
Quantitative Methods in Linguistics – Lecture 7

Adrian Brasoveanu∗

April 11, 2014

Contents

1 Recap and related issues 1
1.1 Generating the “dataset” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The two regressions we looked at . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Scatter plot matrices (SPMs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 R-squared (R2) 6

3 Correlation 7

4 An alternative way of calculating correlation 13

5 Inference for simple linear regression: from sample to population 16
5.1 The sampling error for the slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.1.1 The spread around the regression line, i.e., mean squared residuals: the smaller the
better . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.1.2 The spread of the predictor values: the bigger the better . . . . . . . . . . . . . . . . . 20
5.1.3 The size of the sample: the bigger the better . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1.4 Putting it all together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2 The sampling error for the intercept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3 Putting it all together: plotting predictions for linear regression models . . . . . . . . . . . . . 27

1 Recap and related issues

1.1 Generating the “dataset”

> x1 <- rnorm(100, 64, 3)
> summary(x1)

Min. 1st Qu. Median Mean 3rd Qu. Max.
58.7 62.8 64.5 64.4 66.2 70.1

∗These notes have been generated with the ‘knitr’ package (Xie 2013) and are based on many sources, including but not limited to:
Abelson (1995), Miles and Shevlin (2001), Faraway (2004), De Veaux et al. (2005), Braun and Murdoch (2007), Gelman and Hill (2007),
Baayen (2008), Johnson (2008), Wright and London (2009), Gries (2009), Kruschke (2011), Diez et al. (2013), Gries (2013).

1



> x2 <- rbinom(100, 1, 0.5)
> sum(x2)

[1] 58

> y <- x1 * 2.5 + x2 * 6 + rnorm(100, 0, 4)
> summary(y)

Min. 1st Qu. Median Mean 3rd Qu. Max.
142 158 166 165 171 186

> par(mfrow = c(1, 3))
> plot(density(x1), xlab = expression(x[1]), main = expression(x[1]),
+ ylab = "density")
> polygon(density(x1), col = "gray", border = "black")
> plot(as.factor(x2), col = "gray", xlab = expression(x[2]), main = expression(x[2]),
+ ylab = "frequency")
> plot(density(y), xlab = expression(y), main = expression(y), ylab = "density")
> polygon(density(y), col = "red", border = "black")
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> par(mfrow = c(1, 1))

1.2 The two regressions we looked at

> the_mean_model <- lm(y ~ 1)
> summary(the_mean_model)
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Call:
lm(formula = y ~ 1)

Residuals:
Min 1Q Median 3Q Max

-23.190 -6.691 0.632 6.341 20.839

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 165.12 0.87 190 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.7 on 99 degrees of freedom

> reg2 <- lm(y ~ x2)
> summary(reg2)

Call:
lm(formula = y ~ x2)

Residuals:
Min 1Q Median 3Q Max

-18.630 -5.645 -0.307 5.202 17.536

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 160.56 1.21 133.07 < 2e-16 ***
x2 7.86 1.58 4.96 2.9e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.82 on 98 degrees of freedom
Multiple R-squared: 0.201,Adjusted R-squared: 0.193
F-statistic: 24.6 on 1 and 98 DF, p-value: 2.92e-06

> anova(the_mean_model, reg2)

Analysis of Variance Table

Model 1: y ~ 1
Model 2: y ~ x2

Res.Df RSS Df Sum of Sq F Pr(>F)
1 99 7498
2 98 5992 1 1506 24.6 2.9e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> reg1 <- lm(y ~ x1)
> summary(reg1)

Call:
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lm(formula = y ~ x1)

Residuals:
Min 1Q Median 3Q Max

-10.684 -3.621 0.208 3.920 11.788

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -18.931 13.026 -1.45 0.15
x1 2.857 0.202 14.14 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.02 on 98 degrees of freedom
Multiple R-squared: 0.671,Adjusted R-squared: 0.668
F-statistic: 200 on 1 and 98 DF, p-value: <2e-16

