Computing Dynamic Meanings

Day 2: Introduction to syntactic and semantic parsing in ACT-R/pyactr

Jakub Dotlačil & Adrian Brasoveanu

ESSLLI 2018, August 7 2018

Topic for today

- Parsing
- Is interpretation incremental?

 Altmann and Steedman, 1988; Marslen-Wilson, 1973, 1975; Tanenhaus et al., 1995; Trueswell et al., 1994
- If so, what does it tell us about (syntactic) parsing?
 Steedman, Stabler, Shieber & Johnson

Garden-path or "garden-path-like" effects:

- (1) a. The horse raced past the barn fell.
 - b. The horse that was raced past the barn fell.

Garden-path or "garden-path-like" effects:

- (1) a. The horse raced past the barn fell.
 - b. The horse that was raced past the barn fell.
- (2) Trump urged to stop tweeting on Trump tower meeting.

Garden-path or "garden-path-like" effects:

- (1) a. The horse raced past the barn fell.
 - b. The horse that was raced past the barn fell.
- (2) Trump urged to stop tweeting on Trump tower meeting.
- (3) a. While she mended a sock fell on the floor.
 - b. While she mended, a sock fell on the floor.

Garden-path or "garden-path-like" effects:

- (1) a. The horse raced past the barn fell.
 - b. The horse that was raced past the barn fell.
- (2) Trump urged to stop tweeting on Trump tower meeting.
- (3) a. While she mended a sock fell on the floor.
 - b. While she mended, a sock fell on the floor.
- (4) a. The professor saw the students walked across the quad.
 - b. The professor saw that the students walked across the quad.

Garden-path or "garden-path-like" effects:

- (1) a. The horse raced past the barn fell.
 - b. The horse that was raced past the barn fell.
- (2) Trump urged to stop tweeting on Trump tower meeting.
- (3) a. While she mended a sock fell on the floor.
 - b. While she mended, a sock fell on the floor.
- (4) a. The professor saw the students walked across the quad.
 - b. The professor saw that the students walked across the quad.
- (5) a. Put the apple on the towel into the box.
 - b. Put the apple that is on the towel into the box.

Garden-path or "garden-path-like" effects:

- I. The horse raced past the barn fell.
- II. While she mended a sock fell on the floor.
- III. The professor saw the students walked across the quad.
- IV. Put the apple on the towel into the box.
- \rightarrow syntactic parsing is incremental

Terminology

- locally/temporarily ambiguous sentences
- garden-path sentences

Normal sentence:

• The new peace terms have been announced. They call for the unconditional withdrawal of all the enemy forces.

Semantically anomalous sentence:

• The new peace terms have been announced. They call for the unconditional **universe** of all the enemy forces.

The word *withdrawal/universe*: disrupted in one of the syllables, or not disrupted

2nd syllable: withdrawal → withdewal

• 3rd syllable: *withdrawal* → *withdrawack*

• 2nd syllable: $universe \rightarrow unopverse$

3rd syllable: universe → unitierse

- 2nd syllable: $withdrawal \rightarrow withdewal$
- 3rd syllable: *withdrawal* → *withdrawack*
- Corrected often (27 cases)
- 2nd syllable: *universe* → *unopverse*
- 3rd syllable: universe → unitierse
- Hardly ever corrected (5 cases)

Item

The new peace terms have been announced. They call for the unconditional withdrawal/universe of all the enemy forces.

- Incremental interpretation, hence, restoration of disrupted words only in normal condition (in 2nd and 3rd syllables)
- Problems?

Eye-tracking & 80's ad 90's

Reduced-relative garden path

- (6) The horse raced past the barn fell.
- (7) The horse raced...

Main-clause >> reduced-relative clause

Minimal Attachment:

listeners/readers posit the smallest syntactic structures compatible with the input

Frazier, 1978

Closely-similar alternatives: J. Hale, 2011; Pritchett, 1988, 1992

Other possibilities: Bever, 1970; Gibson, 1991; J. Hale, 2001; Steedman, 2001

Interaction of semantic selectional restrictions and parsing

- (8) a. The defendant examined **by the lawyer** turned out to be unreliable. (Animate Reduced)
 - b. The defendant that was examined **by the lawyer** turned out to be unreliable. (Animate Unreduced)

