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1 Basic introduction to logistic regression

Logistic regression modeling has become, in many fields, the standard method of analysis when the re-
sponse variable is categorical (binomial or multinomial).

The goal of an analysis using this method is the same as that of any regression-model building: to find
the best fitting, most parsimonious and theoretically reasonable model to describe the relationship between
an outcome (dependent or response) variable and a set of independent (predictor or explanatory) variables.

The most common example of modeling is the usual linear regression model where the outcome variable
is assumed to be continuous.

What distinguishes a logistic regression model from the linear regression model is that the outcome
variable in logistic regression is binary / dichotomous (or n-ary / polytomous).

Once this difference is accounted for, the methods employed in an analysis using logistic regression
follow the same general principles used in linear regression.

For example, consider a data set discussed in Hosmer and Lemeshow (2000):

¢ one continuous predictor: the age of the 100 participants in the study, given in years (AGE)

* a categorical response: presence or absence of evidence of significant coronary heart disease (CHD),
coded as 1 (there was evidence) and 0 (there was no evidence)

> chage <- read.table("chdage.dat", header = F)
> head(chage)

Vi V2 V3
20
23
24
25
25
26

D O WN -
~N SO0 W
O O O O O

> str(chage)

'data.frame': 100 obs. of 3 variables:

$ Vi: int 12354769810 ...

$ V2: int 20 23 24 25 25 26 26 28 28 29 ...
$V3: int 0001000000 ...

> cat(readLines("chdage.txt", n = -1), fill = 20)

Code Sheet for the Chd-Age data in Table 1.1 page 3 of
Applied Logistic Regression:Second Edition

Variable Name Values
1 Identification Code 1-100
2 Age Years
3 Evidence of Coronary
Heart Disease O = No, 1 = Yes

> chage <- data.frame(chage$V2, chage$V3)
> names(chage) <- c("AGE", "CHD")
> head(chage)



AGE CHD
20
23
24
25
25
26

O WN -
O O+, O O O

> summary (chage)

AGE CHD
Min. :20.0 Min. :0.00
1st Qu.:34.8 1st Qu.:0.00
Median :44.0 Median :0.00
Mean 144 .4 Mean :0.43
3rd Qu.:55.0 3rd Qu.:1.00
Max. :69.0 Max. :1.00

> write.csv(chage, "chage.csv", row.names = FALSE)
> attach(chage)

Goal: explore the relationship between age and the presence or absence of CHD in this sample and
generalize this relationship from the sample to the population.

¢ had our outcome variable been continuous rather than binary, we probably would begin by forming
a scatterplot of the outcome versus the independent variable

* we would use this scatterplot to provide an impression of the nature and strength of any relationship
between the outcome and the independent variable.

A scatterplot of the data, together with a boxplot:

¢ all points fall on one of two parallel lines representing the absence of CHD (y = 0) and the presence of
CHD (y =1)

¢ there is some tendency for the individuals with no evidence of CHD to be younger than those with
evidence of CHD; we can see this with a boxplot too

> par(mfrow = c(1, 2))
> plot(jitter(AGE), CHD, col = "blue")
> boxplot(AGE ~ CHD, col = "lightblue", horizontal = TRUE)
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> par(mfrow = c(1, 1))

The scatterplot depicts the dichotomous nature of the outcome variable clearly, but it does not provide
a clear picture of the nature of the relationship between CHD and AGE:

e the variability in CHD at all ages is large and this makes it difficult to describe the functional relation-
ship between AGE and CHD

One common method of removing some variation while still maintaining the structure of the relation-
ship between the outcome and the independent variable is to create intervals for the independent variable
and compute the mean of the outcome variable within each group.

> (AGRP <- numeric(length = length(AGE)))
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(i in 1:length(AGE)) {
if (20 <= AGE[i] & AGE[i]
AGRP[i] <- 1

AN

30) {
if (30 <= AGE[i] & AGE[i] < 35) {
AGRP[i] <- 2

if (35 <= AGE[i] & AGE[i] < 40) {
AGRP[i] <- 3

if (40 <= AGE[i] & AGE[i] < 45) {
AGRP[i] <- 4

+ + + + + + + + + + +V
()



+ }

+ if (45 <= AGE[i] & AGE[i] < 50) {
T AGRP[i] <- b

+ +

+ if (50 <= AGE[i] & AGE[i] < 55) {
+ AGRP[i] <- 6

+ }

+ if (55 <= AGE[i] & AGE[i] < 60) {
+ AGRP[i] <- 7

+ +

+ if (60 <= AGE[i] & AGE[i] < 70) {
+ AGRP[i] <- 8

+ +

*

> chagrp <- data.frame(AGE, AGRP, CHD)
> head(chagrp)

AGE AGRP CHD

1 20 1 0
2 23 1 0
3 24 1 0
4 25 1 1
5 25 1 0
6 26 1 0
> detach(chage)
> write.csv(chagrp, "chagrp.csv", row.names = FALSE)

> attach(chagrp)

The following object is masked _by_ .GlobalEnv:

AGRP
We can now compute the mean CHD, i.e., the proportion of CHD incidence, for each age group:

> (proportion.CHD <- numeric(length = 8))
[11 00000000

> for (i in 1:8) {

* proportion.CHD[i] <- mean(subset(chagrp, AGRP == i)$CHD)
+}

> proportion.CHD

[1] 0.1000 0.1333 0.2500 0.3333 0.4615 0.6250 0.7647 0.8000

We plot the CHD proportions against the corresponding 8 age groups (blue circles — no CHD; dark red
crosses — CHD)

> plot(AGE, CHD, type = "n", ylab = "Proportion with CHD", main = "No CHD (blue circles) and CHD (dark :
> for (i in 1:8) {

+ points(jitter(subset(chagrp, AGRP == i & CHD == 0)$AGE), rep(proportion.CHD[i],

& length(subset (chagrp, AGRP == i & CHD == 0)$AGE)), col = "blue")

+ points(jitter(subset(chagrp, AGRP == i & CHD == 1)$AGE), rep(proportion.CHD[i],

* length(subset(chagrp, AGRP == i & CHD == 1)$AGE)), pch = "+",



+ col = "darkred")
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By examining the vector of CHD proportions, a clearer picture of the relationship begins to emerge: as
age increases, the proportion of individuals with CHD increases.

This is particularly clear if we plot the proportion of individuals with CHD against the midpoint of each
age interval.

> (mean.AGE <- numeric(length = 8))

[1J] 0O0O00000O

> for (i in 1:8) {

+ mean.AGE[i] <- mean(subset(chagrp, AGRP == i)$AGE)
+ }

> mean.AGE

[1] 25.40 32.00 36.92 42.33 47.23 51.88 56.88 63.00



> plot(AGE, CHD, type = "n", ylab = "Proportion with CHD")
> lines(spline(mean.AGE, proportion.CHD), col = "red", lwd = 1.5)
> points(mean.AGE, proportion.CHD, pch = 20, col = "blue")
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> detach(chagrp)

While this provides considerable insight into the relationship between CHD and AGE in this study, a
functional form for this relationship needs to be described.

The plot in this figure is similar to what one might obtain if this same process of grouping and averaging
were performed in a linear regression.

There are two important differences:

* The first concerns the nature of the relationship between the outcome and independent variables:

— in any regression problem, the key quantity is the mean value of the outcome variable y given
the value of the independent variable x: E[y|x]



in linear regression, we assume that this mean may be expressed as an equation linear in the
coefficient(s) for x (or linear in the coefficient(s) for x after some transformation of x or y), which
implies that E[y|x] could take any value as x ranges between —oco and +o0

but with dichotomous data, 0 < E[y|x] <1

in addition, the plot shows that this mean approaches 0 and 1 gradually: the change in E[y|x]
per unit change in x becomes progressively smaller as the conditional mean gets closer to 0 or 1;
the curve is S-shaped (sigmoidal).

