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1 Second attempt: two means, i.e., predicting y values based on x2 val-
ues

We generate the data again (it will be slightly different from the data set we generated before).

> x1 <- rnorm(100, 64, 3)
> summary(x1)

Min. 1st Qu. Median Mean 3rd Qu. Max.
58.3 61.5 63.5 63.8 65.3 73.6

> x2 <- rbinom(100, 1, 0.5)
> sum(x2)

[1] 49

∗These notes have been generated with the ‘knitr’ package (Xie 2013) and are based on many sources, including but not limited to:
Abelson (1995), Miles and Shevlin (2001), Faraway (2004), De Veaux et al. (2005), Braun and Murdoch (2007), Gelman and Hill (2007),
Baayen (2008), Johnson (2008), Wright and London (2009), Gries (2009), Kruschke (2011), Diez et al. (2013), Gries (2013).
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> y <- x1 * 2.5 + x2 * 6 + rnorm(100, 0, 4)
> summary(y)

Min. 1st Qu. Median Mean 3rd Qu. Max.
142 155 163 163 169 184

> par(mfrow = c(1, 3))
> plot(density(x1), xlab = expression(x[1]), main = expression(x[1]),
+ ylab = "density")
> polygon(density(x1), col = "gray", border = "black")
> plot(as.factor(x2), col = "gray", xlab = expression(x[2]), main = expression(x[2]),
+ ylab = "frequency")
> plot(density(y), xlab = expression(y), main = expression(y), ylab = "density")
> polygon(density(y), col = "red", border = "black")
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> par(mfrow = c(1, 1))

We looked at the 1-mean model in the previous set of lecture notes:

> the_mean_model <- lm(y ~ 1)
> summary(the_mean_model)

Call:
lm(formula = y ~ 1)

Residuals:
Min 1Q Median 3Q Max

-20.229 -7.381 0.395 6.169 21.435
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 162.605 0.926 176 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 9.26 on 99 degrees of freedom

We now look at the two groups.

> y.x2 <- data.frame(y, x2)
> y.x2[1:10, ]

y x2
1 169.7 1
2 168.6 0
3 171.7 0
4 172.1 1
5 155.8 0
6 174.6 1
7 168.8 1
8 159.4 1
9 166.8 1
10 166.7 1

> sum(x2)

[1] 49

> split.y.x2 <- split(y.x2, x2)
> (y.0 <- split.y.x2$"0")

y x2
2 168.6 0
3 171.7 0
5 155.8 0
11 152.2 0
12 157.6 0
14 165.5 0
19 163.4 0
21 163.2 0
22 157.0 0
25 151.2 0
26 146.8 0
27 161.6 0
28 153.6 0
29 184.0 0
31 152.4 0
32 163.8 0
34 163.0 0
35 159.4 0
36 145.6 0
37 151.9 0
38 142.4 0
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39 157.0 0
42 172.7 0
45 167.3 0
50 170.0 0
51 149.2 0
54 152.2 0
56 151.9 0
59 150.2 0
61 148.0 0
62 153.8 0
66 163.9 0
68 166.2 0
69 175.3 0
71 157.5 0
72 153.0 0
75 166.4 0
76 168.3 0
78 168.8 0
79 183.3 0
81 155.4 0
82 154.2 0
83 147.3 0
84 149.6 0
85 169.1 0
86 149.2 0
91 174.6 0
94 164.2 0
95 171.3 0
97 154.6 0
98 154.4 0

> (y.1 <- split.y.x2$"1")

y x2
1 169.7 1
4 172.1 1
6 174.6 1
7 168.8 1
8 159.4 1
9 166.8 1
10 166.7 1
13 157.7 1
15 162.9 1
16 155.4 1
17 163.4 1
18 179.0 1
20 161.7 1
23 169.6 1
24 162.9 1
30 170.2 1
33 164.5 1
40 169.2 1
41 157.2 1
43 174.1 1
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44 169.7 1
46 165.6 1
47 165.3 1
48 161.5 1
49 158.7 1
52 156.8 1
53 171.4 1
55 181.3 1
57 154.4 1
58 147.9 1
60 161.8 1
63 180.0 1
64 179.3 1
65 163.0 1
67 165.9 1
70 168.3 1
73 167.4 1
74 162.5 1
77 162.1 1
80 154.4 1
87 182.2 1
88 159.8 1
89 167.4 1
90 165.1 1
92 154.6 1
93 158.5 1
96 156.7 1
99 177.0 1
100 166.1 1

> nrow(y.1)

[1] 49

> sum(x2)

[1] 49

> par(mfrow = c(1, 2))
> plot(y.0$y, pch = 20, col = "blue", xlim = c(0, 100), ylim = range(y),
+ ylab = "y", main = expression(paste("y by ", x[2])))
> abline(mean(y.0$y), 0, col = "blue", lwd = 2)
> points(as.numeric(row.names(y.1)), y.1$y, pch = 20, col = "red")
> abline(mean(y.1$y), 0, col = "red", lwd = 2)
> round(mean(y.0$y), 3)

