1 Another logistic regression example: manipulating reasonable doubt

> webreg <- "http://www.sagepub.co.uk//wrightandlondon//"
> juryrd <- read.table(paste(webreg, "juryrd.dat", sep = ")", header = T)
> head(juryrd)

<table>
<thead>
<tr>
<th>SUBNO</th>
<th>GUILTY</th>
<th>FORM</th>
<th>BELIEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0.75</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0.70</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0.90</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0.20</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>0.45</td>
</tr>
</tbody>
</table>

> str(juryrd)

'data.frame': 172 obs. of 4 variables:
$ SUBNO : int 1 2 3 4 5 6 7 8 9 10 ...
$ GUILTY: int 1 1 1 1 1 1 1 1 1 1 ...
$ FORM : int 1 1 1 1 1 1 1 1 1 1 ...
$ BELIEF: num 0.75 0.7 0.9 0.2 0.75 0.45 0.6 0.6 0.8 0.6 ...

These notes have been generated with the ‘knitr’ package (Xie 2013) and are based on many sources, including but not limited to: Abelson (1995), Miles and Shevlin (2001), Faraway (2004), De Veaux et al. (2005), Braun and Murdoch (2007), Gelman and Hill (2007), Baayen (2008), Johnson (2008), Wright and London (2009), Gries (2009), Kruschke (2011), Diez et al. (2013), Gries (2013).
Participants read a brief crime summary and were asked to render a verdict.

- **GUILTY** (binary): they were told to tick ‘guilty’ (1) if they believed the defendant’s guilt was ‘beyond a reasonable doubt’
- **BELIEF** (proportion): they also rated their belief in guilt on a 0.00 to 1.00 probability scale
- **FORM** (binary): participants were either in a control condition where they received no further instructions or in an experimental condition where they received a more elaborate instruction form

The form was expected to lower belief in guilt and to lower the reasonable doubt threshold. 172 participants made both a belief-in-guilt judgment and a binary verdict (guilty vs. not guilty). The variable **BELIEF** is important because we want to see if it is affected by the condition and how it relates to verdict.

```r
> hist(BELIEF, freq = FALSE)
> lines(density(BELIEF))
```
BELIEF is negatively skewed.

```r
> library("e1071")
> skewness(BELIEF)
[1] -0.7809
```

A rough estimate of the error of skewness is $\sqrt{\frac{6}{n}}$, so the 95% confidence interval is:

```r
> lb <- format(skewness(BELIEF) - sqrt(6/length(BELIEF)) * 1.96, digit = 3)
> ub <- format(skewness(BELIEF) + sqrt(6/length(BELIEF)) * 1.96, digit = 3)
> cat(paste("Lower Bound = ", lb, "\t", "Upper Bound = ", ub, "\n", + sep = ""))
```

```
Lower Bound = -1.15 Upper Bound = -0.415
```

Alternatively, we can calculate bootstrap estimates of this, which are fairly similar to the one above (the BCa intervals, i.e., the adjusted bootstrap intervals, are usually preferred):

```r
> library("boot")
> beliefboot <- boot(BELIEF, function(x, i) skewness(x[i]), R = 1000)
> boot.ci(beliefboot)
```

```
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates
CALL : boot.ci(boot.out = beliefboot)
```

```
Intervals :
Level    Normal    Basic
95%  (-1.0595, -0.5155 )  (-1.0535, -0.4986 )

Level    Percentile  BCA
95%  (-1.0631, -0.5083 )  (-1.1086, -0.5356 )
```

Calculations and Intervals on Original Scale

The 95% BCa CI does not overlap with 0, so we can be confident that the variable is skewed. When data are negatively skewed, we can try squaring the variable.

```r
> beliefsq <- BELIEF^2
```

This works fairly well:

```r
> hist(beliefsq, freq = FALSE)
> lines(density(beliefsq))
```
The BCa 95% CI overlaps with zero:

```r
> bboot2 <- boot(beliefsq, function(x, i) {
+   skewness(x[i])
+ }, R = 1000)
> boot.ci(bboot2)

Warning: bootstrap variances needed for studentized intervals

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates

CALL : boot.ci(boot.out = bboot2)

Intervals :
Level     Normal     Basic
95%   (-0.3088, 0.1485) (-0.3155, 0.1575)
We run the t-test in regression format, which assumes equal variances (the function `t.test` does not make this assumption):

```r
> reg1 <- lm(beliefsq ~ FORM)
> summary(reg1)

Call:
 lm(formula = beliefsq ~ FORM)

Residuals:
 Min 1Q Median 3Q Max
-0.4618 -0.2118 0.0282 0.1782 0.5157

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.4618000 0.025696 17.951 < 2e-16 ***
FORM -0.0749950 0.036382 -2.060 0.041 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.239 on 170 degrees of freedom
Multiple R-squared: 0.0244, Adjusted R-squared: 0.0187
F-statistic: 4.25 on 1 and 170 DF, p-value: 0.0408
```

We reject the $H_0$: the instruction does affect people’s beliefs in guilt.

Compare with a t-test that does not assume equal variances:

```r
> t.test(beliefsq ~ FORM)

Welch Two Sample t-test
data: beliefsq by FORM
t = 2.062, df = 168.2, p-value = 0.04078alternative hypothesis: true difference in means is not equal to 095 percent confidence interval:
 0.003183 0.146813sample estimates:
mean in group 0 mean in group 1
 0.4618 0.3868
```

And a t.test that assumes equal variances:

```r
> t.test(beliefsq ~ FORM, var.equal = T)

Two Sample t-test
data: beliefsq by FORM
t = 2.062, df = 170.14, p-value = 0.0408alternative hypothesis: true difference in means is not equal to 095 percent confidence interval:
 0.003183 0.146813sample estimates:
mean in group 0 mean in group 1
 0.4618 0.3868
They are not that different because the variances / sd.s of the two groups are very similar:

```r
wbeliefsq <- split(beliefsq, FORM)
> sd(wbeliefsq[[1]])
[1] 0.2504
> sd(wbeliefsq[[2]])
[1] 0.226
```

Now we run the logistic regressions. We begin with the model that has the belief-squared variable as the only predictor for the verdict:

```r
> reg2 <- glm(GUILTY ~ beliefsq, binomial)
> summary(reg2)
```

Call:
glm(formula = GUILTY ~ beliefsq, family = binomial)

Deviance Residuals:
 Min 1Q Median 3Q Max
-2.594 -0.663 -0.227 0.724 1.648

Coefficients: Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.973 0.626 -6.34 2.2e-10 ***
beliefsq 8.092 1.228 6.59 4.4e-11 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 235.08 on 171 degrees of freedom
Residual deviance: 153.66 on 170 degrees of freedom
AIC: 157.7

Number of Fisher Scoring iterations: 5

We then add the experimental condition:

```r
> reg3 <- glm(GUILTY ~ beliefsq + FORM, binomial)
> summary(reg3)
```

Call:
glm(formula = GUILTY ~ beliefsq + FORM, family = binomial)

