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Abstract

The paper provides a compositional account of cumulative read-
ings with non-increasing modified numerals (a.k.a. van Benthem’s
puzzle), e.g., Exactly 3 boys saw exactly 5 movies. The main proposal
is that modified numerals make two kinds of semantic contribu-
tions. Their asserted / at-issue contribution is a maximization op-
erator that introduces the maximal set of entities that satisfies their
restrictor and nuclear scope. The second contribution is a post-
supposition, i.e., a cardinality constraint that needs to be satisfied
relative to the context that results after the at-issue meaning is eval-
uated. Thus, the interpretation process ends up giving a kind of
pseudo wide scope to the cardinality post-suppositions contributed
by modified numerals.

1 Cumulativity and Modified Numerals

The main goal of the present paper is to provide a compositional ac-
count of cumulative readings with non-increasing modified numerals
(a.k.a. van Benthem’s puzzle, van Benthem 1986), exemplified in (1)
below. We focus on exactly n modified numerals, but the same prob-
lem arises with other non-increasing numerals, e.g., at most n, up to n, as
many as n, maximally n etc. We restrict our discussion to class B modified
numerals, to use the terminology in Nouwen (2010).

(1) Exactly three* boys saw exactly fiveY movies.
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The most familiar reading of sentence (1) (given the common assump-
tion that modified numerals are generalized quantifiers over atomic in-
dividuals) is the surface-scope distributive one: there are exactly 3 boys
such that each of them saw exactly 5 movies, possibly different from
boy to boy.

We are not interested in this reading, although we discuss it briefly
later on. Instead, the reading of sentence (1) that we want to capture is
the cumulative reading, namely: consider the maximal number of boys
that saw a movie and the maximal number of movies seen by a boy;
there are 3 such boys and 5 such movies.

Sentence (1) on its cumulative reading could be an exhaustive an-
swer to the question in (3) below, in a situation like the one depicted in
Figure 2 above.

(3) How many boys saw how many movies, exactly?

As Krifka (1999), Landman (2000) and Ferreira (2007) observe, the cu-
mulative reading is different from: the maximal number of boys that
(between them) saw exactly 5 movies is 3.1 It is not clear that this is
even a possible reading for sentence (1), although it bears some resem-
blance to its distributive reading.

The situations depicted in Figures 1 and 2 above distinguish be-
tween these two readings. Figure 1 is exactly like Figure 2, except for
the addition of boy b;, movie m; and the arrow between them sym-
bolizing the seeing relation. The cumulative reading is intuitively false
in Figure 1 (4 boys and 6 movies) and true in Figure 2. In contrast, the
second ‘reading’ is true in both cases.

The distinction between the cumulative reading and this other ‘read-
ing’ is important for theoretical reasons. Formal systems based on fairly

1But see Robaldo (2009) for a different take on the data.
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uncontroversial (neo)Montagovian assumptions about semantics and
the syntax-semantics interface derive something like it when they at-
tempt to capture the cumulative reading. This is because when we
interpret sentence (1) compositionally, the maximality condition con-
tributed by the subject exactly three boys takes scope over the maximal-
ity condition contributed by the direct object exactly five movies. What
we want instead is simultaneous global maximization over both subject
and direct object, plus interpreting the cardinality requirements (exactly
3 and exactly 5) outside this maximization. But it is not obvious how to
get this compositionally.

Given that the cumulative reading and the other ‘reading’ are not
mutually independent, i.e., the non-cumulative reading is weaker than
the cumulative reading, we could argue that sentence (1) has only one
reading here, namely the weaker, non-cumulative one. This would
be parallel to the classical argument that the sentence Every man loves
a woman does not provide a strong enough argument for quantifier-
scope ambiguities, since the wide-scope indefinite ‘reading’ is simply
a strengthening of the weaker, surface-scope one in which the indefi-
nite has narrow scope.

Here are three tests that help us decide whether the non-cumulative
‘reading’ is really a reading of sentence (1).

First, if the second ‘reading’ that is not globally maximal is the only
one available, we would predict that mentioning the remaining boys
and movies is felicitous — at least in situations like the one in Figure 2.

(4) Exactly three* boys saw exactly five¥ movies. #Perhaps there
was another boy that saw a different movie, but | didn’t notice
him.

Second, we can embed sentence (1) under negation and check whether
the resulting statement is intuitively true in Figure 1.2

(5) Itis not true that exactly threeX boys saw exactly fiveY movies.3
[true in Figure 1, false in Figure 2]

Finally, we can check if sentence (1) could be an exhaustive answer to
the question below in both Figure 1 and Figure 2.

