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Probability and the Structure of Plausible Inference

“Probability is not really about numbers but about the structure
of reasoning.” (Glenn Shafer, cited in Pearl 1988, p. 77)
Reasoning about what? We implicitly took a frequentist
perspective:

• Probability is plausible reasoning about (hypothetical)
repeated sampling under (basically) identical conditions
and about the long-term frequencies of the sample
statistics (i.e., the sample features of interest) that arise.

• E.g., repeated coin flips or repeated sequences thereof,
repeated sampling of students to study their eye and hair
color, repeated measurement of reading time for
sentences with two quantifiers etc.

“The significant point is that the initial circumstances [under
which we obtained the actual data/sample] are assumed to be
capable of indefinite repetition.” (Cox 1946, p. 1)
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Probability and the Structure of Plausible Inference

The Bayesian answer is that probability is reasoning about the
plausibility of propositions/beliefs on their own and given other
propositions/beliefs:

• E.g., a box contains 2 white balls and 1 black ball and we
are exclusively concerned with a single trial in which a
blindfolded man extracts a ball from the box. How confident
are we that the proposition A white ball is extracted is true?

• A reasonable expectation about/confidence in the truth of
this proposition is 2/3, i.e., the same answer as the
frequentist would give.

• Our corresponding confidence in the truth of the
proposition A black ball is extracted is 1/3.

• Our odds, i.e., the relative confidence in the truth of these
propositions, are the ratio of our reasonable expectations
about their truth, i.e., of our probabilities: 2/3

1/3 = 2/1.

4



Probability and the Structure of Plausible Inference

“If it could be shown that every measure of reasonable
expectation is also a frequency [. . . ] and that every frequency
[. . . ] measures a reasonable expectation, then the choice of
one or the other as the primary meaning of probability would
not be very important.” (Cox 1946, p. 2) But:

• “There are probabilities in the sense of reasonable
expectations for which no [frequency] exists and [. . . ] if one
is conceived, it is clearly no more than a convenient mental
artifice.” (Cox 1946, p. 2) We can decide that probability
theory should be used for these too – the Bayesian choice,
or that it shouldn’t – the frequentist choice.

• “Moreover, there is so gradual a transition from the cases
in which there is a discoverable [frequency] and those in
which there is none that a theory that requires a sharp
distinction between them [has] difficulties” (Cox 1946, p. 2)
This is a conceptual argument for the Bayesian choice.
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Probability and the Structure of Plausible Inference

Consider for example (again, all from Cox 1946):

1. the probability that the number of heads thrown in a certain
number of tosses of an unbiased coin lies within certain
limits—the number of heads varies from one trial to
another and frequencies and reasonable expectations are
basically identical here
just as in the case of the box with 2 white balls and 1 black ball

2. the probability that the true value of a physical constant lies
within certain limits—the value of the constant is unique,
we speak of probability here only because our knowledge
is incomplete, i.e., only as reasonable expectation
although this probability might be equivalent to another
probability that the error of the average of a number of
measurements lies within certain limits—which can be easily
understood in terms of frequencies
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Probability and the Structure of Plausible Inference

Finally, consider:

3. the case of a purely mathematical constant whose existence has
been proved but the value determined only within certain limits,
e.g., that large enough integers can be expressed as sums of a
small number of cubes, namely 4, 5, 6, 7 or 8, but we don’t know
which;

evidence based on computations indicates that integers
requiring 8 cubes drop out early in the progress to higher
integers, those requiring 7 cubes disappear later on etc.

we can speak of the probability that the least number of
cubes necessary for expressing large enough integers is 4;
this is a reasonable expectation/belief in a proposition;
it’s much harder to find an equivalent probability that can
be readily understood in terms of repeated sampling and
corresponding frequencies.
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Probability and the Structure of Plausible Inference

“It must be admitted that there is a kind of reasoning common to all
these examples. The gambler in the first example, the physicist in the
second [. . . ] and the mathematician in the [third] are all using similar
processes of inference. [. . . ]

This difficulty of the frequency theory of probability may now be
summarized. There is a field of probable inference which lies outside
the range of that theory. The derivation of the rules of probability by
ordinary algebra from the characteristics of [repeated sampling]
cannot justify the use of these rules in this outside field.