[1] 159.8

> round(mean(y.1$y), 3)

[1] 165.5

> round(mean(y.1$y) - mean(y.0$y), 3)

[1] 5.722

> plot(as.factor(x2), y, col = "lightblue", ylim = range(y), xlab = expression(x[2]),
+ ylab = "y", main = expression(paste("y by ", x[2])))
> abline(mean(y.0$y), 0, col = "blue", lwd = 2)
> abline(mean(y.1$y), 0, col = "red", lwd = 2)
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> par(mfrow = c(1, 1))

Let’s compare the errors for the 1-mean and the 2-mean models numerically:

> residuals <- y - mean(y)
> sum(residuals^2)

[1] 8488

> residuals.0 <- y.0$y - mean(y.0$y)
> residuals.1 <- y.1$y - mean(y.1$y)
> sum(c(residuals.0, residuals.1)^2)

[1] 7670

2 The two-mean linear (regression) model

Let’s look at the linear model that has x2 as a predictor in addition to the intercept:

> reg2 <- lm(y ~ 1 + x2)
> summary(reg2)
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Call:
lm(formula = y ~ 1 + x2)

Residuals:
Min 1Q Median 3Q Max

-17.659 -6.844 -0.738 5.737 24.238

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 159.80 1.24 129.00 <2e-16 ***
x2 5.72 1.77 3.23 0.0017 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.85 on 98 degrees of freedom
Multiple R-squared: 0.0964,Adjusted R-squared: 0.0872
F-statistic: 10.5 on 1 and 98 DF, p-value: 0.00167

It is actually equivalent, and shorter, to write the lm formula without an explicit intercept. By default,
the lm function will assume that we want to include the intercept:

> reg2 <- lm(y ~ x2)
> summary(reg2)

Call:
lm(formula = y ~ x2)

Residuals:
Min 1Q Median 3Q Max

-17.659 -6.844 -0.738 5.737 24.238

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 159.80 1.24 129.00 <2e-16 ***
x2 5.72 1.77 3.23 0.0017 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.85 on 98 degrees of freedom
Multiple R-squared: 0.0964,Adjusted R-squared: 0.0872
F-statistic: 10.5 on 1 and 98 DF, p-value: 0.00167

We’ll examine the reg2 output more closely very soon. For now, let’s understand how we obtain the
intercept and x2 coefficients.

> summary(reg2)$coef[2, 1:2]

Estimate Std. Error
5.722 1.770

The intercept of the reg2 model is just the mean of the x2 = 0 group, and the x2 coefficient is the
difference between the mean of the x2 = 1 group and the intercept:
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> mean(y.0$y)

[1] 159.8

> mean(y.1$y)

[1] 165.5

> mean(y.1$y) - mean(y.0$y)

[1] 5.722

> summary(reg2)$coef[1:2, 1:2]

Estimate Std. Error
(Intercept) 159.802 1.239
x2 5.722 1.770

The SEs for these coefficient estimates are derived as shown below. Let’s not worry about these formulas,
we will understand them a bit better later on when we discuss the model that has x1 as its sole predictor.

> sum_squared_errors_total <- sum((y.0$y - mean(y.0$y))^2) + sum((y.1$y -
+ mean(y.1$y))^2)
> variance_total <- sum_squared_errors_total/(length(y.0$y) + length(y.1$y) -
+ 2)
> variance_total

[1] 78.27

> sd_total <- sqrt(variance_total)
> sd_total

[1] 8.847

> sum_squared_errors_predictor <- sum((x2 - mean(x2))^2)
> se_intercept <- sd_total/sqrt(length(y)) * sqrt(sum(x2^2)/sum_squared_errors_predictor)
> se_intercept

[1] 1.239

> se_x2 <- sd_total/sqrt(sum_squared_errors_predictor)
> se_x2

[1] 1.77

> summary(reg2)$coef[1:2, 1:2]

Estimate Std. Error
(Intercept) 159.802 1.239
x2 5.722 1.770

3 Analysis of Variance (ANOVA)

We can compare the 2-mean model with the 1-mean model by doing an analysis of variance (ANOVA).
That is, we will ask and answer the question:
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• is the 2-mean model better than the 1-mean model, i.e., does keeping track of the variable x2 signifi-
cantly reduce the error?