Interaction of semantic selectional restrictions and parsing

- (8) a. The defendant examined **by the lawyer** turned out to be unreliable. (Animate Reduced)
 - b. The defendant that was examined **by the lawyer** turned out to be unreliable. (Animate Unreduced)
- (9) a. The evidence examined **by the lawyer** turned out to be unreliable. (Inanimate Reduced)
 - b. The evidence that was examined **by the lawyer** turned out to be unreliable. (Inanimate Unreduced)

- I. The Animate/Inanimate [$_V$ examined] [$_{
 m disamb}$ by the lawyer]
- II. The Animate/Inanimate that was [$_V$ examined] [$_{disamb}$ by the lawyer]
 - First pass: Disamb reduced slower than unreduced

- I. The Animate/Inanimate [V examined] [V examined]
- II. The Animate/Inanimate that was [$_V$ examined] [$_{
 m disamb}$ by the lawyer]
 - First pass: Disamb reduced slower than unreduced
- ⇒ incremental interpretation does not affect parsing

Altmann and Steedman, (1988): NP/VP-attachment ambiguity

Context affects syntactic attachment

Target sentence:

(10) The burglar blew open the safe with...

Altmann and Steedman, (1988): NP/VP-attachment ambiguity

Context affects syntactic attachment

Target sentence:

- (10) The burglar blew open the safe with...
 - a. ...the dynamite.
 - b. ...the new lock.

Altmann and Steedman, (1988): NP/VP-attachment ambiguity

Context affects syntactic attachment

Target sentence:

- (10) The burglar blew open the safe with...
 - a. ...the dynamite.
 - b. ...the new lock.
- (11) a. The burglar blew open [NP the safe with the N]
 - b. The burglar [$_{VP}$ blew open [$_{NP}$ the safe] with the N]
 - more than one safe \rightarrow NP-attachment supported
 - just one safe → VP-attachment supported

Altmann et al. (1988): context influence

(12) NP-attachment support

a. A burglar broke into a bank carrying some dynamite.
He planned to blow up a safe.
Once inside he saw that there was a safe which had a new lock and a safe which had an old lock.

(13) VP-attachment support

A burglar broke into a bank carrying some dynamite.
 He planned to blow up a safe.

Once inside he saw that there was a safe which had a new lock and a **strongbox** which had an old lock.

Altmann et al. (1988): context influence

(12) NP-attachment support

a. A burglar broke into a bank carrying some dynamite.
He planned to blow up a safe.
Once inside he saw that there was a safe which had a new lock and a safe which had an old lock.

(13) VP-attachment support

a. A burglar broke into a bank carrying some dynamite.
He planned to blow up a safe.
Once inside he saw that there was a safe which had a new lock and a **strongbox** which had an old lock.

The burglar /blew open /the safe /with the dynamite (new lock)/and...

Altmann et al. (1988): results

Altmann et al. (1988): results

Altmann et al. (1988)

explanation of results

NP-attachment >> VP-attachment

Late Closure:

if more than one phrase is compatible with the phrase P, parser attaches P to the most local phrase currently being processed Frazier (1978)

(14) Jessie put the book Kathy was reading in the library...

Altmann et al. (1988)

explanation of results

(NP-attachment >> VP-attachment)× context

Principle of Parsimony:

A reading that carries fewer unsatisfied presuppositions will be favored over one that carries more.

Steedman, 2001

(15) The burglar blew open the safe with the ...

Tanenhaus et al. (1995): visual context

- (16) Put the apple on the towel.
 - a. Put [NP] the apple on the towel]
 - b. [VP] Put [NP] the apple [VP] on the towel [VP]

Experimental sentences:

- (17) Put the apple on the towel in the box. (Locally Ambiguous)
- (18) Put the apple that's on the towel in the box. (Locally Unambiguous)

Tanenhaus et al. (1995): visual context

Tanenhaus et al. (1995): visual context

Fig. 3. Proportion of trials in which participants looked at the incorrect destination.

- (19) a. Put the apple on the towel in the box.
 - b. Put the apple that's on the towel in the box.

(Ambiguous) (Unambiguous)

Tanenhaus et al. (1995)

explanation of results

 $(NP-attachment) \times VP-attachment) \times context$

Principle of Parsimony:

A reading that carries fewer unsatisfied presuppositions will be favored over one that carries more. Steedman, 2001

(20) Put the apple on the towel in the box.