* The second concerns the conditional distribution of the outcome variable:

in linear regression, we assume that an observation of the outcome variable may be expressed as
y=Elylx] +e
the error € expresses an observation’s deviation from the conditional mean

the most common assumption is that the error follows a normal distribution with mean 0 and
some variance that is constant across the ‘levels’ of the independent variable

thus, the conditional distribution of the outcome variable given x will be normal with mean
E[y|x] and a variance that is constant

but this is not the case with a dichotomous outcome variable: the value of the outcome variable
given x is y = 7(x) + error

where 71(x), i.e., the proportion / probability of y given the value of x, is an alternative way to
symbolize the conditional mean of y given x, i.e., E[y|x]

the error may assume one of two possible values: if y = 1, then error = 1 — 7r(x) with probability
n(x); and if y = 0, then error = 0 — r(x) = —7(x) with probability 1 — 7(x)

thus, the error has mean 7(x) and variance 7(x)(1 — 7t(x)), i.e., it follows a Bernoulli (a.k.a.,
binomial with number of trials n = 1) distribution with probability 77(x)

2 Generalized linear models (GLMs)

This type of data provided one of the main motivations for generalized linear models (GLMs). These mod-
els allow us to incorporate all the knowledge and techniques we have for linear models (with a continuous
response),
variables.

while at the same time enabling us to model non-continuous, non-normally distributed response

In particular, a sub-family of GLMs can be used for binary response data while taking into account the

fact that the reponse variable is categorical and the error distribution is binomial (among other things).

The crucial point:

¢ different functions can be used to link (i) the predicted values with (ii) a linear combination of the
predictor variables.

Notation for this:

e 7;: this is (the deterministic part of) the model, i.e., the linear combination of the predictor variables;
this linear combination can include variables multiplied by each other (i.e., interactions) and functions
of these variables; remember: (generalized) linear models are linear in the coefficients / B values, not
in the predictors

¢ u;: the predicted values

e the link function g() connects the model and the predicted values: g(y;) = ;.

There are two key concepts needed to construct GLMs (in addition to the linear combination of predictor

variables #; that we inherit from linear models):



(1) link functions — we will consider three link functions:
a. the identity function
b. the log function
c. the logit function (the logit should be used for the CHD~AGE data)

(2) error distributions — these link functions have different error distributions associated with them, as
follows:

a. normally distributed errors are associated with the identity link
b. Poisson distributed errors are associated with the log link
c. binomially distributed errors are associated with the logit link

2.1 The identity link

The identity link function together with the assumption of normally distributed errors is simply the stan-
dard linear multiple regression (take a moment to think about this).

(3) The model:
a. deterministic part (the linear combination + the link function): identity(y;) = #;
b. the random / stochastic part: y; ~ Normal(u;, 0?)

2.2 Theloglink

A common situation: the dependent variable is a frequency.
For example:

¢ how many times a child asks for help in a classroom
¢ the number of wide scope indefinites or modals per sentence or paragraph in a text
¢ the number of rice grains on any particular kitchen tile when you drop a handful of uncooked rice

e the distribution of bombs in London neighborhoods during the WW?2 air raids

If these occurrences are independent from each other and are based only on a single probability, it is
reasonable to assume that the data follow a Poisson distribution, and the log link is appropriate in this case.

(4) The model:
a. deterministic part (the linear combination + the link function): log(y;) = #;
b. the random / stochastic part: y; ~ Poisson(u;)

The error distribution is Poisson, and the standard deviation of a Poisson distribution is the same as its
mean.

(5) a. the mean of Poisson distributions is usually symbolized as A, not u

b. A is a positive real number; taking the log correctly ensures that the linear combination of pre-
dictors log(A;) = log(mu;) = n; covers the entire real line

> lambda <- seq(0, 100, by = 0.01)
> plot(lambda, log(lambda), col = "blue", type = "1")
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When a Poisson distribution is usually used, the mean rate A is small (< 3):

(6) it has high expected probabilities for low frequencies
(7) the expected probabilities decline as the frequencies increase (i.e., it is positively skewed)

(8) e.g., itisexpected that most children ask few questions, but that some may ask lot

Examples of Poisson distributions, for A =1, 2,5, 10, 20:

plot(0:40, dpois(0:40, 1), xlab = "Variable", ylab = "", ylim = c(0,
0.5), col = "white")
for (i in c(1, 2, 5, 10, 20)) {
lines(spline(0:40, dpois(0:40, 1)), col = which(c(1, 2, 5, 10,
20) == i), lwd = 2)

}

text (1, 0.37, expression(lambda, " = 1"), pos = 4, col = 1)
text (2.4, 0.26, expression(lambda, " = 2"), pos = 4, col = 2)
text (4, 0.2, expression(lambda, " = 5"), pos = 4, col = 3)

text (6.8, 0.14, expression(lambda, " = 10"), pos = 4, col = 4)
text (17, 0.11, expression(lambda, " = 20"), pos = 4, col = b)

10
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As the value of A reaches 10 and 20, the distribution looks more like a normal distribution, so in these
situations people would often just assume normally distributed errors.

A model that involves a linear combination of predictors, the log link, and a Poisson distribution for the
observations, is called a Poisson regression. The name ‘log-linear model’ is alternatively used, especially
when we are trying to model the number of observations in a particular cell in a contingency table (Agresti
2002).

2.3 Thelogit link

Another common situation: a person’s score is the number of correct responses out of a total (i.e., a propor-
tion). In these situations, the logit link function can be used.

(9) The logit link function is:

a. logit(y;) = log(lfiyi) =1

b. where log is the natural logarithm

c. the error term follows a binomial distribution
Logit stands for log-odds:

e the predicted value y; is:

the probability of a correct response on an item

the probability of heads for a coin

the probability that the indefinite takes wide scope in a sentence with only one other quantifier

- etc.

e the odds: the ratio £ im, i.e., the probability of ‘success’ divided by the probability of “failure’

(10) The model:
a. deterministic part (the linear combination + the link function): logit(y;) = #;

11



b. the random / stochastic part: y; ~ Binomial(n, y;), where n is the total number of observations
/ coin flips, i.e., n is known

(11) If n =1, then the observations are Bernoulli distributed: y; ~ Binomial (1, y;) is equivalent to saying

that y; ~ Bernoulli(y;)

Let’s plot the corresponding odds and logits for 1000 equally spaced probabilities between 0 and 1. The

logit function takes the natural logarithm of the odds, and the result is an S-shaped curve:

>
>
>

y <- seq(0, 1, length.out = 1002)
y <- y[2:1001]
length(y)

[1] 1000

>

head (y)

[1] 0.000999 0.001998 0.002997 0.003996 0.004995 0.005994

>

tail(y)

[1] 0.994 0.995 0.996 0.997 0.998 0.999

VV +VV + VYV + VYV + VYV

par(mfrow = c(2, 2))

plot(y/(1 - y), y, xlab = "Odds", ylab = "Probabilities", xlim = range(-1,
150), col = "white", main = "Odds")

lines(spline(y/(1 - y), y), col = "green")

plot(y/(1 - y), y, xlab = "0Odds", ylab = "Probabilities", xlim = range(-1,
10), col = "white", main = "Odds, zooming in on initial part")

lines(spline(y/(1 - y), y), col = "green")

plot(log(y/(1 - y)), y/(1 - y), xlab = "Logits", ylab = "0Odds", col = "white",
ylim = range(0, 200), main = "Odds against logits")

lines(spline(log(y/(1 - y)), y/(1 - y)), col = "blue")

plot(log(y/(1 - y)), y, xlab = "Logits (red) and odds (green)", ylab = "Probabilities",
col = "red", type = "1", main = "Prob.s against logits and odds")

lines(spline(log(y/(1 - y)), y), col = "red")

lines(spline(y/(1 - y), y), col = "green")

12
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> par(mfrow = c(1, 1))

The Faraway library has a logit function — if you do not want to write up the log-odds formula.
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> library("faraway")
> plot(logit(y), y, xlab = "Logits", ylab = "Probabilities", col = "red",
+ type — I|lll)
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0.4

0.2

Logits

3 More about odds and log-odds, i.e., logits

3.1 More about odds

Probabilities have both a floor —at 0 — and a ceiling — at 1. The odds have no ceiling:

> x <- seq(0.01, 0.99, length.out = 10)
> round(x, 2)

[1] 0.01 0.12 0.23 0.34 0.45 0.55 0.66 0.77 0.88 0.99

> round(1 - x, 2)
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[1] 0.99 0.88 0.77 0.66 0.55 0.45 0.34 0.23 0.12 0.01
> round(x/(1 - x), 2)
[1] 0.01 0.13 0.29 0.51 0.80 1.24 1.97 3.39 7.41 99.00

> x <- seq(0.01, 0.99, length.out = 1000)
> plot(x/(1 - x), x, type = "1", col = "blue", xlab = expression(frac(x,
+ 1 -x)))
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As the probability gets closer to 1, the numerator of the odds becomes larger relative to the denominator
and the odds become an increasingly larger number. The odds increase greatly when the probability changes only
slightly near the upper boundary of 1.

