Quantitative Methods in Linguistics - Lecture 3

Adrian Brasoveanu*

March 30, 2014

Contents

1 Basic graphics 1
2 Data frames 14
2.1 Saving a data frame to a file 16
2.2 Attaching and detaching data frames 17
3 Subsetting data frames 18
3.1 Ordering data frames 20
4 Lists 25
5 Character / String Processing 31
6 More graphics 34
7 The Brown Corpus 41

This set of notes is primarily based on Gries (2009).

1 Basic graphics

```
> x <- c(12, 15, 13, 20, 14, 16, 10, 10, 8, 15)
```

A histogram:
> hist (x)

[^0]Histogram of \mathbf{x}

A barplot:
> barplot(table(x))

More examples, with random draws from a standard normal distribution (mean 0, standard deviation 1):

```
> (x <- rnorm(100))
```

[1]	0.845301	-0.199772	0.106276	-0.976770	-0.367035	-0.578024	-0.495093
[8]	1.030432	0.262994	-0.271282	0.465825	0.098610	-0.321201	-1.388742
$[15]$	0.426482	-1.529441	-0.801854	0.070597	-0.259960	-1.793569	1.037764
$[22]$	-0.207403	-0.018258	-0.474986	1.440564	-0.776740	1.241672	-0.150820
$[29]$	-0.100256	1.202047	-0.426188	-0.517240	-0.408189	-1.341080	-0.826932
[36]	1.884596	-0.839588	-0.903386	-1.778865	0.646681	-0.594170	0.298103
[43]	-0.592905	-0.493830	-0.160872	-0.743094	0.373379	-1.148508	1.664974
$[50]$	-1.931484	0.295470	0.539638	-0.713888	-0.400541	-2.008621	0.724535
$[57]$	-0.433387	-0.175161	-0.372436	0.059841	-0.225299	0.756914	-0.327854
[64]	1.010017	0.347977	1.535635	-1.983544	0.551478	-0.735119	1.880514
[71]	-0.160039	0.593391	1.725170	0.236377	-0.738011	0.439917	-1.024118
[78]	-1.048861	-0.242941	1.943652	-1.940562	0.102366	1.772543	-1.247889
[85]	0.989730	1.126204	1.543079	0.085151	-0.007284	0.571254	0.037215
$[92]$	-0.864348	-0.350355	0.868444	-0.875253	-2.321914	0.820119	-1.011135
$[99]$	1.971407	-0.014549					

Histogram of x


```
> x <- rnorm(1000)
> hist(x)
```


Histogram of \mathbf{x}

A histogram and the corresponding density plot:

```
> par(mfrow = c(1, 2))
> x <- rnorm(10000)
> hist(x)
> plot(density(x))
```

Histogram of x

density.default($x=x$)

> \# ?density
> \# ?density
> par(mfrow = c(1, 1))
> par(mfrow = c(1, 1))

The two together - note the freq=F option passed to the hist function:

```
> hist(x, col = "lightgreen", freq = F)
> lines(density(x), lwd = 2)
```

Histogram of \mathbf{x}


```
> # ?lines
```

A scatterplot:
$>(x<-\operatorname{seq}(1,10))$
[1] $\begin{array}{lllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
$>\left(y<-\left(x^{\wedge} 2\right)-(10 * x)\right)$

> plot(x, y)


```
> plot(x, y, type = "l")
```



```
> plot(x, y, type = "b")
```


$>(x<-\operatorname{seq}(1,10$, by $=0.2))$

[29] $6.6\left[\begin{array}{llllllllllll}6.8 & 7.0 & 7.2 & 7.4 & 7.6 & 7.8 & 8.0 & 8.2 & 8.4 & 8.6 & 8.8 & 9.0\end{array} 9.2\right.$
$\begin{array}{lllll}{[43]} & 9.4 & 9.6 & 9.8 & 10.0\end{array}$
$>\left(y<-\left(x^{\wedge} 2\right)-(10 * x)\right)$
[1] $-9.00-10.56-12.04-13.44-14.76-16.00-17.16-18.24-19.24-20.16$
[11] $-21.00-21.76-22.44-23.04-23.56-24.00-24.36-24.64-24.84-24.96$
[21] $-25.00-24.96-24.84-24.64-24.36-24.00-23.56-23.04-22.44-21.76$
[31] $-21.00-20.16-19.24-18.24-17.16-16.00-14.76-13.44-12.04-10.56$
$\begin{array}{lllllll}{[41]} & -9.00 & -7.36 & -5.64 & -3.84 & -1.96 & 0.00\end{array}$
> plot(x, y)


```
> plot(x, y, type = "l")
```



```
> curve(expr = sin, from = 0, to = 6 * pi)
```



```
> curve((x^2) - (10 * x), from = 1, to = 10)
```



```
> par(mfrow = c(1, 2))
> (x <- seq(1, 10, by = 0.2))
    [1] 1.0 1.2 1.4 1.6 1.8
[15] 3.8 4.0 4.2 4.4 4.6 4.8
[29] 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4 8.6 8.8 9.0
[43] 9.4 9.6 9.8 10.0
> (y <- (x^2) - (10 * x))
    [1] -9.00 -10.56 -12.04 -13.44 -14.76 -16.00 -17.16 -18.24 -19.24 -20.16
[11] -21.00 -21.76 -22.44 -23.04 -23.56 -24.00 -24.36 -24.64 -24.84 -24.96
[21] -25.00 -24.96 -24.84 -24.64 -24.36 -24.00 -23.56 -23.04 -22.44 -21.76
[31] -21.00 -20.16 -19.24 -18.24 -17.16 -16.00 -14.76 -13.44 -12.04 -10.56
[41] -9.00 -7.36 -5.64 -3.84 -1.96 0.00
> plot(x, y, type = "l")
> curve((x^2) - (10 * x), from = 1, to = 10)
```


$>\operatorname{par}(m f r o w=c(1,1))$
$>\operatorname{par}(m f r o w=c(1,2)$, mai $=c(1.02,0.92,0.82,0.42))$
> plot(x, y, type = "l", ylab = expression(x^2 - 10 * x))
$>\operatorname{curve}\left(\left(x^{\wedge} 2\right)-(10 * x)\right.$, from $=1$, to $=10, y l a b=$ expression $\left(x^{\wedge} 2-\right.$
$+\quad 10 * x)$)

$>\operatorname{par}($ mfrow $=c(1,1)$, mai $=c(1.02,0.82,0.82,0.42))$
> \# ?rbinom
> (a <- rbinom(100, 1, 0.5))
[1] $1011 \begin{array}{llllllllllllllllllllllllllllllll} & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0\end{array}$

$>\operatorname{sum}(\mathrm{a})$
[1] 51

```
> a <- rbinom(10000, 100, 0.5)
> hist(a)
```

Histogram of a


```
> hist(a, probability = TRUE)
> lines(density(a))
```

Histogram of a


```
> hist(a, probability = TRUE, col = "lightblue", border = "white", main = "A prob. distribution",
+ xlab = "value", ylab = "probability", breaks = 30)
> # ?hist
> lines(density(a), col = "darkblue", lwd = 3)
```