(6) How many boys saw how many movies (exactly)?

2As an anonymous Journal of Semantics reviewer points out, this is really a test
for the independence of the cumulative reading and the second ‘reading’ mentioned
above, not a diagnostic that the second ‘reading’ is not available.

3As Philippe Schlenker observes (p.c.), other downward entailing environments
could provide more natural settings to test this, e.g., conditionals If exactly three boys
see exactly five movies,... or the restrictor of universals In every class in which exactly
three boys saw exactly five movies ... .



(7) a. [Figure 2:] Exactly three* boys saw exactly five¥ movies (and
no other boy saw no other movie).

b. [Figure 1:] #Exactly three* boys saw exactly fiveY movies and,
in addition, Joey saw Star Wars Ill. So, all in all, four boys
saw six movies.

The above three tests seem to support the observation that the globally-
maximal, cumulative reading is indeed a distinct reading for sentence
(1) — and cast doubt on the availability of the second, non-globally max-
imal ‘reading’.

The naturally-occurring examples below from the Corpus of Con-
temporary American English (COCA, www.americancorpus.org) pro-
vide additional evidence that globally-maximal cumulative readings
with non-increasing quantifiers exist.*

(8) [CSX and Norfolk Southern, which haul coal from eastern mines, are
making lesser but still sizable investments to maintain or upgrade
lines that take a beating from coal trains.]

Due to their size — up to four locomotives pulling as many as
125 cars - coal trains wear down tracks more quickly than other
cargo haulers.

(9) That’s one of the reasons the Alameda County Board of Super-
visors approved a proposed upgrade last December by Green
Ridge Power LLC, Altamont Power LLC, Sea West Windfarms
Inc. and Ventura Pacific Inc. to replace as many as 1,270 old
windmills with up to 187 new ones.

(10) All measurements made with the unit may be stored in the on-
board memory that will hold as many as 3,000 readings from
up to 100 individual probes.

Further evidence is provided by the example below (also from COCA),
where the distributive reading is forced by the addition of the explicit
distributor apiece. The addition of this explicit distributor points to the
fact that the sentence without it can be interpreted cumulatively — and
is probably interpreted cumulatively by default.

(11) This new organization looks to assist as many as 45 artists per
year with loans of up to $3,000 apiece.

Our main proposal is that modified numerals make two kinds of contri-
butions to the meaning of sentences like (1): (i) their asserted / at-issue

“For more discussion of the less studied construction as many as n, see Rett (2010);
see Nouwen (2010) and references therein for a detailed discussion of other non-
increasing numerals, including up to.



contribution is a maximization operator (closely related to the o opera-
tor in Link 1983) that introduces the maximal set of entities that satisfies
their restrictor and nuclear scope; (ii) the second contribution is a post-
supposition, i.e., a cardinality constraint (e.g., exactly three) that needs
to be satisfied relative to the context that results after the at-issue meaning
is evaluated.

Using post-suppositions enables us to interpret the cardinality re-
quirements globally, giving them a form of pseudo wide scope, and this
is enough: we do not need a global maximality operator. The system is
compositional and the maximality conditions are nested, but they are
equivalent to a global maximality condition.

The basic insight behind the use of post-suppositions to derive cu-
mulative readings is their pseudo-scopal behavior: interpreting cardi-
nality requirements only after the regular at-issue content is interpreted
gives them ‘wide scope’ relative to the maximization operators that are
part of that at-issue content. Thus, the syntactic structure of sentence (1)
is the normally assumed one and the compositional interpretation pro-
cedure has the usual (neo)Montagovian form — but we will effectively
interpret (1) as shown in (12) below.

(12) oxy(BOY(X) A MOVIE(Y) A SEE(X,Y)) A
Yl =5A|x =3

This formula has three conjuncts. The first one contains a maximization
operator ¢ that extracts the maximal sum individuals x and y satisfying
the (cumulatively-closed) lexical relations in its scope. This conjunct is
basically interpreted as: store the maximal number of boys that saw a
movie in x and the maximal number of movies seen by a boy iny.

The second and third conjuncts are the post-suppositional cardinal-
ity requirements contributed by the two modified numerals. They are
post-suppositional in the sense that they are interpreted relative to the
context that results after the maximization conjunct is interpreted. That
is, they specify the cardinality of the sets of boys and movies that have
been previously assigned as values to the variables x and y, respectively
(since (12) will be interpreted in a dynamic system, the x and y variables
are able to retrieve the values introduced in the first conjunct).