> x <- seq(0.9, 0.999, length.out = 1000)

> plot(x/(1 - x), x, type = "1", col = "blue", xlab = expression(frac(x,
+ 1-x)))
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(12) Converting between probabilities and odds:

a. Odds in terms of the probability 7: 0 = &

T 1-n
b. Probability in terms of the odds 0: ™ = ;7
Think about this for a moment and try to derive the second formula (probability in terms of odds) from
the first.

Odds ratio: the ratio of two odds (which are themselves ratios):

¢ used to measure odd changes induced by a covariate / predictor, e.g., the change in the odds that an
indefinite takes wide scope if the other quantifier in the sentence is every vs. each

In sum: the odds provide a way of quantifying the likelihood of events in a way that does not have a
ceiling (unlike probabilities), but that still has a floor.

3.2 More about log-odds, i.e., logits

Taking the natural log of the odds eliminates the floor. We need this if we don’t want to restrict the kind of
contribution predictors could make, i.e., if we want to allow predictors to be continuous / real-valued and
make positive or negative contributions of arbitrary real-valued magnitudes.
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> (x <- seq(0.01, 0.99, length.out = 10))
[1] 0.0100 0.1189 0.2278 0.3367 0.4456 0.5544 0.6633 0.7722 0.8811 0.9900
> round(x, 2)
[1] 0.01 0.12 0.23 0.34 0.45 0.55 0.66 0.77 0.88 0.99
> round(x/(1 - x), 2)
[1] 0.01 0.13 0.29 0.51 0.80 1.24 1.97 3.39 7.41 99.00
> round(log(x/(1 - x)), 2)
[1] -4.60 -2.00 -1.22 -0.68 -0.22 0.22 0.68 1.22 2.00 4.60

> cbind(round(x, 2), round(x/(1 - x), 2), round(log(x/(1 - x)), 2))

[,11 [,21 [,3]
[1,] 0.01 0.01 -4.60
[2,] 0.12 0.13 -2.00
[3,] 0.23 0.29 -1.22
[4,] 0.34 0.51 -0.68
[5,] 0.45 0.80 -0.22
[6,] 0.55 1.24 0.22
[7,] 0.66 1.97 0.68
[8,] 0.77 3.39 1.22
[9,] 0.88 7.41 2.00
[10,] 0.99 99.00 4.60

> x <- seq(0.001, 0.999, length.out = 1000)
> plot(log(x/(1 - x)), x, type = "1", col = "blue", xlab = expression(log(frac(x,
+ 1 -x))))

17
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That is, the logit transformation basically linearizes the non-linear relationship between the predictor x
and the binary response variable y.

We obtain probabilities from logits by obtaining the odds first, then obtaining probabilities in terms of
the odds:

> (logits <- seq(-5, 5, by

1))
[1] -5 -4 -3 -2 -1 0 1 2 3 4 5

> odds <- exp(logits)
> round(odds, 2)

[1] o0.01 ©0.02 0.05 0.14 0.37 1.00 2.72 7.39 20.09 54.60
[11] 148.41

> probabilities <- odds/(1 + odds)
> round(probabilities, 2)

[1] 0.01 0.02 0.05 0.12 0.27 0.50 0.73 0.88 0.95 0.98 0.99
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In one fell swoop:

> probabilities <- exp(logits)/(1 + exp(logits))
> round(probabilities, 2)

[1] 0.01 0.02 0.05 0.12 0.27 0.50 0.73 0.88 0.95 0.98 0.99
Equivalently (think about why this equivalence holds for a moment):

> probabilities2 <- 1/(1 + exp(-logits))
> round(probabilities2, 2)

[1] 0.01 0.02 0.05 0.12 0.27 0.50 0.73 0.88 0.95 0.98 0.99
The logit is symmetric around the midoint probability of 0.5:
> 10g(0.5/0.5)

(11 o

¢ probabilities below 0.5 result in negative logits; the logit approaches —co as the probability approaches
0

* probabilities above 0.5 result in positive logits; the logit approaches oo as the probability approaches
1

e the same change in probabilities translates into different changes in logits: as the probability gets
closer to 0 or 1, the same change in probability translates into greater changes in logits

Consider the last point in more detail:

> probs <- seq(0.01, 0.99, length.out = 10)
> round(probs, 2)

[1] 0.01 0.12 0.23 0.34 0.45 0.55 0.66 0.77 0.88 0.99

Differences in probability:

> round (probs[2:10] - probs[1:9], 2)

[1] 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
Differences odds:

> round((probs/(1 - probs))[2:10] - (probs/(1 - probs))[1:9], 2)

[11] 0.12 0.16 0.21 0.30 0.44 0.73 1.42 4.02 91.59
Differences in log-odds / logits:

> round(log(probs/(1 - probs))[2:10] - log(probs/(1 - probs))[1:9],
+ 2)

[1] 2.59 0.78 0.54 0.46 0.44 0.46 0.54 0.78 2.59

Conversely, a unit change on the logit scale results in smaller probability differences near the floor or
the ceiling:
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> (logits <- seq(-5, 5, by = 1))

11 -5-4-3-2-1 0 1 2 3 4 5
> round(exp(logits)/(1 + exp(logits)), 2)

[1] 0.01 0.02 0.05 0.12 0.27 0.50 0.73 0.88 0.95 0.98 0.99
> logits[2:11] - logits[1:10]

1] 1111111111

> round ((exp(logits)/(1 + exp(logits)))[2:11] - (exp(logits)/(1 + exp(logits)))[1:10],
1 2)

[1] 0.01 0.03 0.07 0.15 0.23 0.23 0.15 0.07 0.03 0.01

4 The standard logistic distribution

We use the standard logistic distribution (mean/location=0, scale=1). It has heavier tails than the standard
normal distribution.

lines(x, pnorm(x), col = "darkgrey", lwd = 2, 1ty = 2)
legend(x = "topleft", legend = c("cdf Logis(0,1)", "cdf Norm(0,1)"),
col = c("purple", "darkgrey"), lty = c(1, 2), lwd = c(2, 1))

> logits <- x <- seq(-7, 7, by = 0.01)

> par(mfrow = c(2, 1))

> plot(x, dlogis(x), type = "1", lwd = 2, col = "purple", main = "",
+ xlab = "", ylab = "", ylim = range(0, 0.4))

> lines(x, dnorm(x), col = "darkgrey", lwd = 2, lty = 2)

> legend(x = "topleft", legend = c("pdf Logis(0,1)", "pdf Norm(0,1)"),
+ col = c("purple", "darkgrey"), lty = c(1, 2), lwd = c(2, 1))

> plot(x, plogis(x), type = "1", lwd = 2, col = "purple", main = "",
+ xlab = "', ylab = """, )

>

>

+
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> par(mfrow = c(1, 1))

The standard logistic distribution has a scale of 1, but this is not the deviation / ¢ of the standard logistic

distribution (0 = scale - %, where 71 is the numerical constant 7, i.e., the ratio of a circle’s circumference to

its diameter).