A prob. distribution

2 Data frames

```
> rm(list = ls(all = T)) # clear workspace
> PartOfSpeech <- c("ADJ", "ADV", "N", "CONJ", "PREP")
> TokenFrequency <- c(421, 337, 1411, 458, 455)
> TypeFrequency <- c(271, 103, 735, 18, 37)
> Class <- c("open", "open", "open", "closed", "closed")
> x <- data.frame(PartOfSpeech, TokenFrequency, TypeFrequency, Class)
>x
    PartOfSpeech TokenFrequency TypeFrequency Class
\begin{tabular}{rrrrr}
1 & ADJ & 421 & 271 & open \\
2 & ADV & 337 & 103 & open \\
3 & N & 1411 & 735 & open \\
4 & CONJ & 458 & 18 & closed \\
5 & PREP & 455 & 37 & closed
\end{tabular}
> y <- c(5, 4, 3, 2, 1)
> z <- data.frame(x, y)
str(x)
'data.frame': 5 obs. of 4 variables:
```

```
    $ PartOfSpeech : Factor w/ 5 levels "ADJ","ADV","CONJ",..: 1 2 4 3 5
    $ TokenFrequency: num 421 337 1411 458 455
    $ TypeFrequency : num 271 103 735 18 37
    $ Class : Factor w/ 2 levels "closed","open": 2 2 2 1 1
> summary(x)
    PartOfSpeech TokenFrequency TypeFrequency Class
    ADJ :1 Min. : 337 Min. : 18 closed:2
    ADV :1 1st Qu.: 421 1st Qu.: 37 open :3
    CONJ:1 Median : 455 Median :103
    N :1 Mean : 616 Mean :233
    PREP:1 3rd Qu.: 458 3rd Qu.:271
        Max. :1411 Max. :735
> x$PartOfSpeech
[1] ADJ ADV N CONJ PREP
Levels: ADJ ADV CONJ N PREP
> str(x$PartOfSpeech)
    Factor w/ 5 levels "ADJ","ADV","CONJ",..: 1 2 4 3 5
> summary(x$PartOfSpeech)
\begin{tabular}{rrrrr} 
ADJ & ADV & CONJ & N & PREP \\
1 & 1 & 1 & 1 & 1
\end{tabular}
> x$foo <- c(5, 4, 3, 2, 1)
> x
    PartOfSpeech TokenFrequency TypeFrequency Class foo
1 ADJ 421 271 open 5
2 ADV 337 103 open 4
3 N 1411 735 open 3
4 CONJ 458 18 closed 2
> x$bar <- x$foo * 2
> x
    PartOfSpeech TokenFrequency TypeFrequency Class foo bar
\begin{tabular}{lrrrrrr}
1 & ADJ & 421 & 271 & open & 5 & 10 \\
2 & ADV & 337 & 103 & open & 4 & 8 \\
3 & N & 1411 & 735 & open & 3 & 6 \\
4 & CONJ & 458 & 18 & closed & 2 & 4 \\
5 & PREP & 455 & 37 & closed & 1 & 2
\end{tabular}
> (x.2 <- data.frame(TokenFrequency, TypeFrequency, Class, row.names = PartOfSpeech))
\begin{tabular}{lrrr} 
& TokenFrequency & TypeFrequency & Class \\
ADJ & 421 & 271 & open \\
ADV & 337 & 103 & open \\
N & 1411 & 735 & open \\
CONJ & 458 & 18 & closed \\
PREP & 455 & 37 & closed
\end{tabular}
```

```
>str(x.2)
'data.frame': 5 obs. of 3 variables:
    $ TokenFrequency: num 421 337 1411 458 455
    $ TypeFrequency : num 271 103 735 18 37
    $ Class : Factor w/ 2 levels "closed","open": 2 2 2 1 1
> x.2$PartOfSpeech
NULL
> row.names(x.2)
[1] "ADJ" "ADV" "N" "CONJ" "PREP"
> names(x.2)
[1] "TokenFrequency" "TypeFrequency" "Class"
```


2.1 Saving a data frame to a file

```
> PartOfSpeech <- c("ADJ", "ADV", "N", "CONJ", "PREP")
> TokenFrequency <- c(421, 337, 1411, 458, 455)
> TypeFrequency <- c(271, 103, 735, 18, 37)
> Class <- c("open", "open", "open", "closed", "closed")
> (x <- data.frame(PartOfSpeech, TokenFrequency, TypeFrequency, Class))
\begin{tabular}{lrrrr} 
& PartOfSpeech TokenFrequency & TypeFrequency & Class \\
1 & ADJ & 421 & 271 & open \\
2 & ADV & 337 & 103 & open \\
3 & N & 1411 & 735 & open \\
4 & CONJ & 458 & 18 & closed \\
5 & PREP & 455 & 37 & closed
\end{tabular}
> write.table(x, file = "dataframe.txt", append = F, sep = "\t", eol = "\n",
+ na = "NA", dec = ".", quote = F, row.names = F, col.names = T)
> rm(list = ls(all = T))
> ls()
character(0)
> (x <- read.table(file = "dataframe.txt", header = T, sep = "\t", comment.char = ""))
\begin{tabular}{lrrrr} 
& PartOfSpeech & TokenFrequency & TypeFrequency & Class \\
1 & ADJ & 421 & 271 & open \\
2 & ADV & 337 & 103 & open \\
3 & N & 1411 & 735 & open \\
4 & CONJ & 458 & 18 & closed \\
5 & PREP & 455 & 37 & closed
\end{tabular}
```

```
> # View(x)
```

> \# View(x)
> str(x)

```
> str(x)
```

```
'data.frame': 5 obs. of 4 variables:
    $ PartOfSpeech : Factor w/ 5 levels "ADJ","ADV","CONJ",..: 1 2 4 3 5
    $ TokenFrequency: int 421 337 1411 458 455
    $ TypeFrequency : int 271 103 735 18 37
    $ Class : Factor w/ 2 levels "closed","open": 2 2 2 1 1
> x$TokenFrequency
[1] }421 327 1411 458 455
> x$Class
[1] open open open closed closed
Levels: closed open
> write.csv(x, "dataframe.csv", row.names = F)
> rm(list = ls(all = T))
> ls()
character(0)
> (x <- read.csv("dataframe.csv"))
\begin{tabular}{lrrrr} 
& PartOfSpeech TokenFrequency & TypeFrequency & Class \\
1 & ADJ & 421 & 271 & open \\
2 & ADV & 337 & 103 & open \\
3 & N & 1411 & 735 & open \\
4 & CONJ & 458 & 18 & closed \\
5 & PREP & 455 & 37 & closed
\end{tabular}
>str(x)
'data.frame': 5 obs. of 4 variables:
$ PartOfSpeech : Factor w/ 5 levels "ADJ","ADV","CONJ",..: 1 2 4 3 5
$ TokenFrequency: int 421 337 1411 458 455
$ TypeFrequency : int 271 103 735 18 37
$ Class : Factor w/ 2 levels "closed","open": 2 2 2 1 1
```


2.2 Attaching and detaching data frames

Warning: attach data frames sparingly - if ever!

```
> attach(x)
> Class
[1] open open open closed closed
Levels: closed open
> TokenFrequency[4] <- 20
> TokenFrequency
[1] 421 337 1411 
> x$TokenFrequency
[1] }42
```

```
> TokenFrequency[4] <- 458
> detach(x)
> Class
Error: object 'Class' not found
> x$Class
[1] open open open closed closed
Levels: closed open
```