Interim summary

- Semantic information available to parser
- Semantic constraints incrementally used Altmann and Steedman, 1988; Tanenhaus et al., 1995
- Semantic constraints not incrementaly used Ferreira and Clifton, 1986

Trueswell et al. (1994)

Interaction of semantic selectional restrictions and parsing

- (21) a. The defendant examined **by the lawyer** turned out to be unreliable. (Animate Reduced)
 - b. The defendant that was examined **by the lawyer** turned out to be unreliable. (Animate Unreduced)

Trueswell et al. (1994)

Interaction of semantic selectional restrictions and parsing

- (21) a. The defendant examined **by the lawyer** turned out to be unreliable. (Animate Reduced)
 - b. The defendant that was examined **by the lawyer** turned out to be unreliable. (Animate Unreduced)
- (22) a. The evidence examined **by the lawyer** turned out to be unreliable. (Inanimate Reduced)
 - b. The evidence that was examined **by the lawyer** turned out to be unreliable. (Inanimate Unreduced)

Trueswell et al. (1994):results

Trueswell et al. (1994):results

Eye-tracking & Trueswell et al. (1994)

explanation of results

- Main-clause >> reduced-relative clause (if both possible)
- Parser uses lexical information (selectional restrictions) to change preferences
- · But what about Ferreira and Clifton, 1986?
- Ferreira and Clifton, 1986 inanimate condition not always violating selectional restrictions:

Eye-tracking & Trueswell et al. (1994)

explanation of results

- Main-clause >> reduced-relative clause (if both possible)
- Parser uses lexical information (selectional restrictions) to change preferences
- · But what about Ferreira and Clifton, 1986?
- Ferreira and Clifton, 1986 inanimate condition not always violating selectional restrictions:

The car towed from the parking lot...

The meal brought to the highest priest...

Summary

 Evidence that lexical and contextual semantics can guide parser in syntax

Altmann and Steedman, 1988; Marslen-Wilson, 1973, 1975; Tanenhaus et al., 1995; Trueswell et al., 1994

· Consequences?

Setting the stage

Theoretical considerations & parsing

Appendix: developments & refinements

Theoretical considerations

- Semantics (compositionality principle)
- Parsing (strong competence and rule-to-rule assumption)
- Parsers

Semantics – interpretation is productive

We can interpret novel, previously unheard of sentences

Consequences:

- Interpretation is rule based (as opposed to memorized)
- Interpretation proceeds by building bigger blocks out of smaller blocks

What are the smaller blocks? What are the bigger blocks?

 \rightarrow Constituents

Understanding productivity

Principle of compositionality

The meaning of a complex expression is fully determined by its structure (syntax) and the meaning of its constituents (parts)

Stanford Encyclopedia of Philosophy

Assumptions about parsing

Strong competence (Bresnan and Kaplan, 1982)

There exists a direct correspondence between the rules of a grammar and the operations performed by the human language processor.

Rule-to-rule compositionality (Montague, 1973)

Each syntactic rule corresponds to a rule of semantic interpretation. (\Rightarrow entities combined by syntactic rules must be semantically interpretable)

Grammar

- I. $S \rightarrow NP VP$
- II. $NP \rightarrow D N$
- III. NP \rightarrow NP VP
 - the: D
 - book, opinion: N

- IV. $PP \rightarrow P NP$
- $V. VP \rightarrow VPP$
- ${\color{red}\mathsf{VI.}}\ \ \mathsf{VP} \to \mathsf{V}$
 - fell: V

Grammar

I. $S \rightarrow NP \ VP$ II. $NP \rightarrow D \ N$ V. $VP \rightarrow V \ PP$ III. $NP \rightarrow NP \ VP$ VI. $VP \rightarrow V$ the: Dbook, opinion: N

book

the

fell

Parser: top-down

I. $S \rightarrow NP VP$

IV. $PP \rightarrow P NP$

II. $NP \rightarrow D N$

 $V. VP \rightarrow VPP$

III. NP \rightarrow NP VP

- VI. $VP \rightarrow V$
- expand: if the stack shows a symbol X on top, and the grammar contains a rule $X \to \alpha$ then replace the stack symbol X with the sequence of symbols α
- scan: if the stack shows one of the grammar's terminal symbols Y on top, and w, the current word being parsed, is of category Y, then remove w from the input and Y from the stack

J. T. Hale, 2014

ACT-R TD parser; initialize model

```
import pyactr as actr
environment = actr.Environment(focus_position=(320, 180))
actr.chunktype("parsing_goal", "stack_top stack_middle\
    stack bottom parsed word task")
actr.chunktype("parse state",
               "mother daughter1 daughter2")
actr.chunktype("word", "form cat")
parser = actr.ACTRModel(environment)
dm = parser.decmem
g = parser.goal
imaginal = parser.set_goal(name="imaginal", delay=0.05)
```