> plot(x, dlogis(x), type = "1", lwd = 12, col = "black", main = "pdf of standard logistic dist.")
> points(x, dlogis(x, location = 0), type = "1", lwd = 4, col = "red")

> points(x, dlogis(x, location = 0, scale = 1), type = "1", 1lwd = 1,

i 1ty = 2, col = "green")

pdf of standard logistic dist.

dlogis(x)
0.15 0.20 0.25
| | |

0.10
I

0.05
I

0.00
I

We can approximate a logistic distribution with a normal distribution with a standard deviation of

o= % An even better approximation is o = 1.6 — note the fatter tails of the logistic distribution:

> pi/sqrt(3)

[1] 1.814
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+ vV + V + V + VvV V

par(mfrow = c(2, 1))
plot(x, dlogis(x), type

frac(pi, sqrt(3)), ")

points(x, dnorm(x, mean

1ty = 2, col = "red")

plot(x, dlogis(x), type
xlab = "")

points(x, dnorm(x, mean
col = "red")

"1", lwd = 2, col = "green", main = expression(paste("Logistic(0,1) (green)
(red)")), xlab = "")
0, sd = pi/sqrt(3)), type = "1", 1lwd = 2,

"1", lwd = 2, col = "green", main = expression("Logistic(0,1) (green) and N

0, sd = 1.6), type = "1", lud = 2, 1ty = 2,
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> par (mfrow = c(1, 1))

Importantly: logit() is the inverse function of the logistic cdf plogis() for the standard logistic distri-
bution.

Thus, the deterministic part of logistic regression models can be formulated in either of the following 2
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ways:

e logit(u;) = ;
o i = plogis(y;) = ilogit(r;)

where 1; = X; - B, i.e., 7; is the linear combination of predictors.

> probs <- seq(0, 1, length.out = 1002)

> probs <- probs[2:1001]

> par(mfrow = c(3, 1))

> library("faraway")

> plot(logit(probs), probs, col = "red", type = "1", lwd = 2)

> plot(logit(probs), plogis(logit(probs)), col = "purple", type = "1",
+ lwd = 2)

> plot(logit(probs), ilogit(logit(probs)), col = "darkred", type = "1",
+ lwd = 2)
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> par (mfrow = c(1, 1))

When the logit is 0, the probability is 0.5 (and the odds are 1). A positive / negative logit corresponds
to a ‘higher-than-chance’ probability of success / failure.
In (binomial) logistic regression:



¢ the mean of the logistic cdf is 0, i.e., it is fixed at 0.5 probability (chance-level probability of success /
failure)

e if the linear predictor, i.e., the logit, is to the right / left of 0, then we have a ‘higher-than-chance’
probability of success / failure

Consider, for example, two logits of 1.12 and —2.57 and let us convert them into corresponding proba-
bilities both wrt a pdf plot and a cdf plot

logits <- x <- seq(-7, 7, by = 0.01)

par(mfrow = c(2, 1))

plot(x, dlogis(x), type = "1", lwd = 2, col = "purple", main = "")

segments(1.12, 0, 1.12, dlogis(1.12), col = "red", lwd = 2)

coord.x <- c(min(x), x[x <= 1.12], 1.12)

coord.y <- c(0, dlogis(x[x <= 1.12]), 0)

polygon(coord.x, coord.y, col = "lightblue", border = NA)

segments(-2.57, 0, -2.57, dlogis(-2.57), col = "blue", lwd = 2)

coord.x <- c(min(x), x[x <= -2.57], -2.57)

coord.y <- c(0, dlogis(x[x <= -2.57]), 0)

polygon(coord.x, coord.y, col = "lightgray", border = NA)

plot(x, plogis(x), type = "1", lwd = 2, col = "purple", main = "cdf of standard logistic dist.")

segments(1.12, 0, 1.12, plogis(1.12), col = "red", lwd = 2)

segments(1.12, plogis(1.12), min(x), plogis(1.12), col = "red", lwd = 2)

text(min(x) + 2.5, plogis(1.12) + 0.02, paste("p=", round(plogis(1.12),
2), sep = ""))

segments(-2.57, 0, -2.57, plogis(-2.57), col = "blue", lwd = 2)

segments(-2.57, plogis(-2.57), min(x), plogis(-2.57), col = "blue",

+ VvV + VV +V VVVVVVVVVVVVVYV

lwd = 2)
text(min(x) + 2.5, plogis(-2.57) + 0.02, paste("p=", round(plogis(-2.57),
2)’ sep = un))
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> par(mfrow = c(1, 1))

Focus now only on the pdf plot:

¢ we conceptualized the probability of success corresponding to a particular logit, e.g., -2.57, as the area

28



V VV V + V V V V V V.V

under the pdf of the standard logistical distribution (mean=0, scale=1) whose right boundary is given
by the logit

* we could alternatively conceptualize this as the area under the pdf of the logistical distribution with
mean=logit=-2.57 (scale=1) that is to the right of 0

par(mfrow = c(2, 1))

plot(x, dlogis(x), type = "1", lwd = 2, col = "purple", main = "")

segments(-2.57, 0, -2.57, dlogis(-2.57), col = "blue", lwd = 2)

coord.x <- c(min(x), x[x <= -2.57], -2.57)

coord.y <- c(0, dlogis(x[x <= -2.57]), 0)

polygon(coord.x, coord.y, col = "lightgray", border = NA)

plot(x, dlogis(x, location = -2.57), type = "1", lwd = 2, col = "purple",
main = "")

segments(0, 0, 0, dlogis(0, location = -2.57), col = "blue", lwd = 2)

coord.x <- c(0, x[x >= 0], max(x))

coord.y <- c(0, dlogis(x[x >= 0], location = -2.57), 0)

polygon(coord.x, coord.y, col = "lightgray", border = NA)
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> par(mfrow = c(1, 1))

A similar reconceptualization works for the other logit, namely 1.12.



V VVV + V V V V V V.V

par(mfrow = c(2, 1))

plot(x, dlogis(x), type = "1", lwd = 2, col = "purple", main =

segments(1.12, 0, 1.12, dlogis(1.12), col = "red", lwd = 2)

coord.x <- c(min(x), x[x <= 1.12], 1.12)

coord.y <- c(0, dlogis(x[x <= 1.12]), 0)

polygon(coord.x, coord.y, col = "lightblue", border = NA)

plot(x, dlogis(x, location = 1.12), type = "1", lwd = 2, col =
main = "")

segments (0, 0, 0, dlogis(0, location = 1.12), col = "red", lwd

coord.x <- c(0, x[x >= 0], max(x))

coord.y <- c(0, dlogis(x[x >= 0], location = 1.12), 0)

polygon(coord.x, coord.y, col = "lightblue", border = NA)
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> par (mfrow = c(1, 1))

This reconceptualization will be crucial when we generalize logistic regression for binary variables to
ordinal variables, i.e., the kind of responses we get in acceptability judgment tasks with a discrete rating
scale (Likert scale).
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5 The logistic regression for the CHD~AGE data

> chage <- read.csv("chage.csv")
> head(chage)

AGE CHD
20
23
24
25
25
26

DO WN -
O O O O O

> ml <- glm(CHD ~ AGE, family = binomial, data = chage)
> summary (ml)

Call:
glm(formula = CHD ~ AGE, family = binomial, data = chage)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.972 -0.846 -0.458 0.825 2.286

Coefficients:
Estimate Std. Error z value Pr(>|zl)
(Intercept) -5.3095 1.1337 -4.68 2.8e-06 x*x**
AGE 0.1109 0.0241 4.61 4.0e-06 x*x*
Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 136.66 on 99 degrees of freedom
Residual deviance: 107.35 on 98 degrees of freedom
AIC: 111.4

Number of Fisher Scoring iterations: 4
> round (summary(ml)$coef, 2)

Estimate Std. Error z value Pr(>|zl)

(Intercept) -5.31 1.13 -4.68 0
AGE 0.11 0.02 4.61 0
The logits:

> round(predict (m1), 2)