3 Subsetting data frames


```
[1] open closed
Levels: closed open
> x
    PartOfSpeech TokenFrequency TypeFrequency Class
1 ADJ 421 271 open
2 ADV 337 103 open
N N 1411 735 open
4 CONJ 458 18 closed
5 PREP 455 37 closed
> x[c(1, 3), c(2, 4)]
    TokenFrequency Class
1 421 open
3 1411 open
> which(x[, 2] > 450)
[1] 345
> which(x[2, ] > 2)
Warning: > not meaningful for factors
Warning: > not meaningful for factors
[1] 2 3
>(y <- x[, 2])
[1] }421 321 337 1411 458 45
> x$TokenFrequency
[1] }421 321 337 1411 458 45
> y[which(x[, 2] > 450)]
[1] 1411 458 455
> x$TokenFrequency[which(x[, 2] > 450)]
[1] 1411 458 455
> x$TokenFrequency[which(x$TokenFrequency > 450)]
[1] 1411 458 455
> x[, 2][which(x[, 2] > 450)]
[1] 1411 458 455
> x[, 3][x[, 3] > 100]
[1] 271 103 735
> x$TypeFrequency[x$TypeFrequency > 100]
```

[1] $271 \quad 103 \quad 735$

	PartOfSpeech	TokenFrequency	TypeFrequency	Class
1	ADJ	421	271	open
2	ADV	337	103	open
3	N	1411	735	open
> (y <- x[which (x\$Class == "open"),])				
PartOfSpeech TokenFrequency TypeFrequency Class				
1	ADJ	421	271	open
2	ADV	337	103	open
3	N	1411	735	open
> (y <- subset(x, Class == "open"))				
PartOfSpeech TokenFrequency TypeFrequency Class				
1	ADJ	421	271	open
2	ADV	337	103	open
3	N	1411	735	open
> (y <- subset(x, Class == "open" \& TokenFrequency < 1000))				
PartOfSpeech TokenFrequency TypeFrequency Class				
1	ADJ	421	271	open
2	ADV	337	103	open
> (y <- subset(x, PartOfSpeech \%in\% c("ADJ", "ADV")))				
PartOfSpeech TokenFrequency TypeFrequency Class				
1	ADJ	421	271	open
2	ADV	337	103	open

3.1 Ordering data frames

	PartOfS	peech	Toke	Fre	uency	TypeFrequency	Class
1		ADJ			421	271	open
2		ADV			337	103	open
3		N			1411	735	open
4		CONJ			458	18	closed
5		PREP			455	37	closed
> x \$TokenFrequency							
[1] $424313371411 \quad 458 \quad 455$							
> order (x\$TokenFrequency)							
[1] 21543							
> x\$TokenFrequency [order (x\$TokenFrequency)]							

[1]	-421	-337	-1411	-458	-455

> order (-x\$TokenFrequency)
[1] 34512
> $\mathrm{x} \$$ TokenFrequency[order (-x\$TokenFrequency)]
[1] $1411 \quad 458 \quad 455 \quad 421 \quad 337$
> (ordering.index <- order(x\$TypeFrequency))
[1] 45213
> x[ordering.index,]

	PartOfSpeech TokenFrequency	TypeFrequency	Class	
4	CONJ	458	18	closed
5	PREP	455	37	closed
2	ADV	337	103	open
1	ADJ	421	271	open
3	N	1411	735	open

```
> x$Class
```

[1] open open open closed closed
Levels: closed open
> str (x\$Class)
Factor w/ 2 levels "closed","open": 22211
> order (x\$Class)
[1] 45123
> x\$Class[order(x\$Class)]
[1] closed closed open open open
Levels: closed open
> (ordering.index <- order(x\$Class))
[1] 45123
> x[ordering.index,]

	PartOfSpeech TokenFrequency	TypeFrequency	Class	
4	CONJ	458	18	closed
5	PREP	455	37	closed
1	ADJ	421	271	open
2	ADV	337	103	open
3	N	1411	735	open

> (ordering.index <- order(x\$Class, x\$TokenFrequency))
[1] 54213

> x[ordering.index,]			
	PartOfSpeech TokenFrequency	TypeFrequency	Class
5	PREP	455	37
closed			
4	CONJ	458	18
closed			
2	ADV	337	103
open			
1	ADJ	421	271
open			
3	N	1411	735
open			

[1] 45312
> x[ordering.index,]

	PartOfSpeech	TokenFrequency	TypeFrequency	Class
4	CONJ	458	18	closed
5	PREP	455	37	closed
3	N	1411	735	open
1	ADJ	421	271	open
2	ADV	337	103	open

> x[order(x\$Class, -x\$TokenFrequency),]

	PartOfSpeech	TokenFrequency	TypeFrequency	Class
4	CONJ	458	18	closed
5	PREP	455	37	closed
3	N	1411	735	open
1	ADJ	421	271	open
2	ADV	337	103	open
> $\mathrm{x}[\operatorname{order}(\mathrm{x}[, 4],-x[, 2]), \mathrm{l}$				
PartOfSpeech TokenFrequency TypeFrequency				Class
4	CONJ	458	18	closed
5	PREP	455	37	closed
3	N	1411	735	open
1	ADJ	421	271	open
2	ADV	337	103	open
> x				
PartOfSpeech TokenFrequency TypeFrequency				Class
1	ADJ	421	271	open
2	ADV	337	103	open
3	N	1411	735	open
4	CONJ	458	18	closed
5	PREP	455	37	closed
	$\operatorname{dim}(\mathrm{x})$			

[1] 54
> (no.of.rows <- dim(x)[1])
[1] 5
> (no.of.columns <- dim(x)[2])
[1] 4
> (ordering.index <- sample(no.of.rows))
[1] 25143

	PartOfSpeech	TokenFrequency	TypeFrequency	Class
2	ADV	337	103	open
5	PREP	455	37	closed
1	ADJ	421	271	open
4	CONJ	458	18	closed
3	N	1411	735	open
> $\mathrm{x}[\mathrm{sample}(\operatorname{dim}(\mathrm{x})[1]), \mathrm{l}$				
	PartOfSpeech	TokenFrequency	TypeFrequency	Class
2	ADV	337	103	open
3	N	1411	735	open
1	ADJ	421	271	open
5	PREP	455	37	closed
4	CONJ	458	18	closed

```
> x$Class
```

[1] open open open closed closed
Levels: closed open
> sort(x\$Class)
[1] closed closed open open open
Levels: closed open
> x\$PartOfSpeech
[1] ADJ ADV N CONJ PREP
Levels: ADJ ADV CONJ N PREP
> sort(x\$PartOfSpeech)
[1] ADJ ADV CONJ N PREP
Levels: ADJ ADV CONJ N PREP
> x\$PartOfSpeech
[1] ADJ ADV N CONJ PREP
Levels: ADJ ADV CONJ N PREP
> rank(x\$PartOfSpeech)
[1] 12435
> order (rank(x\$PartOfSpeech))
[1] 12435
> x\$PartOfSpeech[order (rank(x\$PartOfSpeech))]
[1] ADJ ADV CONJ N PREP
Levels: ADJ ADV CONJ N PREP
> ordering.index <- order(rank(x\$PartOfSpeech))
> x[ordering.index,]

