

100–85 92.8 555 95.56
60–55 57.7 566 95.56
42–39 40.5 562 96.3
32–30 30.6 570 96.11
24–23 23.4 569 94.26

19 19.0 577 95
16 16.0 587 92.41

14-13 13.4 592 91.67
12–11 11.5 605 93.52

10 10.0 603 91.85
9 9.0 575 93.52
7 7.0 620 91.48
5 5.0 607 90.93
3 3.0 622 84.44
1 1.0 674 74.63
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Specifying a Bayesian log-frequency model

To get acquainted with the structure of a Bayesian model, let’s
specify a simple Bayesian log-frequency model:

1 log_freq_model = Model()
2 with log_freq_model:
3 # priors
4 intercept = Normal(...)
5 slope = Normal(...)
6 # likelihood
7 mu = Deterministic(intercept + slope*np.log(freq), ...)
8 observed_rt = Normal(mu=mu, observed=rt, ...)
9 # sample posterior

10 trace = sample(draws=5000, ...)
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The predictions of the log-frequency model
Figure: Log-frequency model estimates and observed RTs
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Frequency effects as practiced memory retrieval

• log-frequency gets middle values right, but underestimates
time needed to access words in extreme frequency bands

• our proposal: frequency effects as practiced memory
retrieval
(different from the proposal in Murray and Forster 2004)

• memory retrieval (practice and forgetting): a power
function of time (Newell and Rosenbloom 1981, Anderson
1982, Logan 1990)
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Frequency effects as practiced memory retrieval

• practice: repeated presentation of an item
• ACT-R: retrieval from declarative memory is a power

function of time elapsed since item presentation
• the power function is used to compute (base) activation

and is based on the number of practice trials / ‘rehearsals’
of a word (1) (free parameters enumerated in parentheses)

• activation of an item is in turn used to compute accuracy
(2) and latency (3) for retrieval processes

(1) Ai “ log

ˆ

n
ř

k“1
t´d
k

˙

(d: decay)

(2) Pi “ 1

1`e´
Ai ´τ

s
(s: noise, τ : threshold)

(3) Ti “ Fe´fAi (F:factor, f: exponent)
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Frequency effects as practiced memory retrieval
Figure: Activation, retrieval probability and retrieval latency as a
function of time (threshold – dotted black line; 5 presentations – red)
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Frequency effects as practiced memory retrieval

• for any word, the number of rehearsals that contribute to its
activation are determined by its frequency (we ignore other
factors in this model)

• we generate a rehearsal / presentation schedule for a
15-year old speaker based on word frequency and the
average number of words the 15-year old speaker is
estimated to have seen (estimate based on Hart and
Risley 1995)
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Bayesian model with ACT-R likelihood for RTs
Embed ACT-R models in Bayesian models to link them to data:

1 lex_decision_with_bayes = Model()
2 with lex_decision_with_bayes:
3 # priors for model parameters
4 d = ...
5 s = ...
6 tau = ...
7 F = ...
8 f = ...
9 # likelihood: RTs are based on the ACT-R model

10 pyactr_rt = actrmodel_latency(F, f, d, activation_from_time)
11 rt_observed = Normal(mu=pyactr_rt, observed=RT, ...)
12 prob_observed = ...
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Bayesian model with ACT-R likelihood for RTs

• pyactr_rt on line 10 invokes an ACT-R model (we’ll
discuss these models presently), and runs it to generate
lexical latencies for words in the 16 frequency bands

• the ACT-R model is parametrized by a latency factor F, a
latency exponent f, a decay d and the activation for words
in the 16 frequency bands activation_from_time,
computed based on their 15-year long rehearsal schedule

• the 16 reaction time (RT) means from Murray and Forster
(2004) are then assumed to be noisy realizations of the
ACT-R generated RTs (line 11)

• for simplicity, we model the observed response accuracies
directly (line 12), not via an ACT-R model
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ACT-R models
ACT-R models embed competence theories in processing
models.

• we have a qualitative/symbolic competence theory of the
lexicon: lexical items have various features (their form etc.)