1 2 3 4 5 6 7 8 9 10 11 12
-3.09 -2.76 -2.65 -2.54 -2.54 -2.43 -2.43 -2.20 -2.20 -2.09 -1.98 -1.98
13 14 15 16 17 18 19 20 21 22 23 24
-1.98 -1.98 -1.98 -1.98 -1.76 -1.76 -1.65 -1.65 -1.54 -1.54 -1.54 -1.54
25 26 27 28 29 30 31 32 33 34 35 36
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-1.54 -1.43 -1.43 -1.32 -1.32 -1.32 -1.21 -1.21 -1.21 -1.09 -1.09 -0.98
37 38 39 40 41 42 43 44 45 46 47 48
-0.98 -0.87 -0.87 -0.76 -0.76 -0.65 -0.65 -0.65 -0.65 -0.54 -0.54 -0.54
49 50 51 52 53 54 55 56 57 58 59 60
-0.43 -0.43 -0.43 -0.43 -0.32 -0.32 -0.21 -0.21 -0.10 -0.10 -0.10 0.01
61 62 63 64 65 66 67 68 69 70 71 72
0.01 0.01 0.13 0.13 0.13 0.24 0.24 0.35 0.46 0.46 0.57 0.57
73 74 75 76 7 78 79 80 81 82 83 84
0.8 0.79 0.79 0.79 0.90 0.90 0.90 1.01 1.01 1.01 1.01 1.01
85 86 87 88 89 90 91 92 93 94 95 96
1.010 1.12 1.12 1.12 1.23 1.23 1.35 1.35 1.46 1.57 1.57 1.68
97 98 99 100
1.79 1.79 1.90 2.34

The probabilities:
> round(1/(1 + exp(-predict(ml))), 2)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.04 0.06 0.07 0.07 0.07 0.08 0.08 0.10 0.10 0.11 0.12 0.12 0.12 0.12 0.12
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0.12 0.15 0.15 0.16 0.16 0.18 0.18 0.18 0.18 0.18 0.19 0.19 0.21 0.21 0.21
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
0.23 0.23 0.23 0.25 0.25 0.27 0.27 0.29 0.29 0.32 0.32 0.34 0.34 0.34 0.34
46 47 48 49 50 51 52 B3 54 565 56 57 58 59 60
0.37 0.37 0.37 0.39 0.39 0.39 0.39 0.42 0.42 0.45 0.45 0.48 0.48 0.48 0.50
61 62 63 64 65 66 67 68 69 7O T1 72 73 74 75
0.50 0.50 0.53 0.53 0.53 0.56 0.56 0.59 0.61 0.61 0.64 0.64 0.66 0.69 0.69
6 rr 78 79 80 8 82 83 84 8 86 87 88 89 90
0.69 0.71 0.71 0.71 0.73 0.73 0.73 0.73 0.73 0.73 0.75 0.75 0.75 0.77 0.77
91 92 93 94 95 96 97 98 99 100
0.79 0.79 0.81 0.83 0.83 0.84 0.86 0.86 0.87 0.91

> round(predict(ml, type = "response"), 2)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.04 0.06 0.07 0.07 0.07 0.08 0.08 0.10 0.10 0.11 0.12 0.12 0.12 0.12 0.12
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0.12 0.15 0.15 0.16 0.16 0.18 0.18 0.18 0.18 0.18 0.19 0.19 0.21 0.21 0.21
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
0.23 0.23 0.23 0.25 0.25 0.27 0.27 0.29 0.29 0.32 0.32 0.34 0.34 0.34 0.34
46 47 48 49 50 51 552 B3 54 b5 56 57 58 59 60
0.37 0.37 0.37 0.39 0.39 0.39 0.39 0.42 0.42 0.45 0.45 0.48 0.48 0.48 0.50
61 62 63 64 65 66 67 68 69 70O T1 T2 73 74 75
0.50 0.50 0.53 0.53 0.53 0.56 0.56 0.59 0.61 0.61 0.64 0.64 0.66 0.69 0.69
6 7tr 78 79 80 8 82 83 84 8 86 87 88 89 90
0.69 0.71 0.71 0.71 0.73 0.73 0.73 0.73 0.73 0.73 0.75 0.75 0.75 0.77 0.77
91 92 93 94 95 96 97 98 99 100
0.79 0.79 0.81 0.83 0.83 0.84 0.86 0.86 0.87 0.91

> round(predict(ml, type = "response"), 2) == round(1/(1 + exp(-predict(ml))),
2)

+

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
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16
TRUE
31
TRUE
46
TRUE
61
TRUE
76
TRUE
91
TRUE

17
TRUE
32
TRUE
47
TRUE
62
TRUE
7
TRUE
92
TRUE

18
TRUE
33
TRUE
48
TRUE
63
TRUE
78
TRUE
93
TRUE

19
TRUE
34
TRUE
49
TRUE
64
TRUE
79
TRUE
94
TRUE

20
TRUE
35
TRUE
50
TRUE
65
TRUE
80
TRUE
95
TRUE

21
TRUE
36
TRUE
51
TRUE
66
TRUE
81
TRUE
96
TRUE

22
TRUE
37
TRUE
52
TRUE
67
TRUE
82
TRUE
97
TRUE

23
TRUE
38
TRUE
53
TRUE
68
TRUE
83
TRUE
98
TRUE

24
TRUE
39
TRUE
54
TRUE
69
TRUE
84
TRUE
99
TRUE

25
TRUE
40
TRUE
55
TRUE
70
TRUE
85
TRUE
100
TRUE

26
TRUE
41
TRUE
56
TRUE
71
TRUE
86
TRUE

27
TRUE
42
TRUE
57
TRUE
72
TRUE
87
TRUE

28
TRUE
43
TRUE
58
TRUE
73
TRUE
88
TRUE

Let’s compare the predicted logits and the corresponding probabilities:

29
TRUE
44
TRUE
59
TRUE
74
TRUE
89
TRUE

> cbind(round(predict(ml), 2), round(predict(ml, type = "response"),

+

© 00 N O 01 W N -

=
= O

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

2))

[,1]
-3.09
-2.76
-2.65
-2.54
-2.54
-2.43
-2.43
-2.20
-2.20
-2.09
-1.98
-1.98
-1.98
-1.98
-1.98
-1.98
-1.76
-1.76
-1.65
-1.65
-1.54
-1.54
-1.54
-1.54
-1.54
-1.43
-1.43
-1.32
-1.32
-1.32
-1.21
-1.21
-1.21
-1.09
-1.09

N
—

O O O O O O O OO OO OO O OO0 OO OO0OOOO0OOOO0OOO0OO0OO0OO0OOOOoOmMm
=
o1
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30
TRUE
45
TRUE
60
TRUE
75
TRUE
90
TRUE



-0.98 0.27

36

-0.98 0.27

37
38
39

-0.87 0.29

-0.87 0.29

-0.76 0.32

40

-0.76 0.32

41

-0.65 0.34
-0.65 0.34
-0.65 0.34
-0.65 0.34

-0.54 0.37

42

43

44

45

46

-0.54 0.37

47

-0.54 0.37

48

-0.43 0.39

49

-0.43 0.39

50
51

-0.43 0.39

-0.43 0.39

52

-0.32 0.42

53
54
55

-0.32 0.42

-0.21 0.45
-0.21 0.45
-0.10 0.48
-0.10 0.48
-0.10 0.48

56

57
58
59

0.01 0.50
0.01 0.50
0.01 0.50
0.13 0.53
0.13 0.53
0.13 0.53

0.24 0.56

60
61

62

63
64

65

66

0.24 0.56

67
68
69

0.35 0.59

0.46 0.61

0.46 0.61

70
71

0.57 0.64
0.57 0.64
0.68 0.66
0.79 0.69

72

(73]

74
75

0.79 0.69

0.79 0.69

76

0.90 0.71

7
78

0.90 0.71

0.90 0.71

79

1.01 0.73
1.01 0.73
1.01 0.73
1.01 0.73
N OIMOMNTS)
1.01 0.73
1.12 0.75
1.12 0.75
1.12 0.75

80
81

82

83
84

85

86

87
88
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89 1.2310.77
90 1.23 0.77
91 1.35 0.79
92 1.35 0.79
93 1.46 0.81
94 1.57 0.83
95 1.57 0.83
96 1.68 0.84
97 1.79 0.86
98 1.79 0.86
99 1.90 0.87
100 2.34 0.91

Rule of thumb: divide the logit by 4 and you get the approximate shift in probability relative to chance,
i.e., relative to 0.5 probability.