	PartOfSpeech	TokenFrequency	TypeFrequency	Class
1	ADJ	421	271	open
2	ADV	337	103	open
4	CONJ	458	18	closed
3	N	1411	735	open
5	PREP	455	37	closed

> x\$PartOfSpeech
[1] ADJ ADV N CONJ PREP
Levels: ADJ ADV CONJ N PREP
> rank(x\$PartOfSpeech)
[1] 12435
> -rank(x\$PartOfSpeech)

```
[1] -1 
> x$PartOfSpeech[order(-rank(x$PartOfSpeech))]
[1] PREP N CONJ ADV ADJ
Levels: ADJ ADV CONJ N PREP
> sort(x$PartOfSpeech, decreasing = T)
[1] PREP N CONJ ADV ADJ
Levels: ADJ ADV CONJ N PREP
> ordering.index <- order(-rank(x$PartOfSpeech))
> x[ordering.index, ]
\begin{tabular}{rrrr} 
PartOfSpeech & TokenFrequency & TypeFrequency & Class \\
PREP & 455 & 37 & closed \\
\(N\) & 1411 & 735 & open \\
CONJ & 458 & 18 & closed \\
ADV & 337 & 103 & open \\
ADJ & 421 & 271 & open
\end{tabular}
> ordering.index <- order(rank(x$Class), rank(x$PartOfSpeech))
> x[ordering.index, ]
\begin{tabular}{lrrrr} 
PartOfSpeech TokenFrequency & TypeFrequency & Class \\
4 & CONJ & 458 & 18 closed \\
5 & PREP & 455 & 37 & closed \\
1 & ADJ & 421 & 271 & open \\
2 & ADV & 337 & 103 & open \\
3 & N & 1411 & 735 & open
\end{tabular}
> ordering.index <- order(-rank(x$Class), -rank(x$PartOfSpeech))
> x[ordering.index, ]
\begin{tabular}{lrrrr} 
& PartOfSpeech & TokenFrequency & TypeFrequency & Class \\
3 & N & 1411 & 735 & open \\
2 & ADV & 337 & 103 & open \\
1 & ADJ & 421 & 271 & open \\
5 & PREP & 455 & 37 & closed \\
4 & CONJ & 458 & 18 & closed
\end{tabular}
```


4 Lists

```
> rm(list = ls(all = T))
>
> (a.vector <- c(1:10))
```

```
    [1] }1
> (a.dataframe <- read.table("dataframe.txt", header = T, sep = "\t",
+ comment.char = "")) # insert here the data frame you saved above
```



```
$Part3
    [1] "This" "may" "be" "a" ". "corpus" "file" ". "sentence" "from" 
$Part1
    [1] 11 2
$Part2
\begin{tabular}{rrrr} 
PartOfSpeech & TokenFrequency & TypeFrequency & Class \\
ADJ & 421 & 271 & open \\
ADV & 337 & 103 & open \\
N & 1411 & 735 & open \\
CONJ & 458 & 18 & closed \\
PREP & 455 & 37 & closed
\end{tabular}
$Part3
    [1] "This" "may" "be" "a" "sentence" "from"
    [7] "a" "corpus" "file" "."
> a.list[[1]]
[1] }1
> a.list[[2]]
\begin{tabular}{lrrrr} 
& PartOfSpeech TokenFrequency & TypeFrequency & Class \\
1 & ADJ & 421 & 271 & open \\
2 & ADV & 337 & 103 & open \\
3 & N & 1411 & 735 & open \\
4 & CONJ & 458 & 18 & closed \\
5 & PREP & 455 & 37 & closed
\end{tabular}
> a.list[[3]]
\begin{tabular}{lllll} 
[1] "This" & "may" & "be" & "a" & "sentence" "from" \\
[7] "a" & "corpus" & "file" & "." &
\end{tabular}
> a.list[1]
$Part1
    [1] }
> is.list(a.list[1])
[1] TRUE
> is.list(a.list[[1]])
[1] FALSE
> is.vector(a.list[[1]])
[1] TRUE
```

```
> a.list$Part1
```

```
> a.list$Part1
```

```
    [1] 1}10
> a.list[["Part1"]]
    [1] }1
> a.list["Part1"]
$Part1
    [1] }
> a.list[c(1, 3)]
$Part1
    [1] }1\begin{array}{lllllllllll}{10}
$Part3
    [1] "This" "may" "be" "a" "sentence" "from"
    [7] "a" "corpus" "file" "."
> a.list[[1]][3]
[1] 3
> a.list[[1]][3:5]
[1] 345
> a.list[[1]][c(3, 5)]
[1] 3 5
> a.list[[2]][3, 2]
[1] }141
> a.list[[2]][3, 2:4]
    TokenFrequency TypeFrequency Class
3 1411 735 open
> a.list[[2]][3, c(2, 4)]
    TokenFrequency Class
3 1411 open
> x <- a.list[[2]]
> y <- split(x, x$Class)
> str(y)
List of 2
    $ closed:'data.frame': 2 obs. of 4 variables:
        ..$ PartOfSpeech : Factor w/ 5 levels "ADJ","ADV","CONJ",..: 3 5
    ..$ TokenFrequency: int [1:2] 458 455
    ..$ TypeFrequency : int [1:2] 18 37
    ..$ Class : Factor w/ 2 levels "closed","open": 1 1
    $ open :'data.frame': 3 obs. of 4 variables:
    ..$ PartOfSpeech : Factor w/ 5 levels "ADJ","ADV","CONJ",..: 1 2 4
    ..$ TokenFrequency: int [1:3] 421 337 1411
    ..$ TypeFrequency : int [1:3] 271 103 735
    ..$ Class : Factor w/ 2 levels "closed","open": 2 2 2
```

```
> y$open
    PartOfSpeech TokenFrequency TypeFrequency Class
1 ADJ 421 271 open
2 ADV 337 103 open
3 N 1411 735 open
> y <- split(x, x$PartOfSpeech)
> str(y)
List of 5
    $ ADJ :'data.frame': 1 obs. of 4 variables:
    ..$ PartOfSpeech : Factor w/ 5 levels "ADJ","ADV","CONJ",..: 1
    ..$ TokenFrequency: int 421
    ..$ TypeFrequency : int 271
    ..$ Class : Factor w/ 2 levels "closed","open": 2
    $ ADV :'data.frame': 1 obs. of 4 variables:
        ..$ PartOfSpeech : Factor w/ 5 levels "ADJ","ADV","CONJ",..: 2
    ..$ TokenFrequency: int 337
    ..$ TypeFrequency : int 103
    ..$ Class : Factor w/ 2 levels "closed","open": 2
    $ CONJ:'data.frame': 1 obs. of 4 variables:
    ..$ PartOfSpeech : Factor w/ 5 levels "ADJ","ADV","CONJ",..: 3
    ..$ TokenFrequency: int 458
    ..$ TypeFrequency : int 18
    ..$ Class : Factor w/ 2 levels "closed","open": 1
    $ N :'data.frame': 1 obs. of 4 variables:
    ..$ PartOfSpeech : Factor w/ 5 levels "ADJ","ADV","CONJ",..: 4
    ..$ TokenFrequency: int 1411
    ..$ TypeFrequency : int 735
    ..$ Class : Factor w/ 2 levels "closed","open": 2
    $ PREP:'data.frame': 1 obs. of 4 variables:
    ..$ PartOfSpeech : Factor w/ 5 levels "ADJ","ADV","CONJ",..: 5
    ..$ TokenFrequency: int 455
    ..$ TypeFrequency : int 37
    ..$ Class : Factor w/ 2 levels "closed","open": 1
> y$ADJ
    PartOfSpeech TokenFrequency TypeFrequency Class
1 ADJ 421 271 open
> y$N
    PartOfSpeech TokenFrequency TypeFrequency Class
3 N 1411 735 open
> y$PREP
    PartOfSpeech TokenFrequency TypeFrequency Class
5 PREP 455 37 closed
> y <- split(x, list(x$Class, x$PartOfSpeech))
> str(y)
```

```
List of 10
    $ closed.ADJ :'data.frame': O obs. of 4 variables:
    ..$ PartOfSpeech : Factor w/ 5 levels "ADJ","ADV","CONJ",..:
    ..$ TokenFrequency: int(0)
    ..$ TypeFrequency : int(0)
    ..$ Class : Factor w/ 2 levels "closed","open":
    $ open.ADJ :'data.frame': 1 obs. of 4 variables:
        ..$ PartOfSpeech : Factor w/ 5 levels "ADJ","ADV","CONJ",..: 1
    ..$ TokenFrequency: int 421
    ..$ TypeFrequency : int 271
    ..$ Class : Factor w/ 2 levels "closed","open": 2
$ closed.ADV :'data.frame': 0 obs. of 4 variables:
    ..$ PartOfSpeech : Factor w/ 5 levels "ADJ","ADV","CONJ",..:
    ..$ TokenFrequency: int(0)
    ..$ TypeFrequency : int(0)
    ..$ Class : Factor w/ 2 levels "closed","open":
$ open.ADV :'data.frame': 1 obs. of 4 variables:
    ..$ PartOfSpeech : Factor w/ 5 levels "ADJ","ADV","CONJ",..: 2
    ..$ TokenFrequency: int 337
    ..$ TypeFrequency : int 103
    ..$ Class : Factor w/ 2 levels "closed","open": 2
$ closed.CONJ:'data.frame': 1 obs. of 4 variables:
    ..$ PartOfSpeech : Factor w/ 5 levels "ADJ","ADV","CONJ",..: 3
    ..$ TokenFrequency: int 458
    ..$ TypeFrequency : int 18
    ..$ Class : Factor w/ 2 levels "closed","open": 1
$ open.CONJ :'data.frame': O obs. of 4 variables:
    ..$ PartOfSpeech : Factor w/ 5 levels "ADJ","ADV","CONJ",..:
    ..$ TokenFrequency: int(0)
    ..$ TypeFrequency : int(0)
    ..$ Class : Factor w/ 2 levels "closed","open":
$ closed.N :'data.frame': O obs. of 4 variables:
    ..$ PartOfSpeech : Factor w/ 5 levels "ADJ","ADV","CONJ",..:
    ..$ TokenFrequency: int(0)
    ..$ TypeFrequency : int(0)
    ..$ Class : Factor w/ 2 levels "closed","open":
$ open.N :'data.frame': 1 obs. of 4 variables:
    ..$ PartOfSpeech : Factor w/ 5 levels "ADJ","ADV","CONJ",..: 4
    ..$ TokenFrequency: int 1411
    ..$ TypeFrequency : int 735
    ..$ Class : Factor w/ 2 levels "closed","open": 2
$ closed.PREP:'data.frame': 1 obs. of 4 variables:
    ..$ PartOfSpeech : Factor w/ 5 levels "ADJ","ADV","CONJ",..: 5
    ..$ TokenFrequency: int 455
    ..$ TypeFrequency : int 37
    ..$ Class : Factor w/ 2 levels "closed","open": 1
$ open.PREP :'data.frame': 0 obs. of 4 variables:
    ..$ PartOfSpeech : Factor w/ 5 levels "ADJ","ADV","CONJ",...
    ..$ TokenFrequency: int(0)
    ..$ TypeFrequency : int(0)
    ..$ Class : Factor w/ 2 levels "closed","open":
```