While similar to quantificational items actually taking (syntactic)
wide scope, post-suppositional pseudo wide scope has slightly differ-
ent semantic properties. The differences between class A and class B
modified numerals introduced in Nouwen (2010) are due precisely to
the fact that, for class A modifiers (which include comparative quanti-
fiers like fewer than ten guests), degree quantifiers take actual wide scope



along the lines of the analysis in Ferreira (2007),° while class B modifiers
(which include the modified numerals we are concerned with here) con-
tribute post-suppositional cardinality requirements.

We will work with a modified version of Dynamic Predicate Logic
(DPL, Groenendijk & Stokhof 1991) — we slightly change the ontology
to add non-atomic individuals. Post-suppositions will be interpreted as
cardinality requirements on the maximal non-atomic individuals con-
tributed by modified numerals.

One of the important differences between the present account and
the one in Krifka (1999) is conceptual: we take modified numerals to
constrain quantificational — and not focus — alternatives, where a quan-
tificational alternative is one of the contexts / variable assignments that
result after a quantificational expression is interpreted. We therefore
predict particular patterns of interaction between the post-suppositions
contributed by modified numerals and other quantificational expres-
sions, e.g., modals.

Broader issues related to the place of post-suppositions within the
landscape of natural language quantification will not be addressed, ex-
cept for tentatively suggesting that their pseudo wide scope behav-
ior could be related to the fact that they provide ‘wide scope’, global
level information about the cardinality of quantificational domains. We
would therefore expect other items that contribute similarly global in-
formation to exhibit a similar scopal behavior.

The paper focuses instead on the inner workings of the proposed
post-suppositional mechanism and argues that it makes the right pre-
dictions with respect to the interpretation of modified numerals and
their interaction with other quantificational expressions.

2 Modified Numerals as Post-suppositions

We work with models that have the same structure as the ones for clas-
sical first-order logic (FOL): 9t = (®, 7). © is the domain of individuals
and J is the basic interpretation function such that 3(R) C ©", for any
n-ary relation R.

5Lucas Champollion (p.c.) brought to my attention the following naturally occur-
ring example of cumulative readings with class A modified numerals:

(1) This book is the product of more than five hundred hours of interviews with
more than two hundred individuals who participated directly in the events
surrounding the financial crisis.

(the first sentence of Andrew Sorkin’s “Too Big To Fail™)



The difference between our models and the usual FOL ones is that
the domain of individuals © consists of both atomic individuals and
collections / non-atomic individuals. That is, we take ® to be the power
set of a given non-empty set IN of entities: © = p* (IN) := p(IN)\ {D}.

The sum of two individuals x &y is the union of the sets x and y, e.g.,
{jasper} @& {jacob} = {jasper, jacob}. For a set of atomic / non-atomic
individuals X, the sum of the individuals in X (i.e., their union) is &X,
e.g., ® {{jasper, jacob}, {jacob}, {agatha}} = {jasper, jacob, agatha}.

The part-of relation over individuals x < y (x is a part of y) is the
partial order induced by inclusion C over the set o (IN): x <y :=x C
y. The strict part-of relation is the corresponding order induced by strict
inclusion: x <y := x C y. Atomic individuals are the singleton subsets
of IN, identified by means of the predicate atom(x) defined below.

(13) atom(x) :=Vy < x(y = X)

An 9t-assignment g is a total function from the set of variables V' to
®. The essence of quantification in FOL is pointwise / variablewise
manipulation of variable assignments, abbreviated h[x]g. Informally,
h[x]g says that assignment h differs from assignment g at most with
respect to the value it assigns to the variable x.

(14) hix|g :=for any variable v € V, if v # x, then h(v) = g(v)

Note that for any variable v € V (Xx,y, z and so on), the induced binary
relation between assignments h[v|g is an equivalence relation: it is re-
flexive, symmetric and transitive.

The FOL semantic clauses for both universal and existential quan-
tification make use of this kind of assignment manipulation — although
the standard formulation of these clauses uses a different kind of nota-
tion. Universal and existential FOL quantifiers differ only with respect
to how the notion of pointwise manipulation of assignments is used:
universals look at every assignment h such that h[x]g, while existentials
only need some assignment h such that h[x]g — where g is the input
(contextually-provided) variable assignment relative to which FOL for-
mulas are interpreted.

DPL quantification is the same as FOL quantification. The only dif-
ference is that the output assignment h that is the result of the random
assignment of value to a variable is preserved and passed on as the in-
put assignment for the next formula. Thus, DPL formulas denote binary
relations between input and output contexts.