Deviance Residuals:
 Min 1Q Median 3Q Max
-2.527 -0.627 -0.183 0.612 2.120

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.644 0.882 -6.40 1.6e-10 ***
beliefsq 9.744 1.475 6.61 3.9e-11 ***
FORM 1.744 0.484 3.61 0.00031 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 235.08 on 171 degrees of freedom
Residual deviance: 138.31 on 169 degrees of freedom
AIC: 144.3

Number of Fisher Scoring iterations: 5

ANOVA compares the two models:

> anova(reg2, reg3)

Analysis of Deviance Table

Model 1: GUILTY ~ beliefsq
Model 2: GUILTY ~ beliefsq + FORM

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 170 154
2 169 138 1 15.3 8.9e-05 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The p-value for the \(\chi^2 \) statistic is:

> 1 - pchisq(15.351, 1)

[1] 8.927e-05

Or in one go:

> anova(reg2, reg3, test = "Chi")

Analysis of Deviance Table

Model 1: GUILTY ~ beliefsq
Model 2: GUILTY ~ beliefsq + FORM

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 170 154
2 169 138 1 15.3 8.9e-05 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The values for reg3:
We note that there is a large effect for **BELIEFS** (as expected): if you believe the person is guilty, you are more likely to deliver a guilty verdict.

There is also an effect for **FORM**: those in the experimental group have a higher probability of making a guilty verdict once **BELIEFS** has been controlled for.

This can be more clearly seen if we plot the model. We use the original **BELIEF** variable is used rather than the transformed one because this will be in an easier scale to understand:

- there are 2 groups and we draw separate lines for them, so we split the **BELIEF** and the prediction variables
- the **lines** function requires the variables to be ordered
- we do this with the **order** function, which records the order of the belief variable for each group
- the **lines** function plots the curves in this order
- we also draw a dashed horizontal line at 50% probability of giving a guilty verdict and vertical lines where this line intersects the curves for the two groups

```r
> plot(BELIEF, predict(reg3, type = "response"), ylab = "Probability of a guilty verdict", + col = "blue", pch = 20)
> beliefs <- split(BELIEF, FORM)
> predicts <- split(predict(reg3, type = "response"), FORM)
> o1 <- order(beliefs[[1]])
> o2 <- order(beliefs[[2]])
> lines(beliefs[[1]][o1], predicts[[1]][o1], col = "red")
> lines(beliefs[[2]][o2], predicts[[2]][o2], col = "darkred")
> abline(h = 0.5, lty = 3)
> ld1 <- sqrt(-(reg3$coef[1]/reg3$coef[2]))
> ld2 <- sqrt(-((reg3$coef[1] + reg3$coef[3])/reg3$coef[2]))
> cat("Control 50% = ", format(ld1, dig = 2), ", Instruction 50% = ", + format(ld2, dig = 2), "\n", sep = "")

Control 50% = 0.76 Instruction 50% = 0.63
```

```
> abline(v = ld1, lty = 3)
> abline(v = ld2, lty = 3)
```
For completeness, we check the interaction between BELIEFSQ and FORM:

```
> anova(reg3, glm(GUILTY ~ FORM * beliefsq, binomial), test = "Chi")
```

Analysis of Deviance Table

<table>
<thead>
<tr>
<th>Resid. Df</th>
<th>Resid. Dev</th>
<th>Df</th>
<th>Deviance</th>
<th>Pr(>Chi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>169</td>
<td></td>
<td>138</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>168</td>
<td>1</td>
<td>133</td>
<td>5.13</td>
</tr>
</tbody>
</table>

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The interaction is significant:
> summary(glm(GUILTY ~ FORM * beliefsq, binomial))

Call:
glm(formula = GUILTY ~ FORM * beliefsq, family = binomial)

Deviance Residuals:
 Min 1Q Median 3Q Max
-2.601 -0.608 -0.156 0.619 1.886

Coefficients: Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.113 0.944 -4.36 1.3e-05 ***
FORM -1.554 1.578 -0.98 0.325
beliefsq 6.997 1.641 4.26 2.0e-05 ***
FORM:beliefsq 7.089 3.403 2.08 0.037 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 235.08 on 171 degrees of freedom
Residual deviance: 133.18 on 168 degrees of freedom
AIC: 141.2

Number of Fisher Scoring iterations: 6

The slope is steeper for the instruction group:

• one interpretation: the variance in the interpretation of reasonable doubt is less for this group
• another interpretation: the effect exists for values of BELIEF above about 0.4

> detach(juryrd)

2 Simulating datasets for logistic regression

The nature of the random error in logistic regression models can be further clarified by simulating a dataset for logistic regression.

We start by generating the predictor values:

> x <- rnorm(1000)

We set the coefficient of the predictor:

> beta.x <- 1

We obtain the probabilities:

> p <- 1/(1 + exp(-beta.x * x))

We plot the predictor and the probabilities:
We generate the response values based on the vector of probabilities:

```r
> y <- rbinom(1000, 1, prob = p)
```

This is a plot of the dataset superimposed on the above plot of predictor values and corresponding probabilities:

```r
> plot(x[o], p[o], ylim = c(0, 1), type = "l", col = "red", lwd = 2)
> points(jitter(x[o]), y[o], col = "blue")
```
This is the logistic regression model:

```r
> m1 <- glm(y ~ x, family = binomial)
> summary(m1)
```

Call:

```
glm(formula = y ~ x, family = binomial)
```

Deviance Residuals:

```
          Min 1Q Median 3Q   Max
-2.172 -0.979 -0.546 1.016 2.066
```

Coefficients:

```
             Estimate Std. Error  z value Pr(>|z|)
(Intercept) -0.1130     0.0695  -1.633    0.1
x            0.9503     0.0800  11.885  <2e-16 ***
---
```

The model without an intercept:

```r
> m2 <- glm(y ~ -1 + x, family = binomial)
> summary(m2)
```

Call:
```r
glm(formula = y ~ -1 + x, family = binomial)
```

Deviance Residuals:
```
     Min      1Q  Median      3Q     Max
-2.223  -1.023  -0.573   0.971  2.021
```

Coefficients:
```
              Estimate Std. Error z value Pr(>|z|)
 x  0.9545     0.0798   12 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1386.3 on 1000 degrees of freedom
Residual deviance: 1205.1 on 999 degrees of freedom
AIC: 1207

Number of Fisher Scoring iterations: 4

We test for the significance of the intercept:

```r
> anova(m1, m2, test = "Chi")
```

Analysis of Deviance Table

```
Model 1: y ~ x  
Model 2: y ~ -1 + x
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 998    1203
2 999    1205  -1    -2.65  0.1
```

And here are the logistic regression coefficients for 1000 simulations of the response variable y (assuming the same x and p as above):