5 Character / String Processing

```
> example.1 <- c("I", "do", "not", "know")
> nchar(example.1)
[1] 1 2 3 4
> substr("internationalization", 6, 13)
[1] "national"
> substr(example.1, 2, 3)
[1] "" "o" "ot" "no"
> some.first.vector <- c("abcd", "efgh")
> some.other.vector <- c("ijkl", "mnop")
> substr(c(some.first.vector, some.other.vector), c(1, 2, 3, 4), c(2,
+ 3,4,4))
[1] "ab" "fg" "kl" "p"
> tolower(example.1)
[1] "i" "do" "not" "know"
> toupper(example.1)
[1] "I" "DO" "NOT" "KNOW"
> chartr("o", "x", example.1)
[1] "I" "dx" "nxt" "knxw"
> paste("I", "do", "not", "know", sep = " ")
[1] "I do not know"
> paste("I", "do", "not", "know")
[1] "I do not know"
> paste("I", "do", "not", "know", collapse = " ")
[1] "I do not know"
> paste("I", "do", "not", "know", sep = " ", collapse = " ")
[1] "I do not know"
> paste(example.1, sep = " ")
[1] "I" "do" "not" "know"
> paste(example.1)
[1] "I" "do" "not" "know"
> paste(example.1, collapse = " ")
```

[1] "I do not know"
> (list. 1 <- as.list(example.1))
[[1]]
[1] "I"
[[2]]
[1] "do"
[[3]]
[1] "not"
[[4]]
[1] "know"
> paste(list.1, sep = " ")
[1] "I" "do" "not" "know"
> paste(list. 1)
[1] "I" "do" "not" "know"
> paste(list.1, collapse = " ")
[1] "I do not know"
> example. 2 <- "I do not know"
> strsplit(example.2, " ")
[[1]]
[1] "I" "do" "not" "know"
> unlist(strsplit(example.2, " "))
[1] "I" "do" "not" "know"
> strsplit(example.2, "")
[[1]]
[1] "I" " " "d" "o" " " "n" "o" "t" " " "k" "n" "о" "w"
> example. 3 <- c("Hello Elmo", "Bye bye binky")
> example. 3
[1] "Hello Elmo" "Bye bye binky"
> strsplit(example.3, " ")
[[1]]
[1] "Hello" "Elmo"
[[2]]
[1] "Bye" "bye" "binky"
> text. 1 <- "This is the first sentence. This is the second sentence."
> strsplit(text.1, ".")

```
[[1]]
    [1] "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" ""
[24] "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" ""
[47] "" "" "" "" "" "" "" "" "" ""
> text.1.sentences <- strsplit(text.1, "\\. ")
> text.1.sentences
[[1]]
[1] "This is the first sentence" "This is the second sentence."
> text.1.sentences <- unlist(text.1.sentences)
> text.1.sentences
[1] "This is the first sentence" "This is the second sentence."
> text.1.words <- strsplit(text.1.sentences, " ")
> text.1.words
[[1]]
[1] "This" "is" "the" "first" "sentence"
[[2]]
[1] "This" "is" "the" "second" "sentence."
> text.1.words <- unlist(text.1.words)
> text.1.words
```

```
    [1] "This" "is" "the" "first" "sentence"
```