We plot the probability of CHD against AGE, and the points corresponding to the proportions for the
grouped data that we started with:

attach(chage)

plot (AGE, CHD, xlab = "AGE", ylab = "Probability of CHD", type = "n")

points(jitter (AGE), CHD, col = "blue")

lines(spline(AGE, predict(ml, type = "response")), col = "darkred",
lwd = 2)

chagrp <- read.csv("chagrp.csv")

head (chagrp)

V V. + V V V V

AGE AGRP CHD
20 1
23
24
25
25
26

(o262 I SOV S I
I N = =Yy
O O O O O

\

detach(chage)
attach(chagrp)

A\

The following object is masked _by_ .GlobalEnv:

AGRP
> proportion.CHD <- numeric(length = 8)
> for (i in 1:8) {
+ proportion.CHD[i] <- mean(subset(chagrp, AGRP == i)$CHD)
+}
> proportion.CHD

[1] 0.1000 0.1333 0.2500 0.3333 0.4615 0.6250 0.7647 0.8000

> mean.AGE <- numeric(length = 8)

> for (i in 1:8) {

+ mean.AGE[i] <- mean(subset(chagrp, AGRP == i)$AGE)
+ 3}

> mean.AGE

[1] 25.40 32.00 36.92 42.33 47.23 51.88 56.88 63.00

> points(mean.AGE, proportion.CHD, pch = 20, col = "red")
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AGE
> detach(chagrp)
6 A couple of simple examples of GLMs
> webreg <- "http://www.sagepub.co.uk//wrightandlondon//"

6.1 Example 1: Associations with test score

The dataset: the hypothetical values received by 20 children from a standardized intelligence test that is
distributed according to a standard normal Normal(0,1?).
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> glmexample <- read.table(paste(webreg, "glmexample.dat", sep = ""),
+ header = T)

There is an extra variable in the dataset that we’re not interested in, so we remove it:
> glmexample <- glmexample[, -5]

> head(glmexample)

test social books math detent

1-1.75 -2.90 0 0 1
2 -1.18 -0.89 0 0 1
3 -0.97 0.30 0 1 1
4 -0.73 -1.44 1 1 0
5 -0.62 -1.63 0 2 0
6 -0.59 -1.49 0 2 0

> str(glmexample)

'data.frame': 20 obs. of 5 variables:
$ test : num -1.75 -1.18 -0.97 -0.73 -0.62 -0.59 -0.21 -0.13 -0.12 0.07 ...
$ social: num -2.9 -0.89 0.3 -1.44 -1.63 -1.49 -1.45 0.79 1.25 -0.7 ...

$ books : int 000100001 1.
$math : int 0011222116 .
$ detent: int 1110001011 .

We want to see how the test scores predict:

* scores from a scale of socializability (ratio variable; linear regression)

¢ the number of books read (count variable; Poisson regression)

¢ the number correct out of 10 a math quiz (binomial variable; logistic regression)

¢ whether the child received detention during the previous year (Bernoulli variable; logistic regression)

> attach(glmexample)

6.1.1 Model 1: Simple linear regression

(13) a. response: social scores
b. predictor: intelligence scores

This can be done with glm() or 1m(), but we use glm() for illustration.
Defaults for glm():

e residuals are normally distributed

e the link function is the identity function

> socreg <- glm(social ~ test)
> summary (socreg)
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Call:
glm(formula = social ~ test)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.8598 -0.8897 -0.0874 1.0834 1.5773

Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) -0.222 0.266 -0.84 0.4139
test 0.874 0.246 &9 0.0023 *x*
Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 1.363)

Null deviance: 41.710 on 19 degrees of freedom
Residual deviance: 24.531 on 18 degrees of freedom
AIC: 66.84

Number of Fisher Scoring iterations: 2

We see a positive and significant relationship between TEST and SOCIAL.
The output is a little different than the 1m() function:

> socreg.lm <- Im(social ~ test)
> summary (socreg.lm)

Call:
Im(formula = social ~ test)

Residuals:
Min 1Q Median 3Q Max
-1.8598 -0.8897 -0.0874 1.0834 1.5773

Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) -0.222 0.266 -0.84 0.4139
test 0.874 0.246 BSE55 0.0023 *x
Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.17 on 18 degrees of freedom
Multiple R-squared: 0.412,Adjusted R-squared: 0.379
F-statistic: 12.6 on 1 and 18 DF, p-value: 0.00229

The dispersion parameter (i.e., variance of the errors) is not usually mentioned with the standard re-
gression because it is allowed to vary:

> summary (socreg)$dispersion

[1] 1.363
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With the other GLMs, it can be more important because the standard deviation/variance is often as-
sumed to be a function of the mean.
Note:

* we represented the linear model with an error term € s.t. € ~ Normal(0,0)

¢ the dispersion value 1.36 is the estimate of 02 — and it is the residual sum of squares (24.531) divided
by its degrees of freedom (18)
> sum(residuals(socreg)~2)/18
[1] 1.363

The estimate for o (i.e., the residual standard error in the socreg.1lm output) is the square root of the
dispersion:

> sqrt(summary(socreg)$dispersion)
[1] 1.167

> summary (socreg.lm)$sigma

[1] 1.167

The residual sum of squares (listed as the deviance measure) and the coefficient estimates are the same
as the ones for the 1m function:

> socreg$deviance

[1] 24.53

> deviance(socreg)

[1] 24.53

> sum(residuals(socreg)~2)
[1] 24.53

> sum(residuals(socreg.lm)~2)
[1] 24.53

> summary (socreg) $coef

Estimate Std. Error t value Pr(>|[t])
(Intercept) -0.2224 0.2658 -0.8365 0.413851
test 0.8743 0.2463 3.5504 0.002286

> summary (socreg.lm)$coef

Estimate Std. Error t value Pr(>|t])
(Intercept) -0.2224 0.2658 -0.8365 0.413851
test 0.8743 0.2463 3.5504 0.002286

Statistics like R? are not printed, but can be easily calculated:
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> socreg$deviance

[1] 24.53

> glm(social ~ 1)$deviance

[1] 41.71

> (glm(social ~ 1)$deviance - socreg$deviance)/glm(social ~ 1)$deviance
[1] 0.4119

> summary (socreg.lm)$r.squared

[1] 0.4119

6.1.2 Model 2: A logistic regression with a Bernoulli response

The Bernoulli response variable is a binary (two-outcome) variable, e.g., a coin flip, and we only have one
observation for the coin (single coin flip).
We regress detention (Bernoulli response: either there was detention or not) on test scores:

> data.frame(detent, test)

detent test

1 1 -1.75
2 1 -1.18
3 1 -0.97
4 0 -0.73
5 0 -0.62
6 0 -0.59
7 1-0.21
8 0 -0.13
9 1 -0.12
10 1 0.07
11 0 0.11
12 1 0.24
13 1 0.44
14 0 0.46
15 0 0.68
16 0 0.85
17 0 1.45
18 0 1.47
19 0 2.22
20 0 2.39

> plot(jitter(test), detent, col = "blue")
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jitter(test)
> detreg <- glm(detent ~ test, binomial)
> summary (detreg)
Call:
glm(formula = detent ~ test, family = binomial)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.459 -0.850 -0.350 0.903 1.589
Coefficients:
Estimate Std. Error z value Pr(>|zl)
(Intercept) -0.338 0.531 -0.64 0.524
test -1.343 0.706 -1.90 0.057 .
Signif. codes: O '#*x' 0.001 '*xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for

26.920
21.185

Null deviance:
Residual deviance:
AIC: 25.18

binomial family taken to be 1)

on 19 degrees of freedom
on 18 degrees of freedom

Number of Fisher Scoring iterations: 5

We observe the following:

¢ there is a negative relationship between test score and detention
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e the test statistic: z = —1.9,p = .06

¢ note that the test statistic is not  on 18 dof.s, although the results would be pretty much the same
(£(18) =1.90, p = .06)

e the reason we use the standard normal distribution and not a t-distribution with an appropriate num-
ber of dof.s is that, for logistic regression (same for Poisson regression), we do not need to separately
estimate the variance of the residuals; once we estimate the mean, the variance is deterministically
obtained for binomial / Bernoulli or Poisson distributions

e similarly, we will use x? distributions (with only 1 dof parameter) for model comparison and not F
distributions (with two dof parameters)
6.1.3 Model 3: A logistic regression with a binomial response (multiple coin flips)

We regress the math scores (number of correct answers out of 10) on test scores:
R has different ways to run regressions with proportions. One way is to enter the proportions as a two
column matrix:

¢ the first column is the number of correct answers

¢ the second column is the number of incorrect answers

This is useful in case people have answered different numbers of questions.