• we have a qualitative performance theory of what human
participants actually do in a lexical decision task

• lexical items are stored in declarative memory and have an
activation that is a function of their frequency

• participants read a form (sequence of characters) on the
screen and attempt to retrieve a word with that form

• the qualitative components are implemented in ACT-R as
condition-action pairs (production rules) stored in
procedural memory

• these rules trigger a cognitive action if the cognitive
context / mental state satisfies a range of conditions
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Quantitative comparison for qualitative theories

Generative theories + ACT-R + Bayes enable us to do
quantitative comparison for qualitative theories:

• we can implement different competence + processing
models in ACT-R, and then embed these alternative ACT-R
models in a Bayesian model

• we can then estimate their subsymbolic parameters and
quantitatively compare these different models

• model comparison with Bayes factors can apply across the
board for any kind of hybrid (quantitative & qualitative)
model
(if done responsibly ... Kass and Raftery 1995)
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An ACT-R model of lexical decision (Model 1)

The model consists of 4 central rules:

1. The "attend word" rule takes a visual location encoded in
the visual location buffer, a.k.a., the visual where buffer,
and issues a command to the visual what buffer to move
attention to that visual location

18



An ACT-R model of lexical decision (Model 1)

1 lex_decision.productionstring(name="attend word", string="""
2 =g>
3 state attend
4 =visual_location>
5 isa _visuallocation
6 ?visual>
7 state free
8 ==>
9 =g>

10 state retrieving
11 +visual>
12 cmd move_attention
13 screen_pos =visual_location
14 ~visual_location>
15 """)
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An ACT-R model of lexical decision (Model 1)
2. The "retrieving" rule takes the visual value/content

discovered at that visual location, which is a potential word
form, and places a declarative memory request to retrieve
a word with that form;

1 lex_decision.productionstring(name="retrieving", string="""
2 =g>
3 state retrieving
4 =visual>
5 value =val
6 ==>
7 =g>
8 state retrieval_done
9 +retrieval>

10 isa word
11 form =val
12 """)
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An ACT-R model of lexical decision (Model 1)

3. and 4. The "lexeme retrieved" and "no lexeme found" rules
take care of the two possible outcomes of the memory
retrieval request

- if a word with that form is retrieved from memory ("lexeme
retrieved"), a command is issued to the motor module to
press the ’J’ key

- if no word is retrieved ("no lexeme found"), a command is
issued to the motor module to press the ’F’ key
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An ACT-R model of lexical decision (Model 1)

1 lex_decision.productionstring(name="lexeme retrieved", string="""
2 =g>
3 state retrieval_done
4 ?retrieval>
5 buffer full
6 state free
7 ==>
8 =g>
9 state done

10 +manual>
11 cmd press_key
12 key J
13 """)
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An ACT-R model of lexical decision (Model 1)

1 lex_decision.productionstring(name="no lexeme found", string="""
2 =g>
3 state retrieval_done
4 ?retrieval>
5 buffer empty
6 state error
7 ==>
8 =g>
9 state done

10 +manual>
11 cmd press_key
12 key F
13 """)
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An ACT-R model of lexical decision (Model 1)
Running this model, we obtain an output detailing the cognitive
process and its temporal trace:

1 ****Environment: {1: {'text': 'elephant', 'position': (320, 180)}}
2 (0, 'PROCEDURAL', 'RULE SELECTED: attend word')
3 (0.05, 'PROCEDURAL', 'RULE FIRED: attend word')
4 (0.0679, 'PROCEDURAL', 'RULE SELECTED: retrieving')
5 (0.1179, 'PROCEDURAL', 'RULE FIRED: retrieving')
6 (0.1179, 'retrieval', 'START RETRIEVAL')
7 (0.1679, 'retrieval', 'RETRIEVED: word(form= elephant)')
8 (0.1679, 'PROCEDURAL', 'RULE SELECTED: lexeme retrieved')
9 (0.2179, 'PROCEDURAL', 'RULE FIRED: lexeme retrieved')

10 (0.2179, 'manual', 'COMMAND: press_key')
11 (0.4679, 'manual', 'PREPARATION COMPLETE')
12 (0.5179, 'manual', 'INITIATION COMPLETE')
13 (0.6179, 'manual', 'KEY PRESSED: J')
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ACT-R Model 1: fit to data

Figure: Model 1: estimated and observed RTs and probabilities
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ACT-R Model 1: fit to data and qualitative limitations

• the plots show Model 1 has a very good fit, both for latency
and accuracy

• but Model 1 oversimplifies the process of encoding visually
retrieved data

• it assumes the visual value found at a particular visual
location is immediately shuttled to the retrieval buffer

• but cognition in ACT-R is goal-driven: any important step in
a cognitive process should involve the goal or imaginal
buffer

• the imaginal buffer is a goal-like buffer that stores internal
‘snapshots’ of the cognitive state