 [1] "This" "is" "the" "first" "sentence"
 [6] "This" "is" "the" "second" "sentence."
 [6] "This" "is" "the" "second" "sentence."
 > which(text.1.words == "")
> which(text.1.words == "")
integer(0)
integer(0)
> which(text.1.words == "the")
> which(text.1.words == "the")
[1] 3 8
> str(list.1)
List of 4
\$: chr "I"
\$: chr "do"
\$: chr "not"
\$: chr "know"
> strsplit(list.1, " ")
Error: non-character argument
> strsplit(list.1, "")
Error: non-character argument
> str(unlist(list.1))
chr [1:4] "I" "do" "not" "know"

```
```

> strsplit(unlist(list.1), " ")
[[1]]
[1] "I"
[[2]]
[1] "do"
[[3]]
[1] "not"
[[4]]
[1] "know"
> strsplit(unlist(list.1), "")
[[1]]
[1] "I"
[[2]]
[1] "d" "o"
[[3]]
[1] "n" "o" "t"
[[4]]
[1] "k" "n" "o" "w"

```

\section*{6 More graphics}
```

> VADeaths
Rural Male Rural Female Urban Male Urban Female
50-54 11.7 8.7 15.4 1.7 l
55-59 18.1 11.7 1.7 24.3 13.6
60-64 26.9 20.3 37.0 19.3
65-69 41.0 30.9 54.6 35.1
70-74 66.0 54.3 71.1 50.0
> \# ?VADeaths
> barplot(VADeaths)

```

```

> barplot(VADeaths, beside = TRUE)

```


\footnotetext{
> barplot(VADeaths, beside \(=\) TRUE, legend \(=\) TRUE, ylim \(=c(0,90)\), ylab \(=\) "Deaths per 1000", + main = "Death rates in Virginia")
}

\section*{Death rates in Virginia}

```

> dotchart(VADeaths, xlim = c(0, 75), xlab = "Deaths per 1000", main = "Death rates in Virginia",

+ pch = 20, col = "blue")

```

\section*{Death rates in Virginia}

```

> groupsizes <- c(18, 30, 32, 10, 10)
> grades <- c("A", "B", "C", "D", "F")
> pie(groupsizes, grades, col = c("grey40", "white", "grey", "black",

+ "grey90"))

```

```

> \# ?iris
> head(iris)

```
    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
\begin{tabular}{llllll}
1 & 5.1 & 3.5 & 1.4 & 0.2 & setosa \\
2 & 4.9 & 3.0 & 1.4 & 0.2 & setosa \\
3 & 4.7 & 3.2 & 1.3 & 0.2 & setosa \\
4 & 4.6 & 3.1 & 1.5 & 0.2 & setosa \\
5 & 5.0 & 3.6 & 1.4 & 0.2 & setosa \\
6 & 5.4 & 3.9 & 1.7 & 0.4 & setosa
\end{tabular}
> str(iris)
'data.frame': 150 obs. of 5 variables:
    \$ Sepal.Length: num 5.14 .94 .74 .655 .44 .654 .44 .9 ...
    \$ Sepal.Width : num 3.533 .23 .13 .63 .93 .43 .42 .93 .1 ...
    \$ Petal.Length: num 1.41 .41 .31 .51 .41 .71 .41 .51 .41 .5 ...
```

\$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
\$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
> summary(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width
Min. :4.30 Min. :2.00 Min. :1.00 Min. :0.1
1st Qu.:5.10 1st Qu.:2.80 1st Qu.:1.60 1st Qu.:0.3
Median :5.80 Median :3.00 Median :4.35 Median :1.3
Mean :5.84 Mean :3.06 Mean :3.76 Mean :1.2
3rd Qu.:6.40 3rd Qu.:3.30 3rd Qu.:5.10 3rd Qu.:1.8
Max. :7.90 Max. :4.40 Max. :6.90 Max. :2.5
Species
setosa :50
versicolor:50
virginica :50

```
> boxplot(Sepal.Length ~ Species, data = iris, ylab = "Sepal length (cm)",
+ main = "Iris measurements", col = "pink")

Iris measurements

> \# ?boxplot

\section*{7 The Brown Corpus}

We introduce the tagged version of the Brown Corpus (Francis and Kucera 1979) in this section:
```

> brown.corpus.structure <- read.table(file = "brown_text_categories.txt",

+ header = T, sep = "\t", comment.char = "")
> str(brown.corpus.structure)
'data.frame': 15 obs. of 5 variables:
\$ ProseType : Factor w/ 2 levels "imaginative",..: 2 2 2 2 2 2 2 2 2 1 ...
\$ GenreGroup : Factor w/ 4 levels "fiction","generalProse",..: 4 4 4 2 2 2 2 2 3 1...
\$ Category : Factor w/ 15 levels "A","B","C","D",..: 1 2 3 4 5 6 7 8 9 10 ...

```
    \$ ContentOfCategory: Factor w/ 15 levels "adventureWestern",..: 10311915826134 ...
    \$ NumberOfTexts : int \(44271717 \quad 364875308029 \ldots\)
brown.corpus.structure
```

 ProseType GenreGroup Category ContentOfCategory
 informative press A reportage
informative press B editorial
informative press C review
informative generalProse D religion
informative generalProse E skillsTradesHobbies
informative generalProse F popularLore
informative generalProse G belleslettresBiographiesEssays
informative generalProse H miscellaneous
informative learned J science
imaginative fiction K generalFiction
imaginative fiction L misteryDetectiveFiction
imaginative fiction M scienceFiction
imaginative fiction N adventureWestern
imaginative fiction P romanceLoveStory
imaginative fiction R humor
NumberOfTexts
4 4
27
1 7
1 7
36
4 8
75
30
80
29
24
6
29
29
9

View(brown.corpus.structure)

> (number.of.texts.by.genre <- tapply(brown.corpus.structure\$NumberOfTexts,

+ brown.corpus.structure\$GenreGroup, sum))
fiction generalProse learned press
126 206 80 88
barplot(number.of.texts.by.genre, cex.names = 0.9, col = c("red",
"gray", "green", "blue"))
legend(3, max(number.of.texts.by.genre), paste(names(number.of.texts.by.genre),
+ ":", number.of.texts.by.genre), cex = 0.9, fill = c("red", "gray",
+ "green", "blue"))

```
\(>\)

```

>
> (number.of.texts.by.category <- tapply(brown.corpus.structure\$NumberOfTexts,

+ brown.corpus.structure\$Category, sum))
A B

```

```

> barplot(number.of.texts.by.category[1:5], horiz = TRUE, cex.names = 0.9,

+ col = c("red", "gray", "green", "blue", "black"))
> legend("right", paste(rev(brown.corpus.structure$Category[1:5]), rev(brown.corpus.structure$ContentOf
+ ":", rev(number.of.texts.by.category[1:5])), cex = 0.9, fill = rev(c("red",
+ "gray", "green", "blue", "black")))

```

```

> barplot(number.of.texts.by.category[6:10], horiz = TRUE, cex.names = 0.9,
col = c("red", "gray", "green", "blue", "black"))
legend("topright", paste(rev(brown.corpus.structure\$Category[6:10]),

+ rev(brown.corpus.structure\$Content0fCategory[6:10]), ":", rev(number.of.texts.by.category[6:10]))
+ cex = 0.9, fill = rev(c("red", "gray", "green", "blue", "black")))

```