The use of these rules in this field appears to be a fundamental part
of our reasoning. Thus, the frequency theory [. . . ] fails to justify what
is conceived to be a legitimate use of its own rules.” (Cox 1946,
pp. 3-4)

8



Probability and the Structure of Plausible Inference

“It must be admitted that there is a kind of reasoning common to all
these examples. The gambler in the first example, the physicist in the
second [. . . ] and the mathematician in the [third] are all using similar
processes of inference. [. . . ]

This difficulty of the frequency theory of probability may now be
summarized. There is a field of probable inference which lies outside
the range of that theory. The derivation of the rules of probability by
ordinary algebra from the characteristics of [repeated sampling]
cannot justify the use of these rules in this outside field.

The use of these rules in this field appears to be a fundamental part
of our reasoning. Thus, the frequency theory [. . . ] fails to justify what
is conceived to be a legitimate use of its own rules.” (Cox 1946,
pp. 3-4)

8



Probability and the Structure of Plausible Inference

“It must be admitted that there is a kind of reasoning common to all
these examples. The gambler in the first example, the physicist in the
second [. . . ] and the mathematician in the [third] are all using similar
processes of inference. [. . . ]

This difficulty of the frequency theory of probability may now be
summarized. There is a field of probable inference which lies outside
the range of that theory. The derivation of the rules of probability by
ordinary algebra from the characteristics of [repeated sampling]
cannot justify the use of these rules in this outside field.

The use of these rules in this field appears to be a fundamental part
of our reasoning. Thus, the frequency theory [. . . ] fails to justify what
is conceived to be a legitimate use of its own rules.” (Cox 1946,
pp. 3-4)

8



Probability and the Structure of Plausible Inference

“In what follows, I [. . . ] show that by employing the algebra of
symbolic logic [i.e., classical sentential logic] it is possible to
derive the rules of probability from two quite primitive notions,
which are independent of the concept of [frequency] and which,
as I think, appeal rather immediately to common sense.” (Cox
1946, pp. 3-4)

We assume the following classical sentential operators:

• negation ∼, e.g., ∼ϕ
• conjunction ·, e.g., ϕ · ψ
• disjunction ∨, e.g., ϕ ∨ ψ
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Probability and the Structure of Plausible Inference

Their probabilistic interpretation satisfies the expected standard
equivalences:

p(∼∼ϕ) = p(ϕ)

p(ϕ · ϕ) = p(ϕ) p(ϕ ∨ ϕ) = p(ϕ)

p((ϕ · ψ) · χ) = p(ψ · (ϕ · χ)) p((ϕ ∨ ψ) ∨ χ) = p(ψ ∨ (ϕ ∨ χ))
p(ϕ · ψ) = p(ψ · ϕ) p(ϕ ∨ ψ) = p(ψ ∨ ϕ)

p(∼(ϕ · ψ)) = p(∼ϕ ∨ ∼ψ) p(∼(ϕ ∨ ψ)) = p(∼ϕ · ∼ψ)
p(ϕ · (ϕ ∨ ψ)) = p(ϕ) p(ϕ ∨ (ϕ · ψ)) = p(ϕ)
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Probability and the Structure of Plausible Inference

To this, we add the conditional probability operator | , e.g.,
ϕ | ψ.

To derive the rules of probability, Cox (1946) shows that we only
need to make the following two assumptions about the meaning
of conditionalization:

• p(χ · ψ | ϕ) is uniquely determined by (is a function of)
p(ψ | ϕ) and p(χ | ψ · ϕ)

• p(∼ψ | ϕ) is uniquely determined by (is a function of)
p(ψ | ϕ)
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Probability and the Structure of Plausible Inference

It is intuitively clear that p(∼ψ | ϕ), i.e., the probability/reasonable
expectation about the truth of ∼ψ given ϕ, should be uniquely
determined by the probability of ψ given ϕ.
Any other assumption would be at least as complicated.