ACT-R TD parser; add lexical information into decl. memory

```
dm.add(actr.chunkstring(string="""
   isa word
   form evidence
   cat N
"""))
g.add(actr.chunkstring(string="""
   isa
           parsing_goal
   task read word
   stack top S
"""))
```

```
parser.productionstring(name="encode word", string="""
    =g>
    isa
                    parsing_goal
    task
                    read_word
    =visual>
    isa
                    visual
    value
                    =val
    ==>
    =g>
    isa
                    parsing goal
    task
                    get word cat
    parsed word =val
    ~visual>
11111)
```

```
parser.productionstring(name="retrieve category", string=""
    =g>
    isa
                     parsing_goal
    task
                    get_word_cat
    parsed_word
                     =w
    ==>
    +retrieval>
    isa
                     word
    form
                     =w
    =g>
    isa
                     parsing_goal
    task
                     match category
111111
```

```
parser.productionstring(name="match category", string="""
    =g>
    isa
                     parsing goal
    task
                     match_category
    ?retrieval>
    state
                     free
    buffer
                     full
    =retrieval>
                     word
    isa
    cat
                     =c
    ==>
    =g>
    isa
                     parsing_goal
    task
                     parsing
    parsed_word
                     =c
11111)
```

```
parser.productionstring(name="expand: S ==> NP VP", string="""
   =g>
   isa
            parsing_goal
   task parsing
   stack top S
   stack middle =s2
   ==>
   =g>
   isa parsing_goal
   stack top NP
   stack middle VP
   stack bottom =s2
   +imaginal>
   isa parse_state
   mother S
   daughter1 NP
   daughter2 VP
11 11 11 )
```

```
parser.productionstring(name="expand: NP ==> D N", string="""
   =g>
   isa
          parsing_goal
   task parsing
   stack top NP
   stack middle =s2
   ==>
   =g>
   isa parsing goal
   stack top D
   stack middle N
   stack bottom =s2
   +imaginal>
   isa parse state
   mother NP
   daughter1 D
   daughter2 N
""")
```

```
parser.productionstring(name="scan: word", string="""
   =g>
   isa parsing_goal
   task parsing
   stack_top =y
   stack_middle =x
   stack_bottom =b
   parsed_word =y
   ==>
   =g>
   isa
           parsing_goal
   task press_space
   stack_top =x
   stack middle =b
   stack bottom None
   parsed word None
111111)
```

```
parser.productionstring(name="press spacebar", string="""
    =g>
    isa
                     parsing_goal
    task
                     press_space
    stack top
                     ~None
    ?manual>
                     free
    state
    ==>
    =g>
    isa
                     parsing_goal
    task
                     read_word
    +manual>
                     manual
    isa
    cmd
                      'press key'
    key
                     'space'
    ~imaginal>
11111)
```

Parser: bottom-up

I. $S \rightarrow NP VP$

IV. $PP \rightarrow P NP$

II. $NP \rightarrow D N$

 $V. VP \rightarrow VPP$

III. NP \rightarrow NP VP

- $VI. VP \rightarrow V$
- **reduce**: if the top of the stack shows a sequence of symbols α , and there is a grammar rule $X \to \alpha$, then replace α on the stack with X.
- **shift**: if the current word of the sentence is w, push w on to the top of the stack.
- J. T. Hale, 2014

ACT-R BU parser; initialize model

```
environment = actr.Environment(focus position=(320, 180))
actr.chunktype("parsing_goal", "stack_1 stack_2 stack_3 stack_3
actr.chunktype("parse state",
               "mother daughter1 daughter2")
actr.chunktype("word", "form cat")
parser = actr.ACTRModel(environment)
dm = parser.decmem
g = parser.goal
imaginal = parser.set_goal(name="imaginal", delay=0.05)
```

~retrieval>""")

```
parser productionstring(name="shift word and project it", string="""
       =g>
       isa
                 parsing_goal
       task retrieving
       stack_1 =s1
       stack_2 = s2
       stack_3 = s3
       stack_4 = s4
       stack_5 = s5
       =retrieval>
                word
       isa
       cat
                  =7
       ==>
       =g>
       isa
                  parsing_goal
       task
              parsing
       stack_1 =y
       stack_2 =s1
       stack_3 = s2
       stack_4 = s3
       stack 5 =s4
```