```r
> no.of.sims <- 1000
> coefs <- matrix(0, no.of.sims, 2)
> str(coefs)
```
num [1:1000, 1:2] 0 0 0 0 0 0 0 0 0 0 ...

> head(coefs)
[1,] [,2]
[1,] 0 0
[2,] 0 0
[3,] 0 0
[4,] 0 0
[5,] 0 0
[6,] 0 0

> for (i in 1:no.of.sims) {
+ coefs[i,] <- coef(glm(rbinom(1000, 1, prob = p) ~ x, family = binomial))
+ }

The histograms of the coefficients are centered at the true values:

> par(mfrow = c(2, 1))
> hist(coefs[, 1], col = "lightblue", freq = FALSE)
> lines(density(coefs[, 1]), col = "blue", lwd = 2)
> hist(coefs[, 2], col = "lightblue", freq = FALSE)
> lines(density(coefs[, 2]), col = "blue", lwd = 2)
> par(mfrow = c(1, 1))
> plot(coefs, col = "blue")

3 A linguistic example: /s/-deletion in Panamanian Spanish

This section is partly based on materials available at http://www-nlp.stanford.edu/manning/courses/ling289/. The data is from Henrietta Cedergren’s 1973 study of /s/-deletion in Panamanian Spanish (Panama City, Panama).

+ header = T)
> head(cedegren)

<table>
<thead>
<tr>
<th>sDel</th>
<th>sNoDel</th>
<th>cat</th>
<th>follows</th>
<th>class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>38</td>
<td>120</td>
<td>m</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>6</td>
<td>v</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>90</td>
<td>d</td>
<td>C</td>
</tr>
</tbody>
</table>
Speakers in Panama City, like in many dialects of Spanish, variably delete the s at the end of words. Cedegren undertook a study to find out if there was a change in progress: if final /s/ was systematically dropping out of Panamanian Spanish.

/s/-deletion counts:

```r
> str(cedegren)
'data.frame': 52 obs. of 5 variables:
$ sDel : int 38 0 18 7 34 30 0 2 5 20 ...
$ sNoDel : int 120 6 90 44 40 42 5 23 81 ...
$ cat : Factor w/ 5 levels "a","d","m","n",": 3 5 2 1 4 3 5 2 1 4 ...
$ follows: Factor w/ 3 levels "C","P","V": 1 1 1 1 1 3 3 3 3 3 ...
$ class : int 1 1 1 1 1 1 1 1 1 1 ...
```

Corresponding non-deletion counts:

```r
> cedegren$sNoDel
[1] 120 6 90 44 40 42 5 23 81 12 9 7 27 3 34 345 6 173 81 143 123 2 27
[35] 6 56 48 9 46 547 9 197 76 106 112 4 29 5 60 59 2
[52] 37
```

Both together:

```r
> cbind(cedegren$sDel, cedegren$sNoDel)
[,1] [,2]
[1,] 38 120
[2,] 0 6
[3,] 18 90
[4,] 7 44
[5,] 34 40
[6,] 30 42
[7,] 0 5
[8,] 2 23
[9,] 5 8
[10,] 20 1
[11,] 7 12
[12,] 0 8
[13,] 4 15
[14,] 377 349
[15,] 10 21
[16,] 160 218
```
Deletion proportions:

```r
> del.props <- cedegren$sDel/(cedegren$sDel + cedegren$sNoDel)
> round(del.props, 2)

  [1] 0.24 0.00 0.17 0.14 0.46 0.42 0.00 0.08 0.38 0.95 0.37 0.00 0.21 0.52
  [15] 0.32 0.42 0.52 0.64 0.66 0.25 0.43 0.62 0.95 0.78 0.80 0.80 0.51 0.60
  [29] 0.41 0.36 0.56 0.64 0.60 0.53 0.71 0.59 0.75 0.57 0.70 0.52 0.31 0.53
  [43] 0.53 0.73 0.69 0.56 0.45 0.67 0.69 0.79 0.92 0.87

> summary(del.props)

   Min. 1st Qu.  Median        Mean   3rd Qu.        Max.
   0.000 0.381 0.534 0.518 0.692 0.953

> hist(del.props, freq = FALSE, main = "Deletion proportions",
       xlab = "Proportions",
       col = "lightblue")
> lines(density(del.props), col = "blue", lwd = 2)
```
Deletion proportions

The data: interviews she performed across the city in several different social classes to see how the variation was structured in the community.

- social class: 1=highest, 2=second highest, 3=second lowest, 4=lowest

```r
> (cedegren$class <- as.factor(cedegren$class))
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3
[36] 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4
Levels: 1 2 3 4
```

She also investigated 2 linguistic constraints on deletion.

- a phonetic constraint: whether the following segment was consonant, vowel or pause
whether the grammatical category of the word that the /s/ is part of is significant
 – monomorpheme, where the s is part of the free morpheme (e.g., menos)
 – verb, where the s is the second singular inflection (e.g., tu tienes)
 – determiner, where s is plural marked on a determiner (e.g., los, las)
 – adjective, where s is a nominal plural agreeing with the noun (e.g., buenos)
 – noun, where s marks a plural noun (e.g., amigos)

Goal: identify the conditions under which /s/ is deleted most often.
> contrasts(class)

 2 3 4
 1 0 0 0
 2 1 0 0
 3 0 1 0
 4 0 0 1

> ced.del <- cbind(sDel, sNoDel)
> m1 <- glm(ced.del ~ cat + follows + class, binomial)
> print(summary(m1), dig = 1)

Call:
 glm(formula = ced.del ~ cat + follows + class, family = binomial)

Deviance Residuals:
 Min 1Q Median 3Q Max
 -3.000 -1.000 0.000 1.000 6.000

Coefficients: Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.320 0.122 -11.00 <2e-16 ***
catd -0.167 0.101 -1.65 0.09 .
catm 0.178 0.097 1.84 0.06 *
catn 0.670 0.103 6.49 2.0e-10 ***
catv -0.773 0.217 -3.55 0.0003 **
followsP 0.950 0.067 14.21 <2e-16 ***
followsV 0.528 0.064 8.22 1.7e-16 ***
class2 1.271 0.104 12.23 <2e-16 ***
class3 1.050 0.102 10.30 <2e-16 ***
class4 1.371 0.103 13.34 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 958.66 on 51 degrees of freedom
 Residual deviance: 198.63 on 42 degrees of freedom
 AIC: 446.1

Number of Fisher Scoring iterations: 4

The high residual deviance shows that the model is not likely to have generated the data – this deviance is significantly greater for m1 compared to the saturated model (with 52 parameters):

> 1 - pchisq(198.63, 42)

[1] 0
But it certainly fits the data better than the null model in which a fixed mean probability of deletion (i.e., the intercept) is used for all cells / responses:

```r
> 1 - pchisq(958.66 - 198.63, 9)
[1] 0
```

Equivalently:

```r
> anova(glm(ced.del ~ 1, binomial), m1, test = "Chi")

Analysis of Deviance Table

Model 1: ced.del ~ 1
Model 2: ced.del ~ cat + follows + class

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 51 959
2 42 199 9 760 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We can calculate the likelihood, loglikelihood and deviances for m1 and the null / intercept-only model by hand.