> anova(the_mean_model, reg2)

Analysis of Variance Table

Model 1: y ~ 1
Model 2: y ~ x2

Res.Df RSS Df Sum of Sq F Pr(>F)
1 99 8488
2 98 7670 1 818 10.4 0.0017 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Let’s unpack the output of the above call to anova. We first compute the squared error within the two
groups, or simply, the squared error within:

> squared.error.2MEAN <- sum(residuals.0^2) + sum(residuals.1^2)
> squared.error.2MEAN

[1] 7670

We then compute the total squared error:

> squared.error.1MEAN <- sum(residuals^2)
> squared.error.1MEAN

[1] 8488

Finally, we compute the difference between the above two squared errors, which is the squared error
between the two groups, or simply, the squared error between:

> squared.error.difference <- squared.error.1MEAN - squared.error.2MEAN
> round(squared.error.difference)

[1] 818

This difference between the two squared errors is the part of the total error that is accounted for /
eliminated by grouping, i.e., by keeping track of the variable x2.

We now compute the mean squared error within and the mean squared error between. We do this for
the same reason we computed the mean squared error for the 1-mean model: we’re trying to quantify the
error of the model, which should be the same whether we have 100 or 1000 observations.

The mean squared error within is computed as follows:

> mean.squared.error.within <- squared.error.2MEAN/(length(y) - 2)
> mean.squared.error.within

[1] 78.27

We subtract 2 from the total number of observations because we estimated 2 means (2 parameters) as
part of the computation of the squared error within. We therefore ‘spent’ two degrees of freedom (dof.s).

The mean squared error between is obtained by dividing the squared error between, i.e., the difference
between total squared error and the squared error within, by the number of extra means / parameters we
use when we compute the squared error within (2 parameters, i.e., the means for the 2 groups) relative
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to the means / parameters we use when we compute the total squared error (1 parameter, i.e., the grand
mean):

> mean.squared.error.between <- squared.error.difference/(2 - 1)
> mean.squared.error.between

[1] 818.1

Now we reason as follows. If the variable x2 does not have any effect, i.e., if there aren’t actually 2
groups in the sample but only 1, the between-group error should be the same as the within-group error. We
call this our null hypothesis, or H0:

(1) H0: mean squared error between = mean squared error within

This is our null hypothesis because we assume that whatever difference we see between the two groups
is not actually there, but it is simply what we expect given ‘regular’ random variation between two (sub)samples
from the same population.

It turns out that we need to formulate the null hypothesis in ratio form to be able to test it for statistical
significance, i.e., to test how likely our sample is given the sole assumption of random variation:

(2) H0: mean squared error between
mean squared error within = 1

This ratio is our test statistic, i.e., the statistic / number that we calculate from our sample and that we
test for statistical significance. This is the F value in the anova output.

> F_value <- mean.squared.error.between/mean.squared.error.within
> F_value

[1] 10.45

We call this an F value because we will test it against a probability distribution from the family of F
distributions, also know as Snedecor’s F distribution, or the FisherâĂŞSnedecor distribution (after Ronald
Fisher and George Snedecor).

F distributions have two degree-of-freedom (dof) parameters, and they are exactly the numbers dof.s
we used above to calculate the mean squared error between and the mean squared error within, namely 1
and 98 dof.s, respectively:

> plot(density(rf(1e+06, 1, 98)), lwd = 3, col = "darkblue", main = "An F distribution with 1 and 98 degrees of freedom",
+ xlab = "F values", xlim = c(0, F_value + 0.5))
> abline(v = F_value, lwd = 2, lty = 2)
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We use the F distribution to estimate the probability of getting our F value (the ratio we obtained from
our sample), or an even more extreme F value, under the null hypothesis that the F value is simply due to
random variation and we don’t really have two distinct groups / subpopulations in the population from
which we drew our sample. This is the p-value (probability value) reported in the anova output:

> 1 - pf(mean.squared.error.between/mean.squared.error.within, 1, 98)

[1] 0.001669

> anova(the_mean_model, reg2)

Analysis of Variance Table

Model 1: y ~ 1
Model 2: y ~ x2

Res.Df RSS Df Sum of Sq F Pr(>F)
1 99 8488
2 98 7670 1 818 10.4 0.0017 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

4 T-tests: the simple version of the F-test we can use for single categor-
ical parameters

Let’s examine the reg2 output more closely and take stock:

> print(summary(reg2), dig = 3)
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Call:
lm(formula = y ~ x2)

Residuals:
Min 1Q Median 3Q Max

-17.659 -6.844 -0.738 5.737 24.238

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 159.80 1.24 129.00 <2e-16 ***
x2 5.72 1.77 3.23 0.0017 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.85 on 98 degrees of freedom
Multiple R-squared: 0.0964,Adjusted R-squared: 0.0872
F-statistic: 10.5 on 1 and 98 DF, p-value: 0.00167

First, the 5-number summary for the residuals is listed. The residuals are (basically) the same as the
ones we computed by hand:

> print(summary(c(residuals.0, residuals.1)), dig = 3)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-17.700 -6.840 -0.738 0.000 5.740 24.200