> anova(the_mean_model, reg1)

Analysis of Variance Table

Model 1: y ~ 1
Model 2: y ~ x1

Res.Df RSS Df Sum of Sq F Pr(>F)
1 99 7498
2 98 2467 1 5032 200 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

1.3 Scatter plot matrices (SPMs)

Scatter plot matrices (SPM for short):

• smoothed histograms of the variables are displayed on the (upper-left to lower-right) diagonal

• the other panels display plots of all pairs of variables

> library("car")
> spm(~y + x1, smooth = FALSE, reg.line = FALSE)
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We can group the observations based on a factor:

> spm(~y + x1, smooth = FALSE, groups = as.factor(x2), reg.line = FALSE)

● 0
1

y

60 62 64 66 68 70

15
0

17
0●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●●
●

●

●

●

●●

●

●

●●

● ●

●

●

●

●

●

●

●
●

●

150 160 170 180

60
64

68 ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

x1

And we can add regression lines:
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> spm(~y + x1, smooth = FALSE, groups = as.factor(x2))
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2 R-squared (R2)

> summary(reg1)

Call:
lm(formula = y ~ x1)

Residuals:
Min 1Q Median 3Q Max

-10.684 -3.621 0.208 3.920 11.788

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -18.931 13.026 -1.45 0.15
x1 2.857 0.202 14.14 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.02 on 98 degrees of freedom
Multiple R-squared: 0.671,Adjusted R-squared: 0.668
F-statistic: 200 on 1 and 98 DF, p-value: <2e-16

R2 – the proportion of the total squared error that is accounted for by the model, i.e.:

• error between / total error
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> squared.error.reg1 <- sum((summary(reg1)$residuals)^2) # squared error within (within the model / not accounted for by the model)
> squared.error.1MEAN <- sum((y - mean(y))^2) # total squared error
> squared.error.difference <- squared.error.1MEAN - squared.error.reg1 # squared error between, i.e., the part of the total error that is accounted for / eliminated by keeping track of the variable x1
> r_squared <- squared.error.difference/squared.error.1MEAN
> r_squared

[1] 0.6711

> summary(reg1)$r.squared

[1] 0.6711

We now understand (almost) everything in the lm output.1

3 Correlation

Correlation: R, i.e., the square root of R2.

> cor(y, x1)

[1] 0.8192

> sqrt(summary(reg1)$r.squared)

[1] 0.8192

> sqrt(squared.error.difference/squared.error.1MEAN)

[1] 0.8192

Thus, correlation measures how much of the variation in y is accounted for by the variation in x1:

• to put it differently, it measures how strongly y and x1 are correlated / associated

• graphically, correlation measures the degree of scatter around the regression line

The correlation is always between −1 and 1. It’s actually the cosine of the angle between the predictor
and the response vectors in n dimensional space, where n is the number of observations, i.e., coordinates.

• the closer the correlation is to 0, the more scatter / the less association

• positive correlation: upward slope

• negative number: downward slope

> (x.eg <- seq(-1, 1, by = 0.05))

[1] -1.00 -0.95 -0.90 -0.85 -0.80 -0.75 -0.70 -0.65 -0.60 -0.55 -0.50
[12] -0.45 -0.40 -0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05
[23] 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
[34] 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

> (y.eg <- seq(-1, 1, by = 0.05))

1The adjusted R2 adjusts for the number of predictors in the model; it increases when a new predictor is added only if the new
predictor improves the model more than would be expected by chance. Its interpretation is not as clear as the interpretation of R2, so
we will not discuss it further.
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[1] -1.00 -0.95 -0.90 -0.85 -0.80 -0.75 -0.70 -0.65 -0.60 -0.55 -0.50
[12] -0.45 -0.40 -0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05
[23] 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
[34] 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