We start with predicted probabilities of sDELETION for each cell, and turn them into log probabilities:

```r
> (probsdel <- fitted(m1))
1 2 3 4 5 6 7 8 9 10
0.2424 0.1105 0.1843 0.3426 0.3531 0.1748 0.2782 0.3134 0.4707
 11 12 13 14 15 16 17 18 19 20
0.4534 0.4096 0.5747 0.5326 0.3067 0.4459 0.4880 0.6500 0.6603 0.4301
 21 22 23 24 25 26 27 28 29 30
0.5786 0.6192 0.7601 0.7471 0.7471 0.7119 0.8280 0.4771 0.2616 0.3919
 31 32 33 34 35 36 37 38 39 40
0.5978 0.6088 0.3767 0.5236 0.5666 0.7172 0.7028 0.6643 0.7940 0.5584
 41 42 43 44 45 46 47 48 49 50
0.3293 0.4717 0.5140 0.6732 0.6832 0.4557 0.6037 0.6434 0.7785 0.7662
 51 52
0.7327 0.8423
```

```r
> (logprobdel <- log(probsdel))
```

```r
> (logprobnodel <- log(1 - probsdel))
```

```r
> (logprobdelsmodel <- log(1 - probsdel))
```
We then work out the total data loglikelihood in log space by summing the vectors of log expected counts.

```r
> (loglike <- sum(sDel * logprobdel) + sum(sNoDel * logprobnodel))
[1] -5650
```

The actual likelihood is too small to be accurately represented:

```r
> exp(loglike)
[1] 0
```

This is one of the important reasons for using log-likelihoods: avoid large-impact rounding errors when doing numerical computations with very small (or very large) numbers. Another reason is that they simplify the symbolic calculations that we, as probabilistic-model designers, have to do.

We can now also work out the loglikelihood of the null model, which just uses the overall rate of SDELETION in the data:

```r
> sum(sDel)/(sum(sDel) + sum(sNoDel))
[1] 0.5755
> fitted(glm(ced.del ~ 1, binomial))

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5755</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>0.5755</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>0.5755</td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>0.5755</td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
</tr>
<tr>
<td>0.5755</td>
</tr>
<tr>
<td>51</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

```r
> (sDelProb <- sum(sDel)/(sum(sDel) + sum(sNoDel)))
[1] 0.5755
> (loglikenull <- sum(sDel) * log(sDelProb) + sum(sNoDel) * log(1 - + sDelProb))
[1] -6030
```
This likelihood is also too small to be represented:

```r
> exp(loglikenull)
[1] 0
```

$G^2$, i.e., the deviance, is just $-2 \times$ the difference in log likelihoods:

```r
> (Gsq <- -2 * (loglikenull - loglike))
[1] 760
```

```r
> anova(glm(ced.del ~ 1, binomial), m1, test = "Chi")$Deviance[2]
[1] 760
```

We cannot drop any predictor, as shown by both `anova` and `drop1`:

```r
> anova(m1, test = "Chi")
Analysis of Deviance Table
Model: binomial, link: logit
Response: ced.del
Terms added sequentially (first to last)

<table>
<thead>
<tr>
<th>Df</th>
<th>Deviance</th>
<th>Resid. Df</th>
<th>Resid. Dev</th>
<th>Pr(>Chi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NULL</td>
<td>51</td>
<td>959</td>
<td>199</td>
<td>446</td>
</tr>
<tr>
<td>cat</td>
<td>4</td>
<td>315</td>
<td>47</td>
<td>644</td>
</tr>
<tr>
<td>follows</td>
<td>2</td>
<td>229</td>
<td>45</td>
<td>415</td>
</tr>
<tr>
<td>class</td>
<td>3</td>
<td>216</td>
<td>42</td>
<td>199</td>
</tr>
</tbody>
</table>

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> drop1(m1, test = "Chi")

Single term deletions
Model: ced.del ~ cat + follows + class
Df Deviance AIC LRT Pr(>Chi)
<none> 199 446
| cat | 4 | 369 608 170 | <2e-16 *** |
| follows | 2 | 425 668 226 | <2e-16 *** |
| class | 3 | 415 656 216 | <2e-16 *** |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The ANOVA test tries adding the factors only in the order given in the model formula (left to right). If certain comparisons are close, we need to reorder the predictors in the model formula ordering or we use `drop1`.

24
3.1 Exploring smaller models

Classes 2 and 4 seem to have somewhat similar effects, so we might try modelling class as a 3-way distinction:

```r
> m2 <- glm(ced.del ~ cat + follows + I(class == 1) + I(class == 3), +    family = binomial)
> summary(m2)
```

Call:
glm(formula = ced.del ~ cat + follows + I(class == 1) + I(class == 3), family = binomial)

Deviance Residuals:
Min 1Q Median 3Q Max
-3.253 -1.385 0.007 1.067 6.168

Coefficients:
```
                     Estimate Std. Error z value Pr(>|z|)
(Intercept)           0.00984   0.08605   0.11  0.9090
catd                -0.17072   0.10030  -1.70  0.0888 .
catm                 0.18187   0.08949   2.03  0.0421 *
catn                 0.66614   0.09650   6.90  5.1e-12 ***
catv                -0.78945   0.21823  -3.62  0.0003 ***
followsP             0.95749   0.07394  12.95  < 2e-16 ***
followsV             0.52965   0.05654   9.37  < 2e-16 ***
I(class == 1)TRUE   -1.32823   0.09846 -13.49  < 2e-16 ***
I(class == 3)TRUE   -0.28090   0.05068  -5.54  3.0e-08 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 958.66 on 51 degrees of freedom
Residual deviance: 202.08 on 43 degrees of freedom
AIC: 447.5

Number of Fisher Scoring iterations: 4

Moreover, the deviance for this smaller model is not significantly greater than for model m1, so (as far as statistical significance goes) we might want to keep this model and abandon m1:

```r
> anova(m2, m1, test = "Chi")
```

Analysis of Deviance Table

```
Model 1: ced.del ~ cat + follows + I(class == 1) + I(class == 3)
Model 2: ced.del ~ cat + follows + class
          Resid. Df Resid. Dev  Df Deviance Pr(>Chi)
1            43         202
2            42         199   1    3.45      0.063 .
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```
But class is a scale (an ordinal variable) – and collapsing together classes 2 and 4 does not make much sense, so we put m2 aside.