We then have the coefficient estimates, and their SEs (we’ll discuss t-values and their associated p-values
in a moment):

> print(summary(reg2)$coef[, 1:2], dig = 3)

Estimate Std. Error
(Intercept) 159.80 1.24
x2 5.72 1.77

The intercept estimate is the mean for the y responses for the x2 = 0 group, while the x2 estimate is
the difference between the y responses for the x2 = 0 group and the y responses for the x2 = 1 group. More
precisely, it’s the deflection of the mean for the x2 = 1 group relative to the intercept, i.e., relative to the
mean for the x2 = 0 group:

> round(mean(y.0$y), 2)

[1] 159.8

> round(mean(y.1$y) - mean(y.0$y), 2)

[1] 5.72

> round(cumsum(summary(reg2)$coef[, 1]), 2)

(Intercept) x2
159.8 165.5

> round(c(mean(y.0$y), mean(y.1$y)), 2)

[1] 159.8 165.5
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We then see the residual standard error and the associated degrees of freedom (dof.s). The residual
standard error is the square root of the variance / mean squared error, and the variance is obtained by
summing the squared residuals and dividing that sum by the dof.s, i.e., the number of observations (100)
minus the number of means / parameters we estimated (2 means, one for each of the x2 groups):

> residual.variance <- sum(c(residuals.0, residuals.1)^2)/(100 - 2)
> residual.sd <- sqrt(residual.variance)
> residual.sd

[1] 8.847

> summary(reg2)$sigma

[1] 8.847

We will discuss R-squared soon, let’s just look at the last line of the reg2 output. This reports the F-value
(F-statistic), the dof.s and p-value we obtained when we compared the reg2 model and the 1-mean-only /
intercept-only model by means of an analysis of variance:

> summary(reg2)

Call:
lm(formula = y ~ x2)

Residuals:
Min 1Q Median 3Q Max

-17.659 -6.844 -0.738 5.737 24.238

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 159.80 1.24 129.00 <2e-16 ***
x2 5.72 1.77 3.23 0.0017 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.85 on 98 degrees of freedom
Multiple R-squared: 0.0964,Adjusted R-squared: 0.0872
F-statistic: 10.5 on 1 and 98 DF, p-value: 0.00167

> anova(the_mean_model, reg2)

Analysis of Variance Table

Model 1: y ~ 1
Model 2: y ~ x2

Res.Df RSS Df Sum of Sq F Pr(>F)
1 99 8488
2 98 7670 1 818 10.4 0.0017 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

An important thing to note is that the p-value obtained from the F-test / analysis of variance, is the
same as the p-value associated with the x2 coefficient estimate, and the t-value associated with that same
coefficient is just the square root of our F-value:
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> summary(reg2)$coef[2, ]

Estimate Std. Error t value Pr(>|t|)
5.721540 1.769724 3.233012 0.001669

> summary(reg2)$fstatistic

value numdf dendf
10.45 1.00 98.00

> c(sqrt(summary(reg2)$fstatistic[1]), summary(reg2)$coef[2, 3])

value
3.233 3.233

> c(1 - pf(summary(reg2)$fstatistic[1], summary(reg2)$fstatistic[2],
+ summary(reg2)$fstatistic[3]), summary(reg2)$coef[2, 4])

value
0.001669 0.001669

That is, the t-value and p-value associated with a non-intercept coefficient are really just model compar-
isons between the model that includes that parameter and the model that is exactly the same except it does
not include that parameter.

T-testing is just a simple version of F-testing, namely F-testing for two models that differ in only one
parameter. We introduced F-tests first and we’ll keep focusing on them because they can also be used to
compare models that differ in more than one parameter. But we will show how we can compute the t-value
and associated p-value directly.

The null hypothesis is not phrased in terms of a t-distribution of the difference between means:

(3) H0: the difference between the group x2 = 0 and x2 = 1 is 0, that is, the two groups are not different

Again, this is our null hypothesis because we assume that whatever difference we see between the two
groups is not actually there, but it is simply what we expect given ‘regular’ random variation between two
(sub)samples from the same population.

So we want to determine how likely it would be to see a difference as big as we observed in our sample
data or even bigger if the mean difference would really be 0, and it would be distributed according to a
t-distribution with 98 dof.s (100 observations minus the 2 means we are estimating).

We do this by first computing the t-value based on our coefficient estimate and its SE, and then seeing
how extreme that t-value given the t-distribution with the appropriate number of dof.s.