In particular, atomic formulas for lexical relations are tests, as shown
in (15) and (16) below for unary relations (properties) and binary rela-
tions, respectively. They require the output context h to be the same
as the input context g, i.e., they simply pass on the input context, and
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they check that h satisfies the lexical relation denoted by P or R. These
definitions can be easily generalized to n-ary lexical relations.

(15) [P(x)]{9" = T iff g = hand h(x) € *3(P)
(16) [R(x,y)[{@" = Tiff g =hand (h(x),h(y)) € *I(R)
(17) For any property P (where P = J(P)), the cumulative / sum

closure *P is the smallest set such that P C *P and if a,a’ € *P,
thena® a’ € *P.

(18) For any binary relation R(= J3(R)), the cumulative /7 sum clo-
sure **R is the smallest set such that R C **Randif (a,b) , (a,b’) €
**R, then (ada',bab’) € *R.

The above semantic clauses for atomic formulas are like the correspond-
ing FOL clauses except for: (i) the fact that formulas are evaluated rel-
ative to a pair of variable assignments (the input assignment g and the
output assignment h, which are identical for tests) and (ii) the fact that
we build cumulativity into the semantic clauses for lexical relations (see
Link 1983, Krifka 1986 and Sternefeld 1998 for the original definitions
of the operators * and **). We take lexical relations to be cumulatively
closed for presentational simplicity: the resulting formulas will be more
readable.

Cardinality constraints on the values of variables are also tests, as
shown by the semantic clauses below. Cardinality constraints on a vari-
able x simply constrain the number of atoms that are part of the plural
individual assigned to x.

(19) |g(x)| is the cardinality of the set of atoms in g(x), i.e.:
[9(x)] := [{a < g(x) : atom(a)} |

(20) [|x| =n]‘¢M =T iffg =hand |h(x)| = n
1) [|x| < n]'¢M =T iff g =hand |h(x)| < n
(22) [|x| > n]‘¢M =T iff g = hand |h(x)| > n

Dynamic conjunction and random assignment are defined as usual. In
particular, dynamic conjunction is interpreted as relation composition.

(23) [¢ A ]9 = T iff there is a k such that [¢](9%) = T and
[yl*M =T

(24) Random assignment:
[[X]){#" = Tiff hx]g



2.1 Bare Numerals and Singular Indefinites

The format for the translation of singular indefinite articles and bare
numerals is provided in (25) below. Intuitively, (25) is true iff n atomic
individuals that satisfy ¢ also satisfy . Square brackets | | indicate
restrictor formulas, round brackets ( ) indicate nuclear scope formulas.

(25 3X[x| =nA¢](y)

For singular indefinite articles, n is 1 (which is equivalent to an atomic-
ity requirement). For the bare numeral two, n is 2. For the bare numeral
three, n is 3 etc. Two example translations are provided below.

(26) AXwolf came in. ~» 3x[|X| = 1 A WOLF(X)] (COME-IN(X))
(27) Two* wolves came in. ~» 3x[|x| = 2 A WOLF(x)] (COME-IN(X))

The compositional translation schema in (25) above is just an abbrevi-
ation, as shown in (28) below. We ‘decompose’ (25) into a flat conjunc-
tion of elementary formulas, which are interpreted according to their
respective semantic clauses provided above.

(28) I[|x| =nA¢] () =X AIx|=nApAp

Proper names are interpreted like indefinites, except that their restrictor
formula requires the variable to take as its only value the individual
that has that name. This is exemplified in (29) below, where JASPER is a
non-logical constant denoting the individual Jasper.

(29) 3Ix[x =IASPER] (¢) := [X] A X = JASPER A ¢

Pronouns are indexed with the variable introduced by their antecedent
and their translation is that variable itself. We ignore differences be-
tween singular and plural pronouns.

For example, the two-sentence discourse in (30) below is composi-
tionally translated as shown in (31a) — and this translation is ‘unpacked’
in (31b).

(30) AX*wolf came in. Itk bit JasperY.
(31) a. 3Ix[|x| =1 AwOLF(x)] (COME-IN(X)) A
Jy[y = JASPER] (BITE(X,Y))
b. [x] A x| =1 AWOLF(X) A COME-IN(X) A
[y] Ay = JASPER A BITE(X,Y)

Suppose that our input context is an assignment g that assigns some
arbitrary values to all variables. The conjunction of formulas in (31b)
above updates this input context as shown in (32) below.