47

```
parser.productionstring(name="reduce: NP ==> D N", string="""
       =g>
       isa
                  parsing_goal
       task
                 parsing
       stack_1
                   N
       stack_2
       stack_3 = s3
       stack_4 = s4
       stack_5 = s5
       ==>
       =g>
       isa
                   parsing_goal
       stack_1 NP
       stack_2 = s3
       stack_3 = s4
       stack_4 = s5
       stack_5 None
       +imaginal>
       isa
               parse_state
       mother
               NP
       daughter1 D
       daughter2
                   N""")
                              48
```

```
parser.productionstring(name="press spacebar", string="""
    =g>
    isa
                     parsing_goal
    task
                     parsing
    ?manual>
    state
                     free
    ?imaginal>
    state
                     free
    ==>
    =g>
    isa
                     parsing_goal
    task
                     read_word
    +manual>
    isa
                     _{\mathtt{manual}}
                      'press_key'
    cmd
    key
                      'space'
    ~imaginal>
""", utility=-10)
```

Parser: left-corner (eager)

I. $S \rightarrow NP VP$

IV. $PP \rightarrow P NP$

II. $NP \rightarrow D N$

 $V. VP \rightarrow VPP$

III. NP \rightarrow NP VP

 $VI. VP \rightarrow V$

- **project**: if the top of the stack is a symbol Y, and there is a grammar rule $X \to Y$ β whose right-hand side starts with Y, then replace Y with new symbols: an expectation for each of the remaining righthand side symbols, and a record that X has been found
- **project+complete**: if the top of the stack is Y, and right below it is an expectation [X], then replace both with the remaining expectations β
- shift: if the current word of the sentence is w, push w on to the top of the stack.

Resnik, 1992

```
parser.productionstring(name="project and complete: NP ==> D N", string
   =g>
   isa
                   parsing_goal
   stack_1
   stack_2
                   NP
   stack_3
                 =s3
   stack 4
                 =s4
   ==>
   =g>
   isa
                   parsing_goal
   stack_1
   stack_2
                   =s3
   stack_3
                 =s4
   stack_4
                   None
   +imaginal>
   isa
                   parse_state
   mother
                   NP
   daughter1
   daughter2
111111
```

```
parser.productionstring(name="project: NP ==> D N", string="""
   =g>
   isa
                  parsing_goal
   stack_1
   stack_2
                 =s2
   stack_2
                ~NP
   stack_3
                =s3
   stack_4
            =s4
   ==>
   =g>
   isa
                  parsing_goal
   stack_1
   stack_2
                  NP
   stack_3 =s2
   stack_4
                  =s3
   +imaginal>
   isa
                  parse state
                  NP
   mother
   daughter1
   daughter2
""")
```

Top-down:

- **expand**: if the stack shows a symbol X on top, and the grammar contains a rule $X \to \alpha$ then replace the stack symbol X with the sequence of symbols α
- scan: if the stack shows one of the grammar's terminal symbols Y on top, and w, the current word being parsed, is of category Y, then remove w from the input and Y from the stack

Bottom-up:

- **reduce**: if the top of the stack shows a sequence of symbols α , and there is a grammar rule $X \to \alpha$, then replace α on the stack with X.
- ${\bf shift}$: if the current word of the sentence is w, push w on to the top of the ${\bf stack}$.

Left-corner (eager):

- project+complete: if the top of the stack is Y, and right below it is an expectation [X], then replace both with the remaining expectations β
- shift: if the current word of the sentence is w, push w on to the top of the stack.

Parsers and interpretation

I.
$$S \rightarrow NP \ VP$$
 IV. $PP \rightarrow P \ NP$ III. $NP \rightarrow D \ N$ V. $VP \rightarrow V \ PP$ III. $NP \rightarrow NP \ VP$ VI. $VP \rightarrow V \ NP$ (23) The evidence examined by the doctor...