> plot(x.eg, y.eg, pch = 20, xlim = range(-1, 1), ylim = range(-1, 1))
> abline(v = 0, col = "lightblue")
> abline(h = 0, col = "lightblue")
> abline(lm(y.eg ~ x.eg), col = "blue", lwd = 1)
> text(0, -1, paste("cor=", round(cor(y.eg, x.eg), 2), sep = ""), col = "darkred",
+ cex = 1)
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> (x.eg <- seq(-1, 1, by = 0.05))

[1] -1.00 -0.95 -0.90 -0.85 -0.80 -0.75 -0.70 -0.65 -0.60 -0.55 -0.50
[12] -0.45 -0.40 -0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05
[23] 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
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[34] 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

> (y.eg <- -seq(-1, 1, by = 0.05))

[1] 1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50
[12] 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 -0.05
[23] -0.10 -0.15 -0.20 -0.25 -0.30 -0.35 -0.40 -0.45 -0.50 -0.55 -0.60
[34] -0.65 -0.70 -0.75 -0.80 -0.85 -0.90 -0.95 -1.00

> plot(x.eg, y.eg, pch = 20, xlim = range(-1, 1), ylim = range(-1, 1))
> abline(v = 0, col = "lightblue")
> abline(h = 0, col = "lightblue")
> abline(lm(y.eg ~ x.eg), col = "blue", lwd = 1)
> text(0, -1, paste("cor=", round(cor(y.eg, x.eg), 2), sep = ""), col = "darkred",
+ cex = 1)
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> (x.eg <- seq(-1, 1, by = 0.05))

[1] -1.00 -0.95 -0.90 -0.85 -0.80 -0.75 -0.70 -0.65 -0.60 -0.55 -0.50
[12] -0.45 -0.40 -0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05
[23] 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
[34] 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

> (y.eg <- runif(41, -1, 1))

[1] 0.402498 -0.639957 -0.102366 -0.236195 -0.091991 0.334301 0.868485
[8] -0.594678 -0.828178 0.414890 0.913012 -0.303560 0.603309 0.402626

[15] -0.659322 -0.915922 -0.527625 0.878808 -0.588549 0.664495 0.312577
[22] -0.253097 0.550351 -0.655465 0.057213 0.007786 -0.357145 -0.214208
[29] -0.451769 0.162721 -0.794050 0.878694 0.428176 0.075490 0.919979
[36] -0.498813 0.426961 -0.722915 0.171659 0.127313 0.095328

> plot(x.eg, y.eg, pch = 20, xlim = range(-1, 1), ylim = range(-1, 1))
> abline(v = 0, col = "lightblue")
> abline(h = 0, col = "lightblue")
> abline(lm(y.eg ~ x.eg), col = "blue", lwd = 1)
> text(0, -1, paste("cor=", round(cor(y.eg, x.eg), 2), sep = ""), col = "darkred",
+ cex = 1)
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> (x.eg <- runif(41, -1, 1))

[1] 0.1624 0.4108 0.7350 0.2934 -0.5224 0.5441 0.6649 -0.1700
[9] 0.9210 -0.8519 0.3234 0.1890 -0.6924 -0.4952 -0.1775 0.3682

[17] 0.7681 0.3251 0.5259 0.3931 0.8160 -0.4764 -0.7639 0.8680
[25] -0.9166 0.6117 0.3637 0.5737 0.9608 -0.2739 -0.8424 -0.6477
[33] -0.2036 -0.1758 -0.3147 0.6227 0.9169 0.3264 0.3214 -0.5891
[41] -0.8439

> (y.eg <- runif(41, -1, 1))

[1] 0.56713 -0.20016 0.82134 0.35494 0.65233 -0.73421 -0.16944
[8] 0.88978 -0.04686 -0.65277 0.91948 -0.15956 -0.58464 -0.20825