> (x <- cbind(math, 10 - math))

=]
)
ot
=

[1,]
[2,]
[3,]
[4,]
[5,]
[6,]
[7,]
[8,]
[9,]
[10,]
[11,]
[12,]
[13,]
[14,]
[15,]
[16,]
[17,]
[18,]
[19,]
[20,]

=
o O

O© O NONNORL,LEF,LNNMNMREL, P, OO

= =
oS © O
OO PP O, P WP Wwwidh O O 0 O ©

-
o

> mathreg <- glm(x ~ test, binomial)

> summary (mathreg)

Call:
glm(formula = x ~ test, family = binomial)
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Deviance Residuals:
Min 1Q Median 3Q Max
-1.794 -0.670 0.212 0.712 1.321

Coefficients:
Estimate Std. Error z value Pr(>|zl)
(Intercept) -0.322 0.202 -1.59 0.11
test 2.703 0.404 6.69 2.2e-11 ***
Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 138.151 on 19 degrees of freedom
Residual deviance: 14.885 on 18 degrees of freedom
AIC: 52.8

Number of Fisher Scoring iterations: 5

The model shows that test scores are a significant predictor for math scores.

6.1.4 Model 4: Poisson regression

We regress the number of read books on test scores:

> bookreg <- glm(books
> summary (bookreg)

test, poisson)

Call:
glm(formula = books

test, family = poisson)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.481 -0.704 -0.273 0.282 1.185

Coefficients:
Estimate Std. Error z value Pr(>|zl)
(Intercept) -0.405 0.311 -1.30 0.19
test 1.130 0.173 6.52 T7.le-11 *x**
Signif. codes: O '#*x' 0.001 '*xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 62.779 on 19 degrees of freedom
Residual deviance: 11.063 on 18 degrees of freedom
AIC: 47.27

Number of Fisher Scoring iterations: 5

The model shows that test scores are a significant predictor for the number of read books.

45



6.2 Visualization

GLMs are difficult to conceptualize given that they model responses in terms of logits (for binomial /
Bernoulli variables) and logs (for Poisson variables). Data visualization is all the more important to see the
patterns in the data.

We draw the four graphs corresponding to the four models just discussed. The commnad predict (glm.object,
type="response") gives us the predicted response values y; on the y axis:

> par(mfrow = c(2, 2))

> plot(test, social, col = "blue", main = "Model 1")

> lines(test, predict(socreg, type = "response"), col = "red")
> plot(jitter(test), detent, col = "blue", main = "Model 2")

> lines(test, predict(detreg, type = "response"), col = "red")
> plot(jitter(test), math/10, col = "blue", main = "Model 3")

> lines(test, predict(mathreg, type = "response"), col = "red")
> plot(jitter(test), books, col = "blue", main = "Model 4")

> lines(test, predict(bookreg, type = "response"), col = "red")
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> par(mfrow = c(1, 1))

7 Model comparison

We often want to compare different GLMs. For example, we could be interested in whether including the
social scores in addition to test scores improves the predictions for detention.

> detreg <- glm(detent
> summary (detreg)

test, binomial)

Call:
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glm(formula = detent ~ test, family = binomial)
Deviance Residuals:

Min 1Q Median 3Q Max
-1.459 -0.850 -0.350 0.903 1.589

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.338 0.531 -0.64 0.524
test -1.343 0.706 -1.90 0.057 .
Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 26.920 on 19 degrees of freedom
Residual deviance: 21.185 on 18 degrees of freedom
AIC: 25.18

Number of Fisher Scoring iterations: 5

> det2 <- glm(detent ~ test + social, binomial)
> summary (det2)

Call:
glm(formula = detent

test + social, family = binomial)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.430 -0.873 -0.243 0.687 1.601

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.290 0.560 -0.52 0.60
test -2.224 1.133 -1.96 0.05 *
social 0.730 0.597 1.22 0.22
Signif. codes: O '#*x' 0.001 '*xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 26.920 on 19 degrees of freedom

Residual deviance: 19.412 on 17 degrees of freedom

AIC: 25.41

Number of Fisher Scoring iterations: 5

ANOVA shows that the main effect of the additional term is non-significant:

> anova(detreg, det2, test = "Chi")

Analysis of Deviance Table
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Model 1:
Model 2:
Resid.

detent test

detent ~ test + social

Df Resid. Dev Df Deviance Pr(>Chi)
18 21.2

17 19.4 1 1.77 0.18

We specified test="Chi"; had we said test="F", R would print a warning that the F test is not appro-
priate in this circumstance:

> anova(detreg, det2, test = "F")

Warning:

using F test with a ’binomial’ family is inappropriate

Analysis of Deviance Table

Model 1:
Model 2:
Resid.

detent test

detent ~ test + social

Df Resid. Dev Df Deviance F Pr(>F)
18 21.2

17 19.4 1 1.77 1.77 0.18

7.1 Deviance and log-likelihood ratios

A log-likelihood ration (LRT) is the log of the likelihood ratio between two models, i.e., log(likelihood

ratio).

(14) The likelihood ratio A (capital lambda):

a. A=

maximum likelihood for model H,
maximum likelihood for more complex model

b. log(A) = log( maximum likelihood for model H, )

maximum likelihood for more complex model
= log(maximum likelihood for model Hy) — log(maximum likelihood for more complex model)

(15) The test statistic for the likelihood ratio: G? = —2 x log(A)
a. G2 will take a minimum value of 0 when the likelihood of the two models is identical

b. G? will take higher values as the more complex model becomes more likely

(16) Residual deviance: the difference in G? between the saturated model that has a separate parameter

fo
m

r each response value (20 parameters in this case — since we have 20 responses) and the fitted
odel.

- since the saturated model has a parameter / predictor for each response value, it captures
(basically memorizes) the response values perfectly

(17) Degrees of freedom: the change in the number of estimated parameters.

We w

ant the deviance to be as small as possible —just as we wanted the OLS error, i.e., the (mean) sum

of squared residuals, to be as small as possible.

> summary (detreg)

Call:

glm(formula = detent

test, family = binomial)

Deviance Residuals:
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Min 1Q Median 3Q Max
-1.459 -0.850 -0.350 0.903 1.589

Coefficients:
Estimate Std. Error z value Pr(>|zl)
(Intercept) -0.338 0.531 -0.64 0.524
test -1.343 0.706 -1.90 0.057 .
Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 26.920 on 19 degrees of freedom
Residual deviance: 21.185 on 18 degrees of freedom
AIC: 25.18

Number of Fisher Scoring iterations: 5

> summary (det2)

Call:
glm(formula = detent

test + social, family = binomial)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.430 -0.873 -0.243 0.687 1.601

Coefficients:
Estimate Std. Error z value Pr(>|z]|)
(Intercept) -0.290 0.560 -0.52 0.60
test -2.224 1.133 -1.96 0.05 *
social 0.730 0.597 1.22 0.22
Signif. codes: O 'sxx' 0.001 '*xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 26.920 on 19 degrees of freedom
Residual deviance: 19.412 on 17 degrees of freedom

AIC: 25.41

Number of Fisher Scoring iterations: 5

(18) Null deviance: the difference in G? between the saturated model and the intercept/mean-only
model.