We could try modelling class as a 2-way distinction, but the resulting increase in deviance is significant, so we do not prefer m2.1 to m1:

```r
> m2.1 <- glm(ced.del ~ cat + follows + I(class == 1), binomial)
> summary(m2.1)
```

```
Call:
  glm(formula = ced.del ~ cat + follows + I(class == 1), family = binomial)

Deviance Residuals:
  Min    1Q  Median    3Q   Max
-4.211 -1.317  -0.083  1.022  6.572

Coefficients: (Intercept)  catd  catm  catn  catv  followsP followsV I(class == 1)TRUE
  Estimate  -0.0757  -0.1614  0.1876  0.6710  0.7508  0.9509  0.5195  -1.2452
  Std. Error  0.0845  0.1001  0.0893  0.0963  0.2175  0.0738  0.0564  0.0972
  z value     -0.90   -1.61   2.10   6.96  -3.45  12.88   9.21  -12.81
  Pr(>|z|)    0.37046  0.10700  0.03579  3.3e-12  0.00056 < 2e-16 < 2e-16 < 2e-16

(Dispersion parameter for binomial family taken to be 1)

  Null deviance:  958.66  on 51  degrees of freedom
  Residual deviance: 232.72  on 44  degrees of freedom
  AIC: 476.2

Number of Fisher Scoring iterations: 4
```

```r
> anova(m2.1, m1, test = "Chi")
```

```
Analysis of Deviance Table

Model 1: ced.del ~ cat + follows + I(class == 1)
Model 2: ced.del ~ cat + follows + class
  Resid. Df Resid. Dev Resid. Deviance Pr(>Chi)
1     44    233                       
2     42   199.2   34.1  4e-08 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

We could also collapse together some of the word classes:

- A and D are a natural class of noun modifiers
- we could also group them with M

So we group A, D and M together:
> m3 <- glm(ced.del ~ I(cat == "n") + I(cat == "v") + follows + class, + binomial)
> summary(m3)

Call:
glm(formula = ced.del ~ I(cat == "n") + I(cat == "v") + follows +
 class, family = binomial)

Deviance Residuals:
 Min 1Q Median 3Q Max
-3.355 -1.399 -0.009 1.020 6.331

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.2699 0.0965 -13.17 < 2e-16 ***
I(cat == "n")TRUE 0.5750 0.0545 10.55 < 2e-16 ***
I(cat == "v")TRUE -0.8559 0.2033 -4.21 2.6e-05 ***
followsP 1.0133 0.0732 13.85 < 2e-16 ***
followsV 0.5771 0.0560 10.31 < 2e-16 ***
class2 1.2865 0.1029 12.50 < 2e-16 ***
class3 1.0733 0.1032 10.40 < 2e-16 ***
class4 1.4029 0.1012 13.87 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 958.66 on 51 degrees of freedom
Residual deviance: 229.11 on 44 degrees of freedom
AIC: 472.6

Number of Fisher Scoring iterations: 4

The deviance compared with m1 increases significantly, so we do not want to accept m3 and abandon m1:

> 1 - pchisq(229.11 - 198.63, 2)
[1] 2.406e-07

> anova(m3, m1, test = "Chi")

Analysis of Deviance Table

Model 1: ced.del ~ I(cat == "n") + I(cat == "v") + follows + class
Model 2: ced.del ~ cat + follows + class
 Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 44 229
2 42 199 2 30.5 2.4e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We group only A and D together:
Model m4 has fewer parameters, but does not significantly increase the deviance – so we want to keep m4 and abandon m1:

> anova(m4, m1, test = "Chi")

Analysis of Deviance Table

Model 1: ced.del ~ I(cat == "n") + I(cat == "v") + I(cat == "m") + follows + class
Model 2: ced.del ~ cat + follows + class

Resid. Df Resid. Dev Resid. Dev Pr(>Chi)
1 43 202
2 42 199 1 2.85 0.091 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

A number of cells for class 1 are poorly predicted by both m1 and m4:
We might worry that the models do okay on average only because very little class 1 data was collected. We can add an interaction term between just this category and class explicitly. The resulting model is significantly better:

```r
> m5 <- glm(ced.del ~ cat + follows + class + I(cat == "n" &
+ class == 1), binomial)
> summary(m5)

Call:
  glm(formula = ced.del ~ cat + follows + class + I(cat == "n" &
  class == 1), family = binomial)

Deviance Residuals:
Min 1Q Median 3Q Max
-4.175 -1.083 0.120 0.925 6.512

Coefficients:  Estimate Std. Error z value Pr(>|z|)
(Intercept)  -1.4573    0.1351  -10.78   < 2e-16 ***
catd          -0.1732    0.1006   -1.72    0.0852 .
catm           0.1715    0.0898    1.91    0.0562 .
catn           0.6243    0.0979    6.38    1.8e-10 ***
catv           -0.7749    0.2189   -3.54    0.0004 ***
followsP        0.9561    0.0740   12.92    < 2e-16 ***
followsV        0.5388    0.0567    9.50    < 2e-16 ***
class2          1.4222    0.1201   11.84    < 2e-16 ***
class3          1.1999    0.1204    9.96    < 2e-16 ***
class4          1.5256    0.1186   12.86    < 2e-16 ***
I(cat == "n" &
  class == 1)TRUE  0.6147    0.2279    2.70    0.0070 **

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 958.66  on 51 degrees of freedom
Residual deviance: 191.34  on 41 degrees of freedom
AIC: 440.8
```
Number of Fisher Scoring iterations: 4

> anova(m1, m5, test = "Chi")

Analysis of Deviance Table

Model 1: ced.del ~ cat + follows + class
Model 2: ced.del ~ cat + follows + class + I(cat == "n" & class == 1)

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 42 199
2 41 191 1 7.29 0.0069 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> anova(m4, m5, test = "Chi")

Analysis of Deviance Table

Model 1: ced.del ~ I(cat == "n") + I(cat == "v") + I(cat == "m") + follows + class
Model 2: ced.del ~ cat + follows + class + I(cat == "n" & class == 1)

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 43 202
2 41 191 2 10.1 0.0063 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We can add interaction terms between all categories and classes:

> m6 <- glm(ced.del ~ cat + follows + class + cat:class, binomial)
> print(summary(m6), dig = 1)

Call:
glm(formula = ced.del ~ cat + follows + class + cat:class, family = binomial)

Deviance Residuals:
 Min 1Q Median 3Q Max
-4.2 -0.7 0.0 0.9 5.7

Coefficients: Estimate Std. Error z value Pr(>|z|)
(Intercept) -2e+00 3e-01 -5.8 7e-09 ***
catd 2e-03 4e-01 0.0 0.995
catm 8e-01 3e-01 2.2 0.029 *
catn 2e+00 4e-01 4.4 1e-05 ***
catv -2e+01 1e+03 12.9 <2e-16 ***
followsP 1e+00 7e-02 12.9 <2e-16 ***
followsV 5e-01 6e-02 9.5 <2e-16 ***
class2 2e+00 4e-01 5.5 4e-08 ***
class3 1e+00 4e-01 3.9 1e-04 ***
class4 2e+00 4e-01 5.9 3e-09 ***
catd:class2 -5e-01 4e-01 -1.1 0.278
catm:class2 -8e-01 4e-01 -1.9 0.052 .
catn:class2 -9e-01 4e-01 -2.3 0.022 *
We can make the saturated model (i.e., a model with as many parameters as observations and with a deviance that is practically 0) adding all three-way interactions:

```r
> m7 <- glm(ced.del ~ cat * follows * class, binomial)
> print(summary(m7), dig = 1)
```

Call:
```
glm(formula = ced.del ~ cat * follows * class, family = binomial)
```

Deviance Residuals:
```
[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[24] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[47] 0 0 0 0 0 0 0
```

Coefficients: (8 not defined because of singularities)

| Estimate | Std. Error | z value | Pr(>|z|) |
|----------|------------|---------|---------|
| (Intercept) -2e+00 | 4e-01 | -4.5 | 6e-06 *** |
| catd 2e-01 | 5e-01 | 0.5 | 0.635 |
| catm 7e-01 | 4e-01 | 1.5 | 0.124 |
| catn 2e+00 | 5e-01 | 3.6 | 4e-04 *** |
| catv -2e+01 | 9e+04 | 0.0 | 1.000 |
| followsP -2e+01 | 9e+04 | 0.0 | 1.000 |
| followsV 1e+00 | 7e-01 | 2.0 | 0.051 . |
| class2 2e+00 | 4e-01 | 4.4 | 1e-05 *** |
| class3 1e+00 | 4e-01 | 2.8 | 0.005 ** |
| class4 2e+00 | 4e-01 | 4.5 | 6e-06 *** |
| catd:followsP NA | NA | NA | NA |
| catm:followsP 2e+01 | 9e+04 | 0.0 | 1.000 |
| catn:followsP 2e+01 | 9e+04 | 0.0 | 1.000 |
| catv:followsP NA | NA | NA | NA |
| catd:followsV -2e+00 | 1e+00 | -2.1 | 0.036 * |
| catm:followsV -6e-01 | 8e-01 | -0.7 | 0.467 |
| catn:followsV 2e+00 | 1e+00 | 1.4 | 0.156 |
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 9.5866e+02 on 51 degrees of freedom
Residual deviance: 2.5389e-10 on 0 degrees of freedom
AIC: 331.5

Number of Fisher Scoring iterations: 23
Models m6 and m7 are not linguistically very interesting: a lot of parameters are not significant and no clear generalizations are emerging.

Looking at the interaction terms in m6 a bit closer, it seems that CAT N and, more marginally, CAT M have a special behavior:

```r
> print(summary(m6), dig = 1)
```

Call:
`glm(formula = ced.del ~ cat + follows + class + cat:class, family = binomial)`

Deviance Residuals:
```
       Min          1Q    Median       3Q          Max
-4.2   -0.7      0.0      0.9       5.7
```

Coefficients:
```
                     Estimate Std. Error   z value Pr(>|z|)
(Intercept)         -2e+00    3e-01     -5.8  7e-09 ***
catd                2e-03    4e-01     0.0  0.995
catid                8e-01    3e-01     2.2  0.029 *
catn                2e+00    4e-01     4.4  1e-05 ***
catv                -2e+01   1e+03      0.0  0.989
followsP            1e+00    7e-02     13.9 <2e-16 ***
followsV            5e-01    6e-02      9.5 <2e-16 ***
class2              2e+00    4e-01     5.5  4e-08 ***
class3              1e+00    4e-01     3.9  1e-04 ***
class4              2e+00    4e-01     5.9  3e-09 ***
catd:class2        -5e-01    4e-01    -1.1  0.278
catm:class2        -8e-01    4e-01    -1.9  0.052 .
catn:class2         9e-01    4e-01    -2.3  0.022 *
catv:class2         1e+01    1e+03      0.0  0.990
catd:class3         1e-01    4e-01      0.2  0.825
catm:class3         2e-01    4e-01     -0.6  0.540
catid:class3        -4e-01    4e-01    -2.6  0.009 **
catv:class3         1e+03    0.0      0.0  0.989
```

This is related to what we noticed in model m4 above (the best model without interaction terms, i.e., the best among m1 through m4) – namely that the CAT distinctions can be conflated by lumping cat=="a" and cat=="d" together:
> print(summary(m4), dig = 1)

Call:
 glm(formula = ced.del ~ I(cat == "n") + I(cat == "v") + I(cat ==
 "m") + follows + class, family = binomial)

Deviance Residuals:
 Min 1Q Median 3Q Max
-3.3 -1.2 0.1 1.1 6.4

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.43 0.10 -14 <2e-16 ***
I(cat == "n")TRUE 0.78 0.07 12 <2e-16 ***
I(cat == "v")TRUE -0.65 0.21 -3 0.002 **
I(cat == "m")TRUE 0.30 0.06 5 1e-07 ***
followsP 0.96 0.07 13 <2e-16 ***
followsV 0.53 0.06 9 <2e-16 ***
class2 1.27 0.10 12 <2e-16 ***
class3 1.05 0.10 10 <2e-16 ***
class4 1.37 0.10 14 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 958.66 on 51 degrees of freedom
 Residual deviance: 201.47 on 43 degrees of freedom
 AIC: 446.9

Number of Fisher Scoring iterations: 4

We conflate the CAT distinctions along the same lines and add interaction terms between cat="n" and classes 1 and 3 (given that classes 2 and 4 behave in similar ways):

> m8 <- glm(ced.del ~ I(cat == "n") + I(cat == "m") + follows + class +
 I(cat == "n" & class == 3) + I(cat == "n" & class == 1), binomial)
> print(summary(m8), dig = 1)

Call:
 glm(formula = ced.del ~ I(cat == "n") + I(cat == "m") + follows +
 class + I(cat == "n" & class == 3) + I(cat == "n" & class ==
 1), family = binomial)

Deviance Residuals:
 Min 1Q Median 3Q Max
-4.2 -1.3 0.1 1.1 6.0

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.60 0.12 -14 <2e-16 ***
I(cat == "n")TRUE 0.97 0.08 12 <2e-16 ***
The model has the same number of parameters as the initial model we built, but improves the loglikelihood by deviance/2, i.e., it makes the observed data more than 8000 times more likely.

```r
> anova(m1, m8)
Analysis of Deviance Table

Model 1: ced.del ~ cat + follows + class
Model 2: ced.del ~ I(cat == "n") + I(cat == "m") + follows + class + I(cat == "n" & class == 3) + I(cat == "n" & class == 1)

Resid. Df Resid. Dev Df Deviance
1 42 199
2 42 181 0 18.1

> exp(anova(m1, m8)$Deviance[2]/2)
[1] 8393

> logLik(m1)
'log Lik.' -213 (df=10)

> logLik(m8)
'log Lik.' -204 (df=10)

> exp(logLik(m8) - logLik(m1))
'logLik.' 8393 (df=10)