[15] -0.83990 -0.20598 0.99433 -0.79118 0.33401 -0.09790 -0.89708
[22] -0.22350 -0.77801 0.25998 0.77164 0.24193 0.65071 -0.29348
[29] -0.66887 0.25802 0.24940 0.81036 -0.17437 -0.68031 -0.99922
[36] -0.27573 0.50512 0.93516 0.69387 -0.45472 -0.79212
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> plot(x.eg, y.eg, pch = 20, xlim = range(-1, 1), ylim = range(-1, 1))
> abline(v = 0, col = "lightblue")
> abline(h = 0, col = "lightblue")
> abline(lm(y.eg ~ x.eg), col = "blue", lwd = 1)
> text(0, -1, paste("cor=", round(cor(y.eg, x.eg), 2), sep = ""), col = "darkred",
+ cex = 1)
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The correlation for the predictor and response in the reg1 model:

> plot(x1, y, pch = 20, xlab = expression(x[1]))
> abline(reg1, col = "blue", lwd = 2)
> text(mean(x1), min(y), paste("cor=", round(cor(y, x1), 2), sep = ""),
+ col = "darkred", cex = 1)
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Correlation is the 3rd type of descriptive / summary statistics. That is, we are usually interested and
report 3 types of descriptive / summary statistics:

• measures of center: mean (also median, mode)

• measures of dispersion: standard deviation (also IQR, entropy)

• measures of association: correlation

4 An alternative way of calculating correlation

This type of calculation makes it much clearer that correlation is the cosine of an angle.
We first start with the covariance, which is the mean of the dot product of the vector of centered y and

x1 vectors (centered: with a mean of 0; dot product: the sum of the products of the coordinate-wise values):

> sum((y - mean(y)) * (x1 - mean(x1)))/(length(y) - 1)

[1] 17.79
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> ((y - mean(y)) %*% (x1 - mean(x1)))/(length(y) - 1)

[,1]
[1,] 17.79

> cov(y, x1)

[1] 17.79

We divide by n− 1 because we spend one dof on the mean of y.
Note that the covariance of a variable with itself is the variance of that variable:

> ((y - mean(y)) %*% (y - mean(y)))/(length(y) - 1)

[,1]
[1,] 75.74

> cov(y, y)

[1] 75.74

> var(y)

[1] 75.74

Correlation is just covariance divided / “normalized” by the standard deviations of, i.e., the variation
in, the correlated variables:

> cov(y, x1)/(sd(y) * sd(x1))

[1] 0.8192

> cor(y, x1)

[1] 0.8192

Take a closer look at this formula for correlation:

• cov(y,x1)
sd(y)sd(x1)

is the averaged (divided by n− 1) dot product of the standardized y and x1:
cov(y,x1)

sd(y)sd(x1)
= 1

n−1
(y−ȳ)·(x1−x̄1)

sd(y)sd(x1)
= 1

n−1
y−ȳ

sd(y)
x1−x̄1
sd(x1)

• that is, correlation is just a numerical summary of the standardized plot of y and x1

> standardized.x1 <- (x1 - mean(x1))/sd(x1)
> standardized.y <- (y - mean(y))/sd(y)
> plot(standardized.x1, standardized.y, pch = 20, col = "blue", xlab = expression(paste("standardized ",
+ x[1])), ylab = "standardized y")
> abline(v = 0, col = "lightblue")
> abline(h = 0, col = "lightblue")
> text(min(standardized.x1) + 1, min(standardized.y) + 1, "cor: +",
+ cex = 1, col = "darkred")
> text(max(standardized.x1) - 1, max(standardized.y) - 1, "cor: +",
+ cex = 1, col = "darkred")
> text(min(standardized.x1) + 1, max(standardized.y) - 1, "cor: -",
+ cex = 1, col = "darkred")
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> text(max(standardized.x1) - 1, min(standardized.y) + 1, "cor: -",
+ cex = 1, col = "darkred")
> for (i in 1:length(standardized.x1)) {
+ if (standardized.x1[i] * standardized.y[i] > 0) {
+ points(standardized.x1[i], standardized.y[i], pch = 20, col = "green")
+ }
+ if (standardized.x1[i] * standardized.y[i] < 0) {
+ points(standardized.x1[i], standardized.y[i], pch = 20, col = "red")
+ }
+ }
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Importantly, the correlation is just the slope of the regression line for the standardized variables:

> lm(standardized.y ~ standardized.x1)$coef[2]

standardized.x1
0.8192

> cor(y, x1)
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[1] 0.8192

The slope of the regression line for the original variables can be obtained from the “standardized” slope
(i.e., the correlation) and the standard deviations of the two variables:

> x1_slope <- as.numeric(lm(y ~ x1)$coef[2])
> x1_slope

[1] 2.857

> standardized_x1_slope <- as.numeric(lm(standardized.y ~ standardized.x1)$coef[2])
> standardized_x1_slope

[1] 0.8192

> standardized_x1_slope * sd(y)/sd(x1)

[1] 2.857

Size of correlations: not as important as it is for natural sciences. Given the nature of the empirical
domain, namely human behavior, it is hard to identify any single variable / group of variables that accounts
for a significant part of the variation in the response variable.

It is more important that the correlation is statistically significant (but: large samples make even small
correlations statistically significant although they are unlikely to be practically significant).

Guidelines for interpreting correlation values (from Cohen 1988):

(1) If the absolute value of the correlation is:

• approx. 0.1: small correlation

• approx. 0.3: medium correlation

• 0.5 or more: large correlation

5 Inference for simple linear regression: from sample to population

‘Simple’ linear regression means: with only one predictor (in addition to the intercept). As opposed to
‘multiple’ linear regression: with multiple predictors (again, in addition to the intercept).

The lm (regression) coefficients, which determine a regression line, provide a summary of how the vari-
ables y and x1 are associated in our sample. What we want to know is how y and x1 are associated in the
population, i.e., we want to find the population-level generalization, not merely the generalization / sum-
mary for our sample.

In particular, we want to understand how we obtain the SEs for the coefficients (also the t-values and
p-values, but that follows easily from the SEs):

> summary(reg1)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) -18.931 13.0264 -1.453 1.493e-01
x1 2.857 0.2021 14.140 2.130e-25

If we had all the values for y and x1 in the population, we would be able to find the exact, population-
level intercept and slope for the regression line by using least squares. Let’s represent that model as follows:

(2) µy = β0 + β1x1
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Note the Greek variables: they explicitly indicate we deal with population-level (hidden / unobserved)
variables.

In particular, we use µy, which stands for “the mean of y”, to indicate explicitly that for each particular
value of x1, the predicted value for y is the mean of y values for all the cases / observations that have that
particular value for x1.

In other words, our population-level regression model for the actual values, not only for the mean
values, is in fact:

(3) y = µy + ε, , where ε stands for ‘error’ / noise

(4) Equivalently: y = β0 + β1x1 + ε

Recall that this is exactly the way we simulated our data (except for the fact that we also had the x2
predictor in the mix).

The error term ε is the spread (the variance, or its square root, i.e., the standard deviation) of the actual
y values around muy for each particular value for x1.

The error in the regression model for the entire population comes from:

• the fact that other variables besides x1 influence the value for y (variables like x2 or others that we
have not taken into account)

• the random / probabilistic nature of the phenomenon itself, for example, weight is partly determined
by your genetic makeup, and that genetic makeup is a probabilistic / non-deterministic function of the
genetic makeup of your biological parents

The error in the regression model for the sample comes from:

• the same 2 reasons as for the population, plus

• sampling variation

Our task: based on the sample regression coefficients and the sample regression error / residuals, do the
best inference you can about the population coefficients and error given your CLT-based knowledge about
sampling variation.

This boils down to estimating standard errors (SEs) and confidence intervals (CIs) for the population
regression coefficients (plus t-values and p-values for hypothesis testing, but we saw that CIs are more
informative for single coefficients).

Note that this focuses on accounting for sampling variation in our statistical / inductive inference. The
variation induced by other predictors that we didn’t take into account and about the probabilistic nature of
the phenomenon itself (if applicable) is not addressed at this level.