But what about the other assumption? Why not let p(χ · ψ | ϕ) be
uniquely determined solely by p(ψ | ϕ) and p(χ | ϕ)?
Because ψ and χ might not be independent: “It is plausible that the
next person you meet has a brown right eye. It is plausible that the
next person you meet has a blue left eye. But it is not plausible at all
that the next person you meet will have a brown right eye and a blue
left eye.” (Jaynes 2003)

But if they are independent, the assumption can be automatically
simplified: “It is plausible that the next person you meet has blue
eyes. It is plausibile that the next person you meet has black hair. It is
reasonably plausible that the next person you meet will have blue
eyes and black hair.” (Jaynes 2003) [ignoring what we learned about
eye and hair color from Snee 1974]
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Deductive Inference is Preserved

In the resulting probabilistic logic, deductive reasoning is
preserved: it is the limiting form of reasoning under uncertainty.

• Modeling weak/plausible inference patterns doesn’t mean
we make the deductive part of our logic weaker, i.e., we
reason over certainty (classical truth) and impossibility
(classical falsity) in the same way.

• We retain propositional logic validities and deductive
inference patterns.

• Classical logic is not inconsistent with how we reason
probabilistically, just insufficient for modeling the entire
space of inferences we make.
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Deductive Inference is Preserved: Modus Ponens

Modus ponens
A→ B If Digby is a dog, then Digby likes french fries.
A Digby is a dog.

|= B Therefore, Digby likes french fries.

We let A→ B := ∼A ∨ B.

• p(A · B | A→ B) = p(A | A→ B)p(B | A · (A→ B)) (mult.
rule)

• hence: p(B | A · (A→ B)) = p(A·B | A→B)
p(A | A→B) = p(A·B | ∼A∨B)

p(A | ∼A∨B)

• p(A · B | ∼A ∨ B) = p(A·B·(∼A∨B))
p(∼A∨B) = p((A·B·∼A)∨(A·B·B))

p(∼A∨B) =
p((A·∼A)∨(A·B))

p(∼A∨B) = p(A·(∼A∨B))
p(∼A∨B) = p(A | ∼A ∨ B)

• so: p(B | A · (∼A ∨ B)) = p(B | A · (A→ B)) = 1
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Deductive Inference is Preserved: Modus Tollens

Modus tollens
A→ B If Digby makes his own french fries,

then Digby is smarter than the average dog.
∼B Digby is not smarter than the average dog.

|= ∼A Therefore, Digby does not make his own french fries.

Again, we let A→ B := ∼A ∨ B.

• p(A· ∼B | A→ B) = p(∼B | A→ B)p(A | ∼B · (A→ B))
(mult. rule)

• hence: p(A | ∼B · (A→ B)) = p(A·∼B | A→B)
p(∼B | A→B) = p(A·∼B | ∼A∨B)

p(∼B | ∼A∨B)

• p(A· ∼B | ∼A∨B) = p(A·∼B·(∼A∨B))
p(∼A∨B) = p((A·∼B·∼A)∨(A·∼B·B))

p(∼A∨B) =
p((A·∼A)∨(∼B·B))

p(∼A∨B) = 0
p(∼A∨B) = 0

• so: p(A | ∼B · (A→ B)) = 0
p(∼B | ∼A∨B) = 0
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Patterns of Plausible Inference Beyond Classical Logic
We also get patterns of non-deductive, but plausible inference that
we use in scientific or common-sense reasoning.

Two simple ones first:

• if p(A | C · D) > p(A | C) and p(B | A · C · D) = p(B | A · C), then
p(A · B | C ·D) ≥ p(A · B | C) – if we get additional information D
(relative to the current info C) that makes A more plausible, but
the plausibility of B remains the same, then A · B can be no less
plausible than it was before we learned D

• if p(A | C · D) > p(A | C), then p(∼A | C · D) < p(∼A | C) –
additional information that makes A more plausible automatically
makes ∼A less plausible.