> exp(logLik(m8))/exp(logLik(m1))
'log Lik.' 8393 (df=10)
```

Quick summary:
+ header = T)
> cedegren$class <- as.factor(cedegren$class)
> attach(cedegren)

The following objects are masked from cedegren (position 3):

 cat, class, follows, sDel, sNoDel
The following objects are masked from ced.long (position 4):

 cat, class, follows, sDel
The following objects are masked from cedegren (position 5):

 cat, class, follows, sDel, sNoDel
The following objects are masked from ced.long (position 7):

 cat, class, follows, sDel
The following objects are masked from cedegren (position 8):

 cat, class, follows, sDel, sNoDel
The following objects are masked from ced.long (position 9):

 cat, class, follows, sDel
The following objects are masked from cedegren (position 10):

 cat, class, follows, sDel, sNoDel

> ced.del <- cbind(sDel, sNoDel)
> m1 <- glm(ced.del ~ cat + follows + class, binomial)
> m2 <- glm(ced.del ~ cat + follows + I(class == 1) + I(class == 3),
+ binomial)
> m3 <- glm(ced.del ~ I(cat == "n") + I(cat == "v") + follows + class,
+ binomial)
> m4 <- glm(ced.del ~ I(cat == "n") + I(cat == "v") + I(cat == "m") +
+ follows + class, binomial)
> m5 <- glm(ced.del ~ cat + follows + class + I(cat == "n" & class ==
+ 1), binomial)
> m6 <- glm(ced.del ~ cat + follows + class + cat:class, binomial)
> m7 <- glm(ced.del ~ cat + follows * class, binomial)
> m8 <- glm(ced.del ~ I(cat == "n") + I(cat == "m") + follows + class +
+ I(cat == "n" & class == 3) + I(cat == "n" & class == 1), binomial)

If we look back at the raw stats for nouns of class 1, we notice that we almost always have /s/-deletion before a vowel and almost never before a pause:

> subset(cedegren, class == 1 & cat == "n")

<table>
<thead>
<tr>
<th>sDel</th>
<th>sNoDel</th>
<th>cat</th>
<th>follows</th>
<th>class</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>34</td>
<td>40</td>
<td>n</td>
<td>C</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>1</td>
<td>n</td>
<td>V</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>15</td>
<td>n</td>
<td>P</td>
</tr>
</tbody>
</table>

To capture this, we add an interaction between CLASS 1, CAT N and the levels of FOLLOWS:

- we add two more parameters, but the residual deviance goes down a lot
• the deviance is close to the m6 interaction model (full CAT×CLASS interaction) – but in a more interesting way; and pretty much all parameters are significant

```r
> m9 <- glm(ced.del ~ I(cat == "n") + I(cat == "m") + follows + class +
+    I(cat == "n" & class == 3) + I(cat == "n" & class == 1) + I(cat ==
+    "n" & class == 1):follows, binomial)
> print(summary(m9), dig = 1)

Call:
  glm(formula = ced.del ~ I(cat == "n") + I(cat == "m") + follows +
    class + I(cat == "n" & class == 3) + I(cat == "n" & class ==
    1) + I(cat == "n" & class == 1):follows, family = binomial)

Deviance Residuals:
  Min      1Q  Median      3Q     Max
-3.6     -1.3      0      0.9     6.1

Coefficients:  Estimate Std. Error z value Pr(>|z|)
(Intercept)  -1.60     0.12    -14  <2e-16 ***
I(cat == "n")TRUE  0.96     0.08     12  <2e-16 ***
I(cat == "m")TRUE  0.32     0.06     6  4e-09  ***
followsP  1.00     0.08     13  <2e-16 ***
followsV  0.50     0.06     9  2e-16  ***
class2  1.36     0.12    11  <2e-16 ***
class3  1.29     0.12    11  <2e-16 ***
class4  1.48     0.12    12  <2e-16 ***
I(cat == "n" & class == 3)TRUE  -0.58     0.12    -5  9e-07  ***
I(cat == "n" & class == 1)TRUE  0.47     0.27     2  0.08   
followsP:I(cat == "n" & class == 1)TRUE  -2.16     0.61    -4  0.01   *
followsV:I(cat == "n" & class == 1)TRUE  2.66     1.05     2  0.01   *

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 958.66 on 51 degrees of freedom
Residual deviance: 146.72 on 40 degrees of freedom
AIC: 398.2
```

37
Quick comparison:

```r
> anova(m9, m6, test = "Chi")

Analysis of Deviance Table

Model 1: ced.del ~ I(cat == "n") + I(cat == "m") + follows + class + I(cat == "n" & class == 3) + I(cat == "n" & class == 1) + I(cat == "n" & class == 1):follows
Model 2: ced.del ~ cat + follows + class + cat:class

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 40 147
2 30 136 10 11 0.35
```

```r
> anova(m8, m9, test = "Chi")

Analysis of Deviance Table

Model 1: ced.del ~ I(cat == "n") + I(cat == "m") + follows + class + I(cat == "n" & class == 3) + I(cat == "n" & class == 1)
Model 2: ced.del ~ I(cat == "n") + I(cat == "m") + follows + class + I(cat == "n" & class == 3) + I(cat == "n" & class == 1) + I(cat == "n" & class == 1):follows

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 42 181
2 40 147 2 33.8 4.5e-08 ***
```

We make sure that we need all the 3-way interaction terms by comparing m9 with a model that just has an interaction term for `cat=="n", class==1` and `follows=="V"`.

```r
> m10 <- glm(ced.del ~ I(cat == "n") + I(cat == "m") + follows + class + I(cat == "n" & class == 3) + I(cat == "n" & class == 1) + I(cat == "n" & class == 1 & follows == "V"), binomial)
> print(summary(m10), dig = 1)

Call:
  glm(formula = ced.del ~ I(cat == "n") + I(cat == "m") + follows + class + I(cat == "n" & class == 3) + I(cat == "n" & class == 1) + I(cat == "n" & class == 1 & follows == "V"), family = binomial)

Deviance Residuals:
  Min 1Q Median 3Q Max
  -4 -1 0 1 6

Coefficients:                           Estimate Std. Error
(Intercept)                             -1.59    0.12
I(cat == "n")TRUE                       0.97    0.08
I(cat == "m")TRUE                       0.33    0.06
```

38
followsP 0.96 0.07
followsV 0.49 0.06
class2 1.36 0.12
class3 1.29 0.12
class4 1.48 0.12
I(cat == "n" & class == 3)TRUE -0.58 0.12
I(cat == "n" & class == 1)TRUE 0.05 0.25
I(cat == "n" & class == 1 & follows == "V")TRUE 3.07 1.05

z value Pr(>|z|)
(Intercept) -13.6 <2e-16 ***
I(cat == "n")TRUE 12.3 <2e-16 ***
I(cat == "m")TRUE 5.9 3e-09 ***
followsP 12.9 <2e-16 ***
followsV 8.7 <2e-16 ***
class2 11.3 <2e-16 ***
class3 10.6 <2e-16 ***
class4 12.4 <2e-16 ***
I(cat == "n" & class == 3)TRUE -4.9 8e-07 ***
I(cat == "n" & class == 1)TRUE 0.2 0.830
I(cat == "n" & class == 1 & follows == "V")TRUE 2.9 0.003 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 958.66 on 51 degrees of freedom
Residual deviance: 161.77 on 41 degrees of freedom
AIC: 411.2

Number of Fisher Scoring iterations: 4

> anova(m10, m9, test = "Chi")

Analysis of Deviance Table

Model 1: ced.del ~ I(cat == "n") + I(cat == "m") + follows + class + I(cat == "n" & class == 3) + I(cat == "n" & class == 1) + I(cat == "n" & class == 1 & follows == "V")
Model 2: ced.del ~ I(cat == "n") + I(cat == "m") + follows + class + I(cat == "n" & class == 3) + I(cat == "n" & class == 1) + I(cat == "n" & class == 1):follows
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 41 162
2 40 147 1 15.1 1e-04 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

m9 is significantly better, as we might expect given that the three level of FOLLOWS interact very differently with class==1 & cat=="n":

> subset(cedegren, class == 1 & cat == "n")
sDel sNoDel cat follows class
5 34 40 n C 1
4 Long format data & logistic regression

We used binary outcome data in a summary format (counts of SDEL and SNODEL for each combination of levels of factors). An alternative is long format, where each observation is a line; collected data often starts out in this form.