Statistical inference at this level is conditional on / assumes that our model is correct is, i.e., we took into
account all the population-level sources of variation and factored them into our model. Of course, this is
not true: we do not have ‘miraculous / oracular’ knowledge about the inner workings of nature. To factor
in our uncertainty about the model, we need to consider a class of models (or a range of classes of models)
and do model comparison. This is the point where statistical inference and theory construction become
more and more indistinguishable.

The main point here is to understand that our inference about coefficient estimates and their SEs as-
sumes we have perfect knowledge / certainty about the statistical model we use, i.e.:

• we are completely certain that we use all and only the right predictors

• we use the right way to combine the predictors when we compute the mean of the responses

• we use the correct family of probability distributions to model the distribution of the actual responses
around their mean
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This is obviously not true. Thus, it is essential to keep in mind that we need to do model criticism
/ evaluation, i.e., model comparison, trying different classes of models (not only linear models as we do
here), running follow-up experiments, trying to bring more of the theoretical structure into your statistical
models etc.

We will only do a little bit of model comparison here, for example, we will compare the reg1 and reg2
models, which use only one predictor (height and gender, respectively) to model the response variable
(weight), with the model that takes into account both predictors – which is actually the true model we used
to simulate our data. But this process of model criticism and iterative model construction is as open-ended
as the process of scientific-theory construction; they are ultimately the same thing.

But for now, let’s assume (incorrectly) that our model reg1 is the true model, i.e., the model that nature
uses to generate weights given certain heights, and let’s try to estimate the population coefficients given
our sample and our CLT-based knowledge of sampling variation / sampling error.

5.1 The sampling error for the slope

(5) The sampling error for the slope depends on:
a. the spread around the regression line, i.e., the mean error measured “least-squares” style, i.e.,

(the square root of) the mean of the sum of squared residuals: the smaller the better
b. the spread of the predictor, i.e., the spread of the x1 values: the bigger the better
c. the size of the sample: the bigger the better

We used (5a) and (5c) to calculate the standard error of the mean. The new measure that is specific to
regression is (5b). Let’s examine them in turn.

5.1.1 The spread around the regression line, i.e., mean squared residuals: the smaller the better

> x.eg <- seq(120, 200, length = 100)
> par(mfrow = c(2, 1))
> y.eg <- x.eg + rnorm(100, 0, 5)
> plot(x.eg, y.eg, pch = 20, col = "blue", main = "Residual sd = 5")
> abline(lm(y.eg ~ x.eg), col = "red", lwd = 3)
> for (i in 1:15) {
+ index <- sample(1:100, 20)
+ abline(lm(y.eg[index] ~ x.eg[index]), lty = 5)
+ }
> y.eg <- x.eg + rnorm(100, 0, 25)
> plot(x.eg, y.eg, pch = 20, col = "blue", main = "Residual sd = 25")
> abline(lm(y.eg ~ x.eg), col = "red", lwd = 3)
> for (i in 1:15) {
+ index <- sample(1:100, 20)
+ abline(lm(y.eg[index] ~ x.eg[index]), lty = 5)
+ }
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> par(mfrow = c(1, 1))

5.1.2 The spread of the predictor values: the bigger the better

> x.eg <- seq(140, 160, length = 100)
> y.eg <- x.eg + rnorm(100, 0, 5)
> par(mfrow = c(2, 1))
> plot(x.eg, y.eg, pch = 20, col = "blue", xlim = range(120, 200), ylim = range(100,
+ 220), main = "x range: 140-160")
> abline(lm(y.eg ~ x.eg), col = "red", lwd = 3)
> for (i in 1:15) {
+ index <- sample(1:100, 20)
+ abline(lm(y.eg[index] ~ x.eg[index]), lty = 5)
+ }
> x.eg <- seq(120, 200, length = 100)
> y.eg <- x.eg + rnorm(100, 0, 5)
> plot(x.eg, y.eg, pch = 20, col = "blue", xlim = range(120, 200), ylim = range(100,
+ 220), main = "x range: 120-200")
> abline(lm(y.eg ~ x.eg), col = "red", lwd = 3)
> for (i in 1:15) {
+ index <- sample(1:100, 20)
+ abline(lm(y.eg[index] ~ x.eg[index]), lty = 5)
+ }
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> par(mfrow = c(1, 1))