Let’s compute the t-value first: this the coefficient estimate divided by its SE (this is an instance of
‘standardization’, we’ll talk about it soon):

> summary(reg2)$coef[2, ]

Estimate Std. Error t value Pr(>|t|)
5.721540 1.769724 3.233012 0.001669

> (coef_x2 <- summary(reg2)$coef[2, 1])

[1] 5.722

> (SE_x2 <- summary(reg2)$coef[2, 2])

[1] 1.77

> (t_value_x2 <- coef_x2/SE_x2)

[1] 3.233
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We now see how extreme this t-value is by checking how much probability there is under the t-distribution
curve for values at least as extreme as our t-value (both negative and positive values):

> grid_points <- seq(-7, 7, length.out = 1000)
> plot(grid_points, dt(grid_points, df = 98), type = "l", lwd = 4, main = "T-values at least as extreme as the observed one",
+ xlab = "", ylab = "Density of the t dist. with 98 dof.s", col = "darkblue")
> abline(v = -t_value_x2, lty = 2, lwd = 3)
> abline(v = t_value_x2, lty = 2, lwd = 3)
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The probability of obtaining t-values at least as extreme as the one we observe is the p-value reported
by the reg2 output:

> pt(-t_value_x2, df = 98)

[1] 0.0008347

> 1 - pt(t_value_x2, df = 98)

[1] 0.0008347

> pt(-t_value_x2, df = 98) + 1 - pt(t_value_x2, df = 98)

[1] 0.001669

> summary(reg2)$coef[2, 4]

[1] 0.001669

Since this probability is really small, we reject the null hypothesis.
Note however that t-values and associated p-values are not very informative compared to computing

the 95% CI for the difference, which we compute given the coefficient estimate and the associated SE:
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> coef_x2

[1] 5.722

> SE_x2

[1] 1.77

> c(coef_x2 + qt(0.025, df = 98) * SE_x2, coef_x2 + qt(0.975, df = 98) *
+ SE_x2)

[1] 2.210 9.234

Since this 95% CI for the difference (which is computed based on the same t-distribution as the above
t-test) clearly excludes 0, we can very confidently reject the null hypothesis that the difference is actually 0.

But in addition to rejecting the null hypothesis, this 95% CI gives us a lot more information: it indicates
what magnitude we can expect for the difference. The t-test and its t-value and p-value say nothing about
this, they only tell us if a difference of 0 is plausible or not!

Thus, there are two reasons we don’t care that much about t-tests:

• they are really special versions of F-tests, and the model comparisons they enable us to do are very
limited compared to the generality of the F-test

• we can get a lot more information by computing a t-distribution based CI

There is a function explicitly dedicated to t-tests in R, whose output is similar to the lm based output:

> t.test(y.1$y, y.0$y, var.equal = T)

Two Sample t-test

data: y.1$y and y.0$y
t = 3.233, df = 98, p-value = 0.001669
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
2.210 9.234

sample estimates:
mean of x mean of y

165.5 159.8

> summary(reg2)

Call:
lm(formula = y ~ x2)

Residuals:
Min 1Q Median 3Q Max

-17.659 -6.844 -0.738 5.737 24.238

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 159.80 1.24 129.00 <2e-16 ***
x2 5.72 1.77 3.23 0.0017 **
---
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Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.85 on 98 degrees of freedom
Multiple R-squared: 0.0964,Adjusted R-squared: 0.0872
F-statistic: 10.5 on 1 and 98 DF, p-value: 0.00167

Note that t.test computes the 95% CI for us.
But the only real reason for using the t.test function rather than the lm function is that the former does

not necessarily assume that the variances of the two groups whose means we are comparing are equal:

> t.test(y.1$y, y.0$y, var.equal = F)

Welch Two Sample t-test

data: y.1$y and y.0$y
t = 3.248, df = 94.88, p-value = 0.00161
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
2.224 9.219

sample estimates:
mean of x mean of y

165.5 159.8

In our case, the variances are definitely equal – our responses y incorporate the same Gaussian noise
(standard deviation = 4, hence variance = 42) for both the x2 = 0 and the x2 = 1 group.

So the results of running the t-test with the assumption of equal variances (which is what lm always
does) or without that assumption are very similar.

Finally, a question for you: what is the t-test / hypothesis test for the intercept that is reported in the
reg2 output and why is that test completely unrealistic, which makes the resulting p-value completely
uninteresting / uninformative despite the fact that it is very highly significant?

> summary(reg2)

Call:
lm(formula = y ~ x2)

Residuals:
Min 1Q Median 3Q Max

-17.659 -6.844 -0.738 5.737 24.238

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 159.80 1.24 129.00 <2e-16 ***
x2 5.72 1.77 3.23 0.0017 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.85 on 98 degrees of freedom
Multiple R-squared: 0.0964,Adjusted R-squared: 0.0872
F-statistic: 10.5 on 1 and 98 DF, p-value: 0.00167

You should now also read chapter 8 of Gonick and Smith (1993), and at least skim chapter 9.
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5 Third attempt: “many” means, i.e., predicting y values based on x1

values

Note: “many means” is just a pedagogical aid. Making the continuous variable x1 categorical (with what-
ever number of bins) is usually not a good idea.