```r
> str(ced.long)
'data.frame': 8846 obs. of 4 variables:
$ sDel : int 1 1 1 1 1 1 1 1 1 1 ...
$ cat : Factor w/ 5 levels "a","d","m","n",": 3 3 3 3 3 3 3 3 3 3 ...
$ follows: Factor w/ 3 levels "C","P","V": 1 1 1 1 1 1 1 1 1 1 ...
$ class : int 1 1 1 1 1 1 1 1 1 1 ...

> summary(ced.long)
sDel cat follows class
Min. :0.000 a: 609 C:5600 Min. :1.00
1st Qu.:0.000 d:1393 P:1304 1st Qu.:2.00
Median :1.000 m:4460 V:1942 Median :3.00
Mean :0.576 n:2268 Mean :2.96
3rd Qu.:1.000 v: 116 3rd Qu.:4.00
Max. :1.000

> ced.long[sample(nrow(ced.long), 15), ]
sDel cat follows class
5144 0 n V 3
3337 1 m C 3
1997 1 n C 2
4737 1 m V 3
4066 0 d C 3
5051 1 n V 3
7508 1 n C 4
3805 0 m C 3
3100 0 n P 2
7862 1 m V 4
7156 1 a C 4
7572 0 n C 4
6086 1 m C 4
2006 1 n C 2
7961 0 m V 4
```

We can then examine the data by constructing cross-tabulations. This can be done with any number of variables, but they get harder to read with more than two.
> attach(ced.long)

The following objects are masked from cedegren (position 3):

 cat, class, follows, sDel

The following objects are masked from ced.long (position 4):

 cat, class, follows, sDel

The following objects are masked from cedegren (position 5):

 cat, class, follows, sDel

The following objects are masked from ced.long (position 7):

 cat, class, follows, sDel

The following objects are masked from cedegren (position 8):

 cat, class, follows, sDel

The following objects are masked from ced.long (position 9):

 cat, class, follows, sDel

The following objects are masked from cedegren (position 10):

 cat, class, follows, sDel

> xtabs(~sDel + class)

<table>
<thead>
<tr>
<th>class</th>
<th>sDel</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>414</td>
</tr>
<tr>
<td>1</td>
<td>165</td>
</tr>
</tbody>
</table>

> mosaicplot(xtabs(~class + sDel))
Do we need to build logistic regression models, or could we get everything we need from just looking at crosstabs?

For example, we can already see here that /s/-deletion is strongly disfavored by class 1 speakers, but moderately preferred by other classes – as the class-wise proportions below show:

```r
> round(prop.table(xtabs(~sDel + class), 2), 2)

   class 0 1 2 3 4
sDel  
0   0.72 0.41 0.45 0.37
1   0.28 0.59 0.55 0.63
```

Sometimes looking at crosstabs works, but the fundamental observation is this:

- the predictive effect of variables can be spurious, hidden or reversed when we look at the marginal totals in crosstabs (recall Simpson’s paradox)

Reason: they do not take into account correlations between predictors.

Logistic regression works out the best way to attribute "causal" effect to predictors (as long as the predictors are actually coded in the data).

We can load the long-form data into the basic glm function:

```r
> summary(glm(sDel ~ cat + follows + class, binomial, ced.long))
```

Call:
```
glm(formula = sDel ~ cat + follows + class, family = binomial, 
    data = ced.long)
```

Deviance Residuals:
```
   Min     1Q Median     3Q    Max
```
Coefficients:

| | Estimate | Std. Error | z value | Pr(>|z|) |
|------------|----------|------------|---------|----------|
| (Intercept)| -0.8106 | 0.1064 | -7.62 | 2.6e-14 *** |
| catd | -0.1347 | 0.0992 | -1.36 | 0.1746 |
| catm | 0.2172 | 0.0885 | 2.46 | 0.0141 * |
| catn | 0.7127 | 0.0954 | 7.47 | 8.0e-14 *** |
| catv | -0.6368 | 0.2161 | -2.95 | 0.0032 ** |
| followsP | 0.9416 | 0.0735 | 12.81 | < 2e-16 *** |
| followsV | 0.5265 | 0.0560 | 9.40 | < 2e-16 *** |
| class | 0.2119 | 0.0233 | 9.10 | < 2e-16 *** |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 12061 on 8845 degrees of freedom
Residual deviance: 11434 on 8838 degrees of freedom
AIC: 11450

Number of Fisher Scoring iterations: 4

We get the same estimates and SEs as before – and the same difference between residual deviance and null deviance:

> summary(glm(ced.del ~ cat + follows + class, binomial, cedegren))

Call:
glm(formula = ced.del ~ cat + follows + class, family = binomial,
data = cedegren)

Deviance Residuals:

<table>
<thead>
<tr>
<th>Min 1Q Median 3Q Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3.24 -1.34 0.05 1.01 6.40</td>
</tr>
</tbody>
</table>

Coefficients:

| | Estimate | Std. Error | z value | Pr(>|z|) |
|------------|----------|------------|---------|----------|
| (Intercept)| -1.3183 | 0.1222 | -10.79 | < 2e-16 *** |
| catd | -0.1693 | 0.1003 | -1.69 | 0.09146 . |
| catm | 0.1786 | 0.0895 | 1.99 | 0.04605 * |
| catn | 0.6667 | 0.0965 | 6.91 | 4.9e-12 *** |
| catv | -0.7675 | 0.2184 | -3.51 | 0.00044 *** |
| followsP | 0.9525 | 0.0740 | 12.87 | < 2e-16 *** |
| followsV | 0.5341 | 0.0566 | 9.44 | < 2e-16 *** |
| class2 | 1.2704 | 0.1032 | 12.31 | < 2e-16 *** |
| class3 | 1.0480 | 0.1035 | 10.12 | < 2e-16 *** |
| class4 | 1.3742 | 0.1016 | 13.53 | < 2e-16 *** |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 958.66 on 51 degrees of freedom
Residual deviance: 198.63 on 42 degrees of freedom
AIC: 446.1

Number of Fisher Scoring iterations: 4

But the deviances (and the corresponding dof.s) are much larger.

References