5.1.3 The size of the sample: the bigger the better

> x.eg <- seq(120, 200, length = 100)
> y.eg <- x.eg + rnorm(100, 0, 15)
> par(mfrow = c(2, 1))
> n <- 5
> plot(x.eg, y.eg, pch = 20, col = "blue", xlim = range(120, 200), ylim = range(90,
+ 230), main = "n = 5")
> abline(lm(y.eg ~ x.eg), col = "red", lwd = 3)
> for (i in 1:15) {
+ index <- sample(1:100, n)
+ points(jitter(x.eg[index], 0.1), jitter(y.eg[index], 0.1), pch = 1,
+ cex = 0.4)
+ abline(lm(y.eg[index] ~ x.eg[index]), lty = 5)
+ }
> n <- 20
> plot(x.eg, y.eg, pch = 20, col = "blue", xlim = range(120, 200), ylim = range(90,
+ 230), main = "n = 20")
> abline(lm(y.eg ~ x.eg), col = "red", lwd = 3)
> for (i in 1:15) {
+ index <- sample(1:100, n)
+ points(jitter(x.eg[index], 0.1), jitter(y.eg[index], 0.1), pch = 1,
+ cex = 0.4)
+ abline(lm(y.eg[index] ~ x.eg[index]), lty = 5)
+ }
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> par(mfrow = c(1, 1))

5.1.4 Putting it all together

It turns out that these are the only 3 factors that affect the SE for the slope, which is:

(6) slope SE = residual sd
predictor sd ·

√
n−1

For our reg1 model, we have:

> sum.squared.residuals <- sum(summary(reg1)$residuals^2)
> sum.squared.residuals

[1] 2467

> mean.squared.residuals <- sum.squared.residuals/(length(y) - 2)
> mean.squared.residuals

[1] 25.17

> residual_sd <- sqrt(mean.squared.residuals)
> residual_sd

[1] 5.017

> summary(reg1)$sigma

[1] 5.017

> (se.slope <- residual_sd/(sd(x1) * sqrt(length(y) - 1)))

[1] 0.2021

> summary(reg1)$coefficients[2, 1:2]

Estimate Std. Error
2.8575 0.2021

If the sample is big enough (100 observations definitely counts as big enough in our case), the 95% CI
is obtained as we did for the mean, and also for the x2 coefficient. We can use either the standard normal
quantiles, or the t-distribution quantiles with the correct dof parameter. Since the dof parameter is high (98
dof.s), the two are very similar:

> (coef_x1 <- summary(reg1)$coefficients[2, 1])

[1] 2.857

> (SE_x1 <- summary(reg1)$coefficients[2, 2])

[1] 0.2021

> c(coef_x1 + qnorm(0.025) * SE_x1, coef_x1 + qnorm(0.975) * SE_x1)

[1] 2.461 3.254

> c(coef_x1 + qt(0.025, df = 98) * SE_x1, coef_x1 + qt(0.975, df = 98) *
+ SE_x1)

[1] 2.456 3.259

24



That is, the 95% CI for the population slope is roughly:

• (sample slope− 2 · slope SE, sample slope + 2 · slope SE)

If 0 is not in this interval, we are 95% confident that the predictor variable is statistically significant, i.e.,
we do significantly better at predicting y values if we take x1 into account than if we simply take the mean
of y as our model.