What is really happening here is that there is one dependency of the response y on the continuous vari-
able x1, and this is how we will treat this mathematically (under the hood). For example, estimating the
coefficient for x1 will only ‘consume’ one dof, not “many” dof.s.

But it might be intuitively useful to think of the continuous variable x1 as providing many y means, one
for each possible value of x1.

Before we run our linear (regression) model for weight (y) with height (x1) as its only predictor, let’s
take a look at the data. We plot weight (y) against height (x1):

> plot(x1, y, pch = 20, col = "blue", xlab = expression(paste(x[1],
+ " (height in in)")), ylab = "y (weight in lbs)", main = "Scatterplot of weight against height")
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• direction of the cloud of points

• form / shape: linear, curving once, curving twice etc.

• amount of scatter

• outliers

It is even better to examine the standardized plot:

(4) Standardized plot: center both variables at their respective means and rescale variables by their
respective standard deviations; see the discussion of the z-transform in Gonick and Smith (1993),
chapter 5.

Standardization centers the plot at the origin and ensures that the two axes have the same unit of mea-
surement:

> plot((x1 - mean(x1))/sd(x1), (y - mean(y))/sd(y), pch = 20, col = "blue",
+ xlab = expression(paste("standardized ", x[1])), ylab = "standardized y")
> abline(v = 0, col = "lightblue")
> abline(h = 0, col = "lightblue")
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> par(mfrow = c(1, 2))
> plot(x1, y, pch = 20, col = "blue", xlim = range(c(x1, -x1)), ylim = range(c(y,
+ -y)), xlab = expression(x[1]))
> abline(v = 0, col = "lightblue")
> abline(h = 0, col = "lightblue")
> plot((x1 - mean(x1))/sd(x1), (y - mean(y))/sd(y), pch = 20, col = "blue",
+ xlab = expression(paste("standardized ", x[1])), ylab = "standardized y",
+ xlim = range(c(x1, -x1)), ylim = range(c(y, -y)))
> abline(v = 0, col = "lightblue")
> abline(h = 0, col = "lightblue")
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> par(mfrow = c(1, 1))

Let’s now run our linear regression model:

> reg1 <- lm(y ~ x1)
> summary(reg1)

Call:
lm(formula = y ~ x1)

Residuals:
Min 1Q Median 3Q Max

-12.956 -4.385 0.526 3.746 13.156

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 12.893 9.976 1.29 0.2
x1 2.347 0.156 15.03 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.12 on 98 degrees of freedom
Multiple R-squared: 0.697,Adjusted R-squared: 0.694
F-statistic: 226 on 1 and 98 DF, p-value: <2e-16

Just as before, the coefficients, and in particular the x1 coefficient, a.k.a. the slope, are chosen so that the
sum of squared errors is minimized.
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6 Comparing reg1 with the 1-mean model

We will now compare the reg1 and the 1-mean / intercept-only model. We can compare them visually by
plotting the regression line, the mean line and the errors associated with each line, as follows:

> par(mfrow = c(2, 1), mai = c(1.02, 0.82, 0.22, 0.22))
> plot(x1, y, pch = 20, col = "darkblue", xlab = expression(x[1]))
> abline(mean(y), 0, col = "darkred", lwd = 2)
> abline(reg1, lwd = 2)
> segments(x1, y, x1, reg1$fitted.values, col = "blue", lty = 2)
> plot(x1, y, pch = 20, col = "darkblue", xlab = expression(x[1]))
> abline(reg1, lwd = 2)
> abline(mean(y), 0, col = "darkred", lwd = 2)
> segments(x1, y, x1, mean(y), col = "red", lty = 2)
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> par(mfrow = c(1, 1), mai = c(1.02, 0.82, 0.82, 0.42))

Visually, we see that the total length of the segments in the first plot (which are the errors for the reg1
model) is smaller than the total length of the segments in the second plot (the errors for the intercept-only
model). When we compare the squared errors, what we do geometrically is compare areas, not just lengths
– and if the difference in lengths is so clear, the difference in areas (not plotted) would be even more striking.

So let’s turn to an ANOVA comparing the two models in terms of their squared errors:

> anova(the_mean_model, reg1)

Analysis of Variance Table

Model 1: y ~ 1
Model 2: y ~ x1

Res.Df RSS Df Sum of Sq F Pr(>F)
1 99 8488
2 98 2569 1 5919 226 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note that the p-value for the x1 coefficient (i.e., the slope of the regression line) is the same in the ANOVA
and the regression output. This value indicates whether the slope value is statistically significant, i.e.,
whether the model that keeps track of the x1 values is better than the simplest possible model, which is the
1-mean / intercept-only model.