```

	1	1	
0	20	40	60

```
```

> barplot(number.of.texts.by.category[11:15], horiz = TRUE, cex.names = 0.9,

```
> barplot(number.of.texts.by.category[11:15], horiz = TRUE, cex.names = 0.9,
col = c("red", "gray", "green", "blue", "black"))
col = c("red", "gray", "green", "blue", "black"))
legend("topright", paste(rev(brown.corpus.structure$Category[11:15]),
legend("topright", paste(rev(brown.corpus.structure$Category[11:15]),
+ rev(brown.corpus.structure$ContentOfCategory[11:15]), ":", rev(number.of.texts.by.category[11:15]
+ rev(brown.corpus.structure$ContentOfCategory[11:15]), ":", rev(number.of.texts.by.category[11:15]
+ cex = 0.9, fill = rev(c("red", "gray", "green", "blue", "black")))
```

+ cex = 0.9, fill = rev(c("red", "gray", "green", "blue", "black")))

```

> brown.tagged <- scan(file = "BTL.TXT", what = "char", sep = "\n",
> brown.tagged <- scan(file = "BTL.TXT", what = "char", sep = "\n",
+ comment.char = "")
+ comment.char = "")
> system.time(brown.tagged <- scan(file = "BTL.TXT", what = "char",
> system.time(brown.tagged <- scan(file = "BTL.TXT", what = "char",
```

+ sep = "\n", comment.char = ""))
user system elapsed
0.608 0.004 0.614
> head(brown.tagged)

```
[1] "|SA01:1 the_AT Fulton_NP County_NN Grand_JJ Jury_NN said_VBD Friday_NR an_AT investigation_NN of_Il
[2] "|SA01:2 the_AT jury_NN further_RBR said_VBD in_IN term-end_NN presentments_NNS that_CS the_AT City
[3] "|SA01:3 the_AT September-October_NP term_NN jury_NN had_HVD been_BEN charged_VBN by_IN Fulton_NP S
[4] "|SA01:4 only_RB a_AT relative_JJ handful_NN of_IN such_JJ reports_NNS was_BEDZ received_VBN ,_, th
[5] "|SAO1:5 the_AT jury_NN said_VBD it_PPS did_DOD find_VB that_CS many_AP of_IN Georgia's_NP\$ registr
[6] "|SA01:6 it_PPS recommended_VBD that_CS Fulton_NP legislators_NNS act_VB to_TO have_HV these_DTS la
> tail(brown.tagged)
[1] "|SR09:93 as_CS you_PPSS can_MD count_VB on_IN me_PPO to_TO do_DO the_AT same_AP ._."
[2] "|SR09:94 compassionately_RB yours_PP\$\$ ,_, S._NP J._NP Perelman_NP revulsion_NN in_IN the_AT deser
[3] "|SR09:95 the_AT doors_NNS of_IN the_AT J_NP train_NN slid_VBD shut_VBN ,_, and_CC as_CS I_PPSS dro
[4] "|SRO9:96 she_PPS was_BEDZ a_AT living_VBG doll_NN and_CC no_AT mistake_NN --_-- the_AT blue-black_
[5] "|SR09:97 from_IN what_WDT I_PPSS was_BEDZ able_JJ to_IN gauge_NN in_IN a_AT swift_JJ ,_, greedy_JJ
[6] "|S:1 ._"
> length(brown.tagged)
[1] 57067
```

> brown.tag.set <- read.delim(file = "brown_tag_set.txt", header = T,

+ sep = "\t", comment.char = "")
> \# View(brown.tag.set)
> head(brown.tag.set)

Tag	Description	Examples
1	dash	--
2	(opening parenthesis	$($
3) closing parenthesis)
4	*	negator
5	not	n't
6	. sentence terminator	? ; ! :

> tail(brown.tag.set)

```
\begin{tabular}{rrr} 
& Tag & Description \\
221 & WRB+DO & WH-adverb + verb "to do", present, not 3rd person singular \\
222 & WRB+DOD & WH-adverb + verb "to do", past tense \\
223 & WRB+DOD* & WH-adverb + verb "to do", past tense, negated \\
224 & WRB+DOZ WH-adverb + verb "to do", present tense, 3rd person singular \\
225 & WRB+IN & WH-adverb + preposition \\
226 & WRB+MD & WH-adverb + modal auxillary
\end{tabular}
                Examples
221 howda
222 where'd how'd
223 whyn't
224 how's
225 why'n
226 where'd
```