• the transfer between the visual and the retrieval buffer
should be mediated by the imaginal buffer
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ACT-R Model 2: adding the imaginal buffer

• Bayesian model remains the same, the only part we
change is the ACT-R-provided likelihood for latencies

• we modify the procedural core of the ACT-R model
• we add the imaginal buffer to the model
• we replace the "attend word" and "retrieving" rules with

three rules "attend word", "encoding word" and
"retrieving"

• the new rule "encoding word" mediates between "attend
word" and "retrieving"

• encoding a word form means taking it from the visual
buffer and shuttling it to the imaginal buffer
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ACT-R Model 2: adding the imaginal buffer
1 lex_decision.set_goal("imaginal")
2

3 lex_decision.productionstring(name="attend word", string="""
4 =g>
5 state attend
6 =visual_location>
7 isa _visuallocation
8 ?visual>
9 state free

10 ==>
11 =g>
12 state encoding [the only change in this rule]
13 +visual>
14 cmd move_attention
15 screen_pos =visual_location
16 ~visual_location>
17 """)
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ACT-R Model 2: adding the imaginal buffer

1 lex_decision.productionstring(name="encoding word", string="""
2 =g>
3 state encoding
4 =visual>
5 value =val
6 ==>
7 =g>
8 state retrieving
9 +imaginal>

10 isa word
11 form =val
12 """)
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ACT-R Model 2: adding the imaginal buffer

1 lex_decision.productionstring(name="retrieving", string="""
2 =g>
3 state retrieving
4 =imaginal> [imaginal instead of visual: the only change in this rule]
5 isa word
6 form =val
7 ==>
8 =g>
9 state retrieval_done

10 +retrieval>
11 is word
12 form =val
13 """)
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ACT-R Model 2: adding the imaginal buffer

• these modifications are symbolic/discrete/non-quantitative
modifications

• but we are able to fit the new model to the same data and
quantitatively compare its performance with Model 1 (the
no-imaginal-buffer model)

• the left plot on the next slide shows that Model 2 has a very
poor fit to the latency data
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ACT-R Model 2: fit to data

Figure: Model 2: estimated and observed RTs and probabilities
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ACT-R Model 2: adding the imaginal buffer

• the encoding step adds 200 ms to every lexical decision
simulation

• 200 ms is the default ACT-R delay for chunk-encoding into
the imaginal buffer

• the predicted latencies for 15 out of the 16 word-frequency
bands are greatly overestimated (above the diagonal line)

• Model 2 cannot run faster than about 640 ms; this is too
high to fit high-frequency words, which take about 100 ms
less than that
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ACT-R Model 3: imaginal buffer with 0 delay
• let’s change a quantitative feature of Model 2 and set the

imaginal delay to 0 ms (instead of its default 200 ms value)

1 lex_decision.goals["imaginal"].delay = 0

• it is reasonable to assume that various default values for
ACT-R subsymbolic parameters should be changed when
modeling linguistic phenomena

• natural language comprehension involves fast incremental
construction of rich hierarchical representations

• this richness significantly exceeds the complexity of
representations needed for other high-level cognitive
processes modeled in ACT-R (e.g., arithmetic)

• Model 3 fits very well the mean latencies for all the 16
word-frequency bands
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ACT-R Model 3: fit to data

Figure: Model 3: estimated and observed RTs and probabilities
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Conclusion
• we have a formally explicit way to connect

competence-level theories to experimental data via explicit
processing models

• we can formally, explicitly connect
qualitative/symbolic/competence-level theory construction
(the main business of the generative grammarian) and
quantitative/subsymbolic/performance-level data collection
and prediction (the main business of the experimental
linguist)

For a future occasion – more systematic / formal model
comparison:

• we have only done informal quantitative comparisons
based on posterior predictions

• but systematic across-the-board model comparison via
Bayes factors is possible in this framework
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Demo time
An incremental left-corner parser & interpreter (using DRT
on the semantics side) with visual and motor interfaces

. . . applied to cataphora, specifically the conditional:

(4) John won’t eat it if a hamburger is overcooked. (Elbourne
2009, p. 3)

The model provides an end-to-end simulation of a human participant
in a self-paced reading task (Just et al. 1982):

• it reads the conditional in (4), which is displayed one word at a
time on a virtual screen

• it presses the space bar to move to the next word when the
current word is integrated (parsed & interpreted)

• it implements a version of Discourse Representation Theory
(DRT; Kamp 1981, Kamp and Reyle 1993) on the semantics side

• it builds the expected tree structures on the syntax side
37
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