Summary

- Bottom-up parsing coupled with compositionality predicts (the effect of) incremental interpretation too late
- II. Top-down & left-corner parsing (with the standard theory of adjunction) predict that the decision happens before the disambiguating incremental interpretation
- III. For top-down & left-corner parsers: Incremental interpretation has to be able to interpret incomplete constituents

Setting the stage

Theoretical considerations & parsing

Appendix: developments & refinements

Solution I: Steedman, 2001

- bottom-up parsing using Combinatory Categorial Grammar
- only constituents (well-formed syntactic objects) receive interpretation
- Interpretation becomes incremental due to extra composition rules

Notation of bottom-up parser

Bottom-up parsing rule

Current rule

- If you have evidence for A and B and you have a rule $X \to A$ B, postulate X

Extra rule (rule composition)

- Two rules: $X \rightarrow A B, B \rightarrow C Y$
- You have evidence for A and C (being empty counts as evidence)
- Postulate a new *rule*, $X \rightarrow Y$

Bottom-up parser with extra rule

Bottom-up parser with extra rule

The parser can parse incrementally:

(24) The woman that John saw...

The parser *cannot* parse incrementally:

(25) The woman that every man saw...

Demberg, 2012

Coordination as a constituency test:

(26) [books that every] and [journals that no] accordionist liked (?)

Solution II: Interpreting non-constituents is valid

Stabler, Shieber and Johnson

- (27) The evidence examined...
 - (27) is a non-constituent, but it can be interpreted (why should it not?)
 - Dropping the strict mapping between syntax and semantics enough for top-down and left-corner parser
 - On bottom-up parser and adjunction: Shieber and Johnson, 1993

Asynchronous processing

Circuit for computing: z = xy + (-y)

Summary

- top-down parsing, bottom-up parsing, left-corner parsing
- incremental interpretation and the limits with bottom-up parsing
- incremental interpretation and the interpretation of non-constituents

References I

Altmann, Gerry and Mark Steedman (1988). "Interaction with context during human sentence processing". In: Cognition 30.3, pp. 191–238. DOI: 10.1016/0010-0277 (88) 90020-0.

Bever, Thomas G. (1970). "The cognitive basis for linguistic structures". In: Cognition and the development of language. Ed. by J.R. Hayes. Wiley, pp. 279–362.

Demberg, Vera (2012). "Incremental derivations in CCG". In: Proceedings of the 11th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+ 11), pp. 198–206.

Ferreira, Fernanda and Charles Clifton (1986). "The independence of syntactic processing". In: *Journal of memory and language* 25.3, pp. 348–368.

Frazier, Lyn (1978). "On comprehending sentences: Syntactic parsing strategies". PhD thesis. University of Connecticut.

Gibson, Edward (1991). "A computational theory of human linguistic processing: Memory limitations and processing breakdown". PhD thesis. Pittsburgh, PA: Carnegie Mellon University.

References II

Hale, John (2001). "A Probabilistic Earley Parser as a Psycholinguistic Model". In: Proceedings of the 2nd Meeting of the North American Association for Computational Linguistics, pp. 159–166.

- (2011). "What a rational parser would do". In: *Cognitive Science* 35, pp. 399–443.

Hale, John T. (2014). Automaton Theories of Human Sentence Comprehension.
Stanford: CSLI Publications

Marslen-Wilson, William (1973). "Linguistic Structure and Speech Shadowing at Very Short Latencies". In: *Nature* 244, pp. 522–523.

 (1975). "Sentence perception as an interactive parallel process". In: Science 189, pp. 226–228.

Montague, Richard (1973). "The proper treatment of quantification in ordinary English". In: *Approaches to Natural Language*. Ed. by Patrick Suppes Jaakko Hintikka Julius Moravcsik. Dordrecht: Reidel, pp. 221–242.

Pritchett, Bradley L. (1988). "Garden path phenomena and the grammatical basis of language processing". In: *Language* 64, pp. 539–576.

 (1992). Grammatical Competence and Parsing Performance. Chicago, IL: The University of Chicago Press.

References III

Resnik, Philip (1992). "Left-corner parsing and psychological plausibility". In: Proceedings of the Fourteenth International Conference on Computational Linguistics. Nantes, France.

Shieber, Stuart and Mark Johnson (1993). "Variations on incremental interpretation". In: *Journal of Psycholinguistic Research* 22.2, pp. 287–318.

Steedman, Mark (2001). The Syntactic Process. Cambridge, MA: MIT Press.

Tanenhaus, M. K. et al. (1995). "Integration of visual and linguistic information in spoken language comprehension". In: *Science* 268, pp. 1632–1634.

Trueswell, John et al. (1994). "Semantic Influences on Parsing: Use of Thematic Role Information in Syntactic Ambiguity Resolution". In: *Journal of Memory and Language* 33.3, pp. 285–318. DOI: 10.1006/jmla.1994.1014.