> dim(brown.tag.set)

```
```

[1] 226 3

```
```

> str(brown.tag.set)
'data.frame': 226 obs. of 3 variables:
\$ Tag : Factor w/ 226 levels "-- ",",",":",..: 1 5 6 7 2 4 3 8 9 10 ...
\$ Description: Factor w/ 225 levels "adjective ","adjective, comparative ",..: 24 127 19 101 21 158 20
\$ Examples : Factor w/ 220 levels "--",",",":",". ? ; ! :",..: 1 5 6 129 2 4 3 143 12 29 ...
> \# brown.tag.set
> brown.words.1 <- strsplit(brown.tagged, " ")
> head(brown.words.1)

```
[ [1] ]
\begin{tabular}{lll} 
[1] "|SA01:1" & "the_AT" & "Fulton_NP" \\
[4] "County_NN" & "Grand_JJ" & "Jury_NN" \\
[7] "said_VBD" & "Friday_NR" & "an_AT" \\
[10] "investigation_NN" & "of_IN" & "Atlanta's_NP\$" \\
[13] "recent_JJ" & "primary_NN" & "election_NN" \\
[16] "produced_VBD" & "no_AT" & "evidence_NN" \\
[19] "that_CS" & "any_DTI" & "irregularities_NNS" \\
[22] "took_VBD" & "place_NN" & "._."
\end{tabular}
[ [2] ]
[1] "|SA01:2" "the_AT" "jury_NN
[4] "further_RBR" "said_VBD" "in_IN"
[7] "term-end_NN" "presentments_NNS" "that_CS"
[10] "the_AT" "City_NN" "Executive_JJ"
[13] "Committee_NN" ",_," "which_WDT"
[16] "had_HVD" "over-all_JJ" "charge_NN"
[19] "of_IN" "the_AT" "election_NN"
[22] ",_," "deserves_VBZ" "the_AT"
[25] "praise_NN" "and_CC" "thanks_NNS"
[28] "of_IN" "the_AT" "City_NN"
[31] "of_IN" "Atlanta_NP" "for_IN"
[34] "the_AT" "manner_NN" "in_IN"
[37] "which_WDT" "the_AT" "election_NN"
[40] "was_BEDZ" "conducted_VBN" "._."
[ [3] ]
[1] "|SA01:3"
[4] "term_NN"
"jury_NN"
[7] "been_BEN"
[10] "Fulton_NP"
[13] "Judge_NN"
[16] "to_TO"
"charged_VBN"
"Superior_JJ"
"Durwood_NP"
"investigate_VB"
"possible_JJ"
"the_AT"
Ctober_NP"
"had_HVD"
"by_IN"
"Court_NN"
"Pye_NP"
[19] "of_IN"
"reports_NNS"
[22] "in_IN"
"which_WDT"
"irregularities_NNS"
"hard-fought_JJ"
[25] "primary_NN"
"by_IN"
"was_BEDZ"
"Mayor-nominate_NN"
"Allen_NP" "Jr._NP"
    "Jr._NP"
[31] "Ivan_NP"
    "Allen_NP"
[34] "._."
[ [4]]
\begin{tabular}{|c|c|c|c|c|}
\hline [1] & "|SA01:4" & "only_RB" & "a_AT" & "relative_JJ" \\
\hline [5] & "handful_NN" & "of_IN" & "such_JJ" & "reports_NNS" \\
\hline [9] & "was_BEDZ" & "received_VBN" & ", , " & "the_AT" \\
\hline [13] & "jury_NN" & "said_VBD" & ", , " & "considering_IN" \\
\hline [17] & "the_AT" & "widespread_JJ" & "interest_NN" & "in_IN" \\
\hline [21] & "the_AT" & "election_NN" & ", , " & "the_AT" \\
\hline [25] & "number_NN" & "of_IN" & "voters_NNS" & "and_CC" \\
\hline [29] & "the_AT" & "size_NN" & "of_IN" & "this_DT" \\
\hline [33] & "city_NN" & "..." & & \\
\hline \multicolumn{5}{|l|}{[[5]]} \\
\hline [1] & "|SA01:5" & "the_AT" & "jury_NN" & \\
\hline [4] & "said_VBD" & "it_PPS" & "did_DOD" & \\
\hline [7] & "find_VB" & "that_CS" & "many_AP" & \\
\hline [10] & "of_IN" & "Georgia's_NP\$" & "registration_N & \\
\hline [13] & "and_CC" & "election_NN" & "laws_NNS" & \\
\hline [16] & "are_BER" & "outmoded_JJ" & "or_CC" & \\
\hline [19] & "inadequate_JJ" & "and_CC" & "often_RB" & \\
\hline [22] & "ambiguous_JJ" & "._. \("\) & & \\
\hline \multicolumn{5}{|l|}{[[6]]} \\
\hline [1] & "|SA01:6" & "it_PPS" & "recommended_VB & \\
\hline [4] & "that_CS" & "Fulton_NP" & "legislators_NN & \\
\hline [7] & "act_VB" & "to_TO" & "have_HV" & \\
\hline [10] & "these_DTS" & "laws_NNS" & "studied_VBN" & \\
\hline [13] & "and_CC" & "revised_VBN" & "to_IN" & \\
\hline [16] & "the_AT" & "end_NN" & "of_IN" & \\
\hline [19] & "modernizing_VBG" & "and_CC" & "improving_VBG" & \\
\hline [22] & "them_PPO" & "..." & & \\
\hline
\end{tabular}
[[1]]
[1] "|SR09:93" "as_CS" "you_PPSS" "can_MD" "count_VB" "on_IN"
[7] "me_PPO" "to_TO" "do_DO" "the_AT" "same_AP" "._."
[ [2] ]
[1] "|SR09:94" "compassionately_RB" "yours_PP\$\$"
[4] ",_,"
"S._NP" "J._NP"
[7] "Perelman_NP"
"revulsion_NN" "in_IN"
[10] "the_AT"
"desert_NN"
[ [3] ]
\begin{tabular}{llll} 
[1] & "|SR09:95" & "the_AT" & "doors_NNS" \\
[5] "the_AT" & "J_NP" & "of_IN" \\
[9] "shut_VBN" & ",_," & "train_NN" & "slid_VBD" \\
[13] "I_PPSS" & "dropped_VBD" & "ind_CC" & "as_CS" \\
[17] "seat_NN" & "and_CC" & ",_," & "a_AT" \\
[21] ",_," & "looked_VBD" & "up_RP" & "exhaling_VBG" \\
[25] "the_AT" & "aisle_NN" & ",_," & "across_IN" \\
[29] "whole_JJ" & "aviary_NN" & "in_IN" & "the_AT" \\
[33] "head_NN" & "burst_VBD" & "into_IN" & "my_PP\$" \\
[37] "._." & & &
\end{tabular}
[ [4]]
\begin{tabular}{lll}
{\([1]\)} & "|SR09:96" & "she_PPS" \\
[4] "a_AT" & "was_BEDZ" \\
{\([7]\)} & "and_CC" & "living_VBG"
\end{tabular}
[1] 1194534
```

> words.per.sentence.1 <- sapply(brown.words.1, length)
> str(words.per.sentence.1)
int [1:57067] 24 42 34 34 23 23 42 3 25 24 ...
> sum(words.per.sentence.1)

```
[1] 1194534
> mean(words.per.sentence.1)
[1] 20.93
> summary(words.per.sentence.1)
\begin{tabular}{rrrrrr} 
Min. & 1st Qu. & Median & Mean & 3rd Qu. & Max. \\
1.0 & 11.0 & 19.0 & 20.9 & 28.0 & 181.0
\end{tabular}
> boxplot(words.per.sentence.1)


\section*{References}

Abelson, R.P. (1995). Statistics as Principled Argument. L. Erlbaum Associates.
Baayen, R. Harald (2008). Analyzing Linguistic Data: A Practical Introduction to Statistics Using R. Cambridge University Press.
Braun, J. and D.J. Murdoch (2007). A First Course in Statistical Programming with R. Cambridge University Press.
De Veaux, R.D. et al. (2005). Stats: Data and Models. Pearson Education, Limited.
Diez, D. et al. (2013). OpenIntro Statistics: Second Edition. CreateSpace Independent Publishing Platform. URL: http://www.openintro.org/stat/textbook.php.
Faraway, J.J. (2004). Linear Models With R. Chapman \& Hall Texts in Statistical Science Series. Chapman \& Hall/CRC.
Francis, W. N. and H. Kucera (1979). Brown Corpus Manual. Tech. rep. Department of Linguistics, Brown University, Providence, Rhode Island, US. URL: http://icame. uib.no/brown/bcm.html.
Gelman, A. and J. Hill (2007). Data Analysis Using Regression and Multilevel/Hierarchical Models. Analytical Methods for Social Research. Cambridge University Press.
Gries, S.T. (2009). Quantitative Corpus Linguistics with R: A Practical Introduction. Taylor \& Francis.
- (2013). Statistics for Linguistics with R: A Practical Introduction, 2nd Edition. Mouton De Gruyter.

Johnson, K. (2008). Quantitative methods in linguistics. Blackwell Pub.
Kruschke, John K. (2011). Doing Bayesian Data Analysis: A Tutorial with R and BUGS. Academic Press/Elsevier.
Miles, J. and M. Shevlin (2001). Applying Regression and Correlation: A Guide for Students and Researchers. SAGE Publications.
Wright, D.B. and K. London (2009). Modern regression techniques using R: A practical guide for students and researchers. SAGE.
Xie, Yihui (2013). Dynamic Documents with R and knitr. Chapman and Hall/CRC.```


[^0]:    *These notes have been generated with the 'knitr' package (Xie 2013) and are based on many sources, including but not limited to: Abelson (1995), Miles and Shevlin (2001), Faraway (2004), De Veaux et al. (2005), Braun and Murdoch (2007), Gelman and Hill (2007), Baayen (2008), Johnson (2008), Wright and London (2009), Gries (2009), Kruschke (2011), Diez et al. (2013), Gries (2013).