> summary(glm(detent ~ 1, binomial))

Call:
glm(formula = detent ~ 1, family = binomial)
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Deviance Residuals:
Min 1Q Median 3Q Max
-1.01 -1.01 -1.01 1.35 1.35

Coefficients:
Estimate Std. Error z value Pr(>|zl)
(Intercept) -0.405 0.456 -0.89 0.37

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 26.92 on 19 degrees of freedom
Residual deviance: 26.92 on 19 degrees of freedom
AIC: 28.92

Number of Fisher Scoring iterations: 4

The difference in deviances can be tested against the x? distribution for significance:

* we extract the deviances

> deviance(detreg)

[1] 21.18

> deviance(det?2)

[1] 19.41

> (deviance_difference <- deviance(detreg) - deviance(det2))

[1] 1.773
* we extract the degrees of freedom

> df .residual (detreg)

[1] 18

> df .residual(det2)

(11 17

> (df_difference <- df.residual(detreg) - df.residual(det2))

(11 1
¢ we compute the p-value

> 1 - pchisq(deviance_difference, df_difference)
[1] 0.183

The reduction in deviance is not significant at the .05 level. Or, in one go:
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> anova(detreg, det2, test = "Chi")

Analysis of Deviance Table

Model 1: detent ~ test
Model 2: detent ~ test + social
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 18 21.2
2 17 19.4 1 1.77 0.18

The p-value is the probability of a x* value at least as extreme as the observed one:

> pchisq(deviance_difference, df_difference)

[1] 0.817

> x <- seq(0, 8, by = 0.01)

> plot(x, dchisq(x, df_difference), type = "1", lwd = 2, col = "purple",

+ main = nu)

> segments(deviance_difference, 0, deviance_difference, dchisq(deviance_difference,
+ df_difference), col = "red", lwd = 2)

> coord.x <- c(deviance_difference, x[x >= deviance_difference], max(x))

> coord.y <- c(0, dchisq(x[x >= deviance_difference], df_difference),

+ 0)

> polygon(coord.x, coord.y, col = "red", border = NA)
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7.2 Background on likelihood functions and maximum likelihood estimates (MLEs)

When we think of the Bernoulli pmf as a function with 0 fixed that gives the probabilities of the possible
outcomes, we have a probability distribution function: the arguments are possible outcomes and the values
are their probabilities.
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In practice, however, we have a fixed data set and we want to know what its probability is according to
the Bern function relative to *different* possible biases, i.e., different thetas.

In this case, we have a function that takes different thetas and returns the probability of the fixed (actual)
data set for those thetas.

This is not a probability distribution function: we do not assign probabilities to the different thetas.

We call this the Bern likelihood function to indicate that it is a function of theta; the formula is the same,
but the functions are different.

Using lambda notation, we have the following:

(19) prob. dist. function: Ay.Bern(y, )
* note that 6 is contextually provided here, i.e., it is a free variable, while y is bound
(20) likelihood function: A6.Bern(y,0)

* note that y is contextually provided here, i.e., it is a free variable, while 6 is bound

y <- c(1, 1, 0)

Bern <- function(y, theta) {
prod(theta~y * (1 - theta)~(1 - y))

}

theta <- 0.4

Bern(y, theta)

>
>
+
+
>
>
[1] 0.096

> theta * theta * (1 - theta)
[1] 0.096

> theta <- 0.3
> Bern(y, theta)

[1] 0.063
> theta * theta * (1 - theta)
[1] 0.063

> theta <- 0.5
> Bern(y, theta)

[1] 0.125
> theta * theta * (1 - theta)
[1] 0.125

> theta <- 0.6
> Bern(y, theta)

[1] 0.144
> theta * theta * (1 - theta)
[1] 0.144

Given a fixed, contextually provided data set y, the § that maximizes the value of the likelihood function
is called the Maximum Likelihood Estimate (MLE).
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In our case, this is the highest point of the curve plotted below:

> thetas <- seq(0, 1, length.out = 1000)

> thetalikelihoods <- vector(length = length(thetas))
> for (i in 1:length(thetas)) {

+ thetalikelihoods[i] <- Bern(y, thetas[i])

+ 3

> MLE <- sum(y)/length(y)

> MLE

[1] 0.6667

> which(thetaLikelihoods == max(thetaLikelihoods))

[1] e67

> thetas[which(thetalLikelihoods == max(thetaLikelihoods))]
[1] 0.6667

> library("ggplot2")
> gplot(thetas, thetalikelihoods, ylim = range(0, 1), xlab = "thetas",

+ ylab = "lihelihood", main = "Bernoulli likelihood") + geom_line(size = 2,
+ col = "blue") + geom_point(aes(MLE, Bern(y, MLE)), col = "red",
+ size = 4) + theme_bw() + theme(legend.position = "none")

Bernoulli likelihood

1.00 -
0.75 -
i)
o
(@)
< 0.50 -
(b
<
0.25 -
0.00 -
| | | | |
0.00 0.25 0.50 0.75 1.00
thetas

Note that the Bernoulli likelihood is not a prob. density function — it does not integrate to 1:
> BernLike <- function(theta) {

+ as.numeric(Bern(y, theta))

+ }
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> BernLike (MLE)
[1] 0.1481
> integrate(Vectorize(BernLike), lower = 0, upper = 1)

0.08333 with absolute error < 9.3e-16

>y <-1

> thetas <- seq(0, 1, length.out = 1000)

> thetalikelihoods <- vector(length = length(thetas))
> for (i in 1:length(thetas)) {

+ thetalikelihoods[i] <- Bern(y, thetas[i])

+ 3

> MLE <- sum(y)/length(y)

> MLE

(11 1

> which(thetaLikelihoods == max(thetaLikelihoods))

[1] 1000

> thetas[which(thetalikelihoods == max(thetalikelihoods))]
(11 1

> library("ggplot2")
> gplot(thetas, thetalikelihoods, ylim = range(0, 1), xlab = "thetas",

+ ylab = "lihelihood", main = "Bernoulli likelihood") + geom_line(size = 2,
+ col = "blue") + geom_point(aes(MLE, Bern(y, MLE)), col = "red",
&+ size = 4) + theme_bw() + theme(legend.position = "none")
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Bernoulli likelihood
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> integrate(Vectorize(BernLike), lower = 0, upper = 1)

0.5 with absolute error < 5.6e-15

7.3 Evaluating the interaction model
The interaction also fails to significantly improve the fit of the model:

> det3 <- glm(detent test * social, binomial)
> anova(det2, det3, test = "Chi")

Analysis of Deviance Table

Model 1: detent ~ test + social
Model 2: detent ~ test * social
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 17 19.4
16 19.3 1 0.122 0.73

> anova(detreg, det3, test = "Chi")

Analysis of Deviance Table

Model 1: detent ~ test
Model 2: detent ~ test * social
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 18 21.2
16 19.3 2 1.9 0.39
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7.4 Adding polynomial functions as additional predictors

We can include polynomial functions within the glm function (recall that ‘linear’ is in terms of the coeffi-
cients B, not in terms of the predictors X).

For example, we might want to check whether adding a quadratic test term (the 2 in the poly function)
significantly improves the prediction of the social scores.

> socialpoly <- glm(social ~ poly(test, 2))
It does not:

> summary (socialpoly)

Call:
glm(formula = social ~ poly(test, 2))

Deviance Residuals:
Min 1Q Median 3Q Max
-2.076 -0.808 -0.103 0.966 1.507

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) -0.044 0.262 -0.17 0.8684
poly(test, 2)1 4.145 1.169 3.54 0.0025 *x
poly(test, 2)2 -1.133 1.169 -0.97 0.3461
Signif. codes: O '#*x' 0.001 '*xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 1.367)
Null deviance: 41.710 on 19 degrees of freedom

Residual deviance: 23.247 on 17 degrees of freedom

AIC: 67.77

Number of Fisher Scoring iterations: 2

The curve does not deviate much from the linear:

> plot(test, social, col = "blue", pch = 20)
> lines(test, predict(socialpoly, type = "response"), col = "red", )
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social

test

> detach(glmexample)
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