The probability of obtaining t-values at least as extreme as the one we observe is the p-value reported
by the reg1 output:

> grid_points <- seq(-(t_value_x1 + 0.5), t_value_x1 + 0.5, length.out = 1000)
> plot(grid_points, dt(grid_points, df = 98), type = "l", lwd = 4, main = "T-values at least as extreme as the observed one",
+ xlab = "", ylab = "Density of the t dist. with 98 dof.s", col = "darkblue")
> abline(v = -t_value_x1, lty = 2, lwd = 3)
> abline(v = t_value_x1, lty = 2, lwd = 3)
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> (t_value_x1 <- coef_x1/SE_x1)

[1] 14.14

> summary(reg1)$coef[2, 3]

[1] 14.14

> pt(-t_value_x1, df = 98)

[1] 1.065e-25

> 1 - pt(t_value_x1, df = 98)

[1] 0

> pt(-t_value_x1, df = 98) + 1 - pt(t_value_x1, df = 98)

[1] 0

> summary(reg1)$coef[2, 4]

[1] 2.13e-25

> pt(t_value_x1, df = 98) # this value is too close to 1 for our machine precision

[1] 1

> 2 * pt(-t_value_x1, df = 98) # alternative 1

[1] 2.13e-25

> summary(reg1)$coef[2, 4]

[1] 2.13e-25

> exp(log(2) + pt(-t_value_x1, df = 98, log.p = T)) # alternative 2 (switch to log scale)

[1] 2.13e-25

> pt(-t_value_x1, df = 98, log.p = T) # much more precision for log probability

[1] -57.5

> log(2) # and log(2) has enough precision too

[1] 0.6931

5.2 The sampling error for the intercept

Not very interesting. If the slope were 0, there would be no contribution from the x1 predictor and the
regression line would be horizontal and given by the intercept. And this would just be the mean of y, i.e.,
we would be back to the intercept-only / 1-mean only model, with the associated SE and 95% CI.

In general, if the slope is not 0, but the predictor (x1) value is 0, there is no contribution from the predictor
and, once again, the intercept is just the mean y.

This is why the intercept is meaningful when we have categorical predictor variables like x2. In that
case, the intercept is the mean for the x2 = 0 group, i.e., the mean of the so-called reference group, or
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control group.
But if we have a continuous predictor and its slope is not zero (i.e., the 95% CI does not include 0), the

intercept and its SE are not that meaningful. For example, in our case, the intercept would be the mean
weight (y) when the mean height (x1) is 0. But no person we will observe has a height of 0, so the intercept
doesn’t have a meaningful interpretation.

If we have a categorical predictor like x2, there are observations with the 0 value for this predictor: these
are all the observations in the reference / control group. So the intercept estimate and its associated SE are
meaningful in such cases. And it is interesting to see how the SE is obtained; we have provided the formula
for that in the previous set of lecture notes, but it is pretty complicated and we won’t discuss it in more
detail here.

5.3 Putting it all together: plotting predictions for linear regression models

But, whether we have continous or categorical predictors: the intercept is crucial to make correct predictions
and obtain CIs for them.

> library("HH")
> ci.plot(lm(y ~ x1), pch = 20, main = "", lwd = 2.5, xlab = expression(x[1]))
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Note how the 95% interval for predicted responses (red) is much wider than the 95% confidence interval
for the predicted mean (green). Why?

Also note how the CIs become increasingly wider as we move away from the mean of the x1 values
in our sample (marked as x̄ in the plot). We are less and less confident about our predictions the more
they involve extrapolation from, rather than simply interpolation between, the (x1, y) values observed in our
sample.
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In sum, our model for the population, i.e., the underlying pattern / generalization statistically inferred
from the sample, is:

> summary(reg1)

Call:
lm(formula = y ~ x1)

Residuals:
Min 1Q Median 3Q Max

-10.684 -3.621 0.208 3.920 11.788

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -18.931 13.026 -1.45 0.15
x1 2.857 0.202 14.14 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.02 on 98 degrees of freedom
Multiple R-squared: 0.671,Adjusted R-squared: 0.668
F-statistic: 200 on 1 and 98 DF, p-value: <2e-16

And we now know how to interpret pretty much everything in this detailed output.
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