Let’s compute the numbers reported in the ANOVA table by hand so that we can understand better
what they mean. First, this is the squared error within, i.e., within the model / not accounted for by the
model:

> squared.error.reg1 <- round(sum((summary(reg1)$residuals)^2))
> squared.error.reg1

[1] 2569

This is the total squared error:

> squared.error.1MEAN <- sum((y - mean(y))^2)
> round(squared.error.1MEAN)

[1] 8488

Therefore, the squared error between, i.e., the part of the total error that is accounted for / eliminated
by keeping track of the variable x1, is:

> squared.error.difference <- squared.error.1MEAN - squared.error.reg1
> squared.error.difference

[1] 5919

We can now compute the mean squared errors within and between that we need to get the F-ratio /
F-value / F-statistic for our sample:

> mean.squared.error.within <- squared.error.reg1/(length(y) - 2)
> mean.squared.error.within

[1] 26.21
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> mean.squared.error.between <- squared.error.difference/(2 - 1)
> mean.squared.error.between

[1] 5919

If the variable x1 does not have any effect, the between error should be the same as the within error:

(5) H0: mean squared error between = mean squared error within

(6) H0 (in ratio form): mean squared error between
mean squared error within = 1

This ratio is our test statistic, namely the F-value in the anova output:

> mean.squared.error.between/mean.squared.error.within

[1] 225.8

This is an extremely large F-value relative to the F-distribution with 1 and 98 degrees of freedom (see
the plot above for this distribution). The p-value is therefore very small and we are very confident that we
can reject the null hypothesis. We therefore conclude that x1 (height) is a highly significant predictor of y
(weight) given our sample.

> 1 - pf(mean.squared.error.between/mean.squared.error.within, 1, 98)

[1] 0

> anova(reg1)

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

x1 1 5919 5919 226 <2e-16 ***
Residuals 98 2569 26
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

7 The intercept and slope coefficients

The coefficients for the intercept and the x1 variable, i.e., slope, are chosen so that they minimize the squared
error. This general principle applies here in the same way as for the previous two models (the intercept-only
model and the reg2 model).

> summary(reg1)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 12.893 9.9761 1.292 1.993e-01
x1 2.347 0.1562 15.027 3.529e-27

> (reg1.slope <- summary(reg1)$coefficients[2, 1])

[1] 2.347

> (reg1.intercept <- summary(reg1)$coefficients[1, 1])

[1] 12.89

25



7.1 Alternative slopes

We can see this by looking at alternative slopes and computing the squared error associated with them.

> (alternative.slopes <- seq(reg1.slope - 2, reg1.slope + 2, length.out = 49))

[1] 0.3473 0.4306 0.5139 0.5973 0.6806 0.7639 0.8473 0.9306 1.0139 1.0973
[11] 1.1806 1.2639 1.3473 1.4306 1.5139 1.5973 1.6806 1.7639 1.8473 1.9306
[21] 2.0139 2.0973 2.1806 2.2639 2.3473 2.4306 2.5139 2.5973 2.6806 2.7639
[31] 2.8473 2.9306 3.0139 3.0973 3.1806 3.2639 3.3473 3.4306 3.5139 3.5973
[41] 3.6806 3.7639 3.8473 3.9306 4.0139 4.0973 4.1806 4.2639 4.3473

> alternative.slopes[25] == reg1.slope

[1] TRUE

> (errors.for.alternatives <- numeric(length = 49))

[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[36] 0 0 0 0 0 0 0 0 0 0 0 0 0 0

> for (i in 1:49) {
+ errors.for.alternatives[i] <- sum((y - (reg1.intercept + (alternative.slopes[i] *
+ x1)))^2)
+ }
> errors.for.alternatives

[1] 1634119 1500989 1373524 1251725 1135590 1025120 920316 821177
[9] 727702 639893 557749 481270 410457 345308 285824 232006

[17] 183852 141364 104541 73383 47890 28062 13899 5401
[25] 2569 5401 13899 28062 47890 73383 104541 141364
[33] 183852 232006 285824 345308 410457 481270 557749 639893
[41] 727702 821177 920316 1025120 1135590 1251725 1373524 1500989
[49] 1634119

> plot(alternative.slopes, errors.for.alternatives, type = "l", ylab = "sum of squared residuals",
+ xlab = "slopes")
> points(reg1.slope, sum((summary(reg1)$residuals)^2), pch = 20, col = "blue")
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7.2 Alternative intercepts

Similarly, we can look at alternative intercepts:

> (alternative.intercepts <- seq(reg1.intercept - 30, reg1.intercept +
+ 30, length.out = 49))

[1] -17.1072 -15.8572 -14.6072 -13.3572 -12.1072 -10.8572 -9.6072
[8] -8.3572 -7.1072 -5.8572 -4.6072 -3.3572 -2.1072 -0.8572