“When you have eliminated the impossible, whatever remains,
however improbable, must be the truth”: when we reduce belief
in certain possibilities, we necessarily increase belief in the
remaining ones.
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Patterns of Plausible Inference Beyond Classical Logic

Affirming the Consequent
A→ B If it will start to rain at 10 AM tomorrow,

the sky will be cloudy shortly before 10 AM.
B The sky is cloudy shortly before 10 AM.

|= A Therefore, (it is more plausible that)
it will start to rain at 10 AM.

• p(A | A→ B)p(B | A · (A→ B)) =
p(B | A→ B)p(A | B · (A→ B)) (mult. rule)

• hence: p(A | B·(A→B))
p(A | A→B) = p(B | A·(A→B))

p(B | A→B)

• p(B | A · (A→ B)) = 1 (modus ponens) and
p(B | A→ B) ≤ 1

• so p(A | B · (A→ B)) ≥ p(A | A→ B)
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Patterns of Plausible Inference Beyond Classical Logic

Denying the Antecedent
A→ B If Digby rolls over on command,

Ryan gives him a treat.
∼A Digby didn’t roll over on command.

|= ∼B Therefore, Ryan didn’t give him a treat.

• p(∼A | A→ B)p(B | ∼A · (A→ B)) =
p(B | A→ B)p(∼A | B · (A→ B)) (mult. rule)

• hence: p(B | ∼A·(A→B))
p(B | A→B) = p(∼A | B·(A→B))

p(∼A | A→B)

• p(A | B · (A→ B)) ≥ p(A | A→ B) (affirm. conseq.), hence
p(∼A | B · (A→ B)) ≤ p(∼A | A→ B)

• therefore, p(B | ∼A · (A→ B)) ≤ p(B | A→ B)

• so p(∼B | ∼A · (A→ B)) ≥ p(∼B | A→ B)
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Patterns of Plausible Inference Beyond Classical Logic

While Affirming the Consequent and Denying the
Antecedent are not valid in classical sentential logic, they are
intuitively justified.

They become even better when insert a probability adverbial in
the consequent.

• “If it will start to rain at 10 AM tomorrow, the sky will be
cloudy shortly before 10 AM. The sky is cloudy shortly
before 10 AM. Therefore, it will probably rain.”

• “If Digby rolls over on command, Ryan gives him a treat.
Digby didn’t roll over on command. Therefore, Ryan
probably didn’t give him a treat.”

We like even weaker inference patterns . . .
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Patterns of Plausible Inference Beyond Classical Logic

Affirming the Conseq. of Weaker/Plausible Implications
A →PLAUSIBLY B It’s plausible that

if a man has recently escaped from prison,
he’ll be wearing handcuffs and an orange jumpsuit.

B That man is wearing handcuffs
and an orange jumpsuit.

|=PLAUSIBLY A Therefore, he plausibly recently escaped from prison.

Interpret A→PLAUSIBLY B given background information C as:
p(B | A · C) > p(B | C).
Interpret the conclusion of the argument given the premise B as:
p(A | B · C) > p(A | C). This is what we need to establish.

• p(A | C) · p(B | A · C) = p(B | C) · p(A | B · C) (mult. rule)

• hence: p(A | C)
p(A | B·C) =

p(B | C)
p(B | A·C)

• since p(B | C) < p(B | A · C), we have that
p(A | C) < p(A | B · C)
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Probability Theory as the Logic of Data Analysis
While none of these inferences are classically valid, they are fine if
our goal is inference to the best explanation and not logically validity.

• common sense = probabilistic inference + prior information

But not only common-sense:

• scientific investigation (e.g., data analysis) = probabilistic
inference + prior info that a skeptical audience agrees with

E.g., hierarchical/‘random-effects’ models are simply conjoined
conditional probabilities of the form p(A|B)p(B|C) in which we have
an ‘intermediate’ reasoning layer B, e.g.:

• the unobserved differences between subjects/items B (the
subject/item ‘random-effects’)

• . . . that are conditional on the unobserved parameters C of the
subject/item population

• . . . and that condition the observed experimental data A
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