[15] 0.3928 1.6428 2.8928 4.1428 5.3928 6.6428 7.8928
[22] 9.1428 10.3928 11.6428 12.8928 14.1428 15.3928 16.6428
[29] 17.8928 19.1428 20.3928 21.6428 22.8928 24.1428 25.3928
[36] 26.6428 27.8928 29.1428 30.3928 31.6428 32.8928 34.1428
[43] 35.3928 36.6428 37.8928 39.1428 40.3928 41.6428 42.8928

> alternative.intercepts[25] == reg1.intercept

[1] TRUE

> (errors.for.alternatives <- numeric(length = 49))

[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[36] 0 0 0 0 0 0 0 0 0 0 0 0 0 0

> for (i in 1:49) {
+ errors.for.alternatives[i] <- sum((y - (alternative.intercepts[i] +
+ (reg1.slope * x1)))^2)
+ }
> errors.for.alternatives
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[1] 92569 85225 78194 71475 65069 58975 53194 47725 42569 37725 33194
[12] 28975 25069 21475 18194 15225 12569 10225 8194 6475 5069 3975
[23] 3194 2725 2569 2725 3194 3975 5069 6475 8194 10225 12569
[34] 15225 18194 21475 25069 28975 33194 37725 42569 47725 53194 58975
[45] 65069 71475 78194 85225 92569

> plot(alternative.intercepts, errors.for.alternatives, type = "l",
+ ylab = "sum of squared residuals", xlab = "intercepts")
> points(reg1.intercept, sum((summary(reg1)$residuals)^2), pch = 20,
+ col = "blue")

−10 0 10 20 30 40

0
20

00
0

60
00

0

intercepts

su
m

 o
f s

qu
ar

ed
 r

es
id

ua
ls

●

7.3 Alternative intercepts and slopes

And we can also look at alternative slopes and intercepts simultaneously:

> (alternative.slopes <- seq(reg1.slope - 2, reg1.slope + 2, length.out = 49))

[1] 0.3473 0.4306 0.5139 0.5973 0.6806 0.7639 0.8473 0.9306 1.0139 1.0973
[11] 1.1806 1.2639 1.3473 1.4306 1.5139 1.5973 1.6806 1.7639 1.8473 1.9306
[21] 2.0139 2.0973 2.1806 2.2639 2.3473 2.4306 2.5139 2.5973 2.6806 2.7639
[31] 2.8473 2.9306 3.0139 3.0973 3.1806 3.2639 3.3473 3.4306 3.5139 3.5973
[41] 3.6806 3.7639 3.8473 3.9306 4.0139 4.0973 4.1806 4.2639 4.3473

> (alternative.intercepts <- seq(reg1.intercept - 30, reg1.intercept +
+ 30, length.out = 49))

[1] -17.1072 -15.8572 -14.6072 -13.3572 -12.1072 -10.8572 -9.6072
[8] -8.3572 -7.1072 -5.8572 -4.6072 -3.3572 -2.1072 -0.8572

[15] 0.3928 1.6428 2.8928 4.1428 5.3928 6.6428 7.8928
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[22] 9.1428 10.3928 11.6428 12.8928 14.1428 15.3928 16.6428
[29] 17.8928 19.1428 20.3928 21.6428 22.8928 24.1428 25.3928
[36] 26.6428 27.8928 29.1428 30.3928 31.6428 32.8928 34.1428
[43] 35.3928 36.6428 37.8928 39.1428 40.3928 41.6428 42.8928

> alt.sl <- rep(alternative.slopes, each = 49)
> alt.int <- rep(alternative.intercepts, 49)
> errors.for.alternatives <- numeric(length = 49 * 49)
> for (i in 1:(49 * 49)) {
+ errors.for.alternatives[i] <- sum((y - (alt.int[i] + (alt.sl[i] *
+ x1)))^2)
+ }
> library("scatterplot3d")
> par(mfrow = c(2, 1))
> s3d <- scatterplot3d(alt.sl, alt.int, errors.for.alternatives, highlight.3d = TRUE,
+ col.axis = "blue", col.grid = "lightblue", pch = 20, type = "p",
+ angle = 120, lab = c(3, 3, 3), mar = c(3, 3, 3, 3))
> s3d$points3d(reg1.slope, reg1.intercept, sum((summary(reg1)$residuals)^2),
+ col = "green", type = "h", pch = 20)
> s3d <- scatterplot3d(alt.sl, alt.int, errors.for.alternatives, highlight.3d = TRUE,
+ col.axis = "blue", col.grid = "lightblue", pch = " ", lwd = 2,
+ type = "h", lty.hplot = 1, angle = 45, lab = c(3, 3, 3), mar = c(3,
+ 3, 3, 3))
> s3d$points3d(reg1.slope, reg1.intercept, sum((summary(reg1)$residuals)^2),
+ col = "green", type = "p", pch = 20)
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