The update in (32) proceeds as follows (recall that the denotations of
our formulas are binary relations, not functions, between sets of assign-
ments). We first introduce x, i.e., assign it a random value. The result:
many contexts / variable assignments that differ from g at most with
respect to the value of x and that assign each individual in ®, atomic
or not, to x. That is, we now have a graph with many paths. Then, the
test |x| = 1 eliminates some of the paths in the graph, namely all those
paths that end in a context assigning a non-atomic entity to x. The test
WOLF(X) eliminates further paths in the graph, namely all those that
end in a context where x is not assigned a wolf. The test COME-IN(X)
eliminates all the wolves that didn’t come in.

We then introduce another variable y that extends the graph in many
different ways. The subsequent test y = JASPER prunes down the graph
by eliminating all contexts that don’t assign Jasper to y. Finally, the test
BITE(X, y) keeps only the output contexts h such that the individual h(x)
bit the individual h(y).

X
)
y )
' )
wolf,

X X

(2 ¢& b=t ot [ coments)
x x
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[ wolf, & movie; |

I>< I

wolf,




X y
| wolf, | jasper |

X y
| wolf; | movie, |

X y X y
| wolf, | jasper & movie; | | wolf, | jasper | « y
Ll; ) , y=JASPER ) , BITE(X,yz ‘ W0|f1 ‘ jasper ‘
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X
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X y

This interpretation graph is in no way different from the way interpre-
tation proceeds in classical FOL or Discourse Representation Theory
(DRT) / File Change Semantics (FCS): such graphs are implicit in their
recursive definitions of truth and satisfaction. From now on, we will
depict updates by choosing a single, typical path through the graph:

(33) [X]A|X|=1AWOLF(X) ACOME-IN(X) X
[YJAY=JASPERABITE(X,Y) X Yy

| wolf, | jasper |

The definition of truth below says that a formula is true if there is at
least one successful path through the graph 7/ binary relation denoted
by ¢. Again, this is just as in FOL or DRT 7/ FCS.

(34) Truth: a formula ¢ is true relative to an input assignment g iff
there is an output assignment h such that [¢](%" = T.

Bare numerals are translated and interpreted in a parallel way:

(35) Two* wolves came in. Theyy bit JasperY.
(36) a. 3Ix[|x| =2 AWOLF(x)] (COME-IN(X)) A
Jy[y = JASPER] (BITE(X,Y))
b. [X] A|X| =2 AWOLF(X) A COME-IN(X) A
[y] Ay = JASPER A BITE(X,Y)
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Given that we built cumulativity into the semantic clauses for lexical
relations, we get cumulative readings for bare numerals automatically,
as shown below. Note that the final output assignment in (39) below
encodes a cumulative reading that is true in Figure 1.

(37) Three* boys saw fiveY movies.
(38) a. Ix[|x] =3ABoY(x)] (Ty[ly]| =5AMOVIE(Y)] (SEE(X,Y)))
b. [X] A x| =3ABOY(X)A[y]Aly| =5AMOVIE(Y) ASEE(X,Y)

[X]A|X|=3ABOY(X X [YIAly[=5AMOVIE(Y) ASEE(X,Y)
g | boys & boys & boy, |

(39)

X y
| boys & boys @ boy, | movie; & movie, & movies & movies & movies

2.2 Modified Numerals

We capture the meaning of modified numerals by means of a maximiza-
tion operator ox closely related to Link’s o operator, which enables us to
introduce a maximal plural individual x that satisfies both the restrictor
and the nuclear scope formula of a modified numeral.

(40) [ox(¢)]{oN = T iff
a. [X]Aglleh =T
b. there is no h’ such that [[x] A ¢](®") = T and h(x) < h’(x)

Note that ox(¢) is a formula and, therefore, denotes a binary relation
between variable assignments. It does not denote the maximal plural
individual that satisfies the formula ¢. But after updating an input as-
signment g with a formula ox(¢), the output assignment h will indeed
assign to x the maximal plural individual satisfying the formula ¢.°

For example, the formula ox(woOLF(x)) introduces the variable x
and requires it to store all and only the atomic individuals satisfying
WOLF(X), i.e., the set of all wolves.

(41) [ox(woLr(x))]{9M = T iff
a. [[x] AwoLF(x)]{¢" = T: we store in x only individuals that
satisfy WOLF(X), i.e., x stores only wolves

b. thereisno ' such that [[x] A woLF(x)]{¢") = T and h(x) <
h’(x): there is no way to store more atoms in x and still sat-
isfy WOLF(X), i.e., x stores all the wolves (maximality)

6The clause in (40) is actually more general and allows for cases in which there
is no single maximal individual, i.e., there is no supremum. In that case, an output
assignment h will assign to x one of the maximal plural individuals satisfying the
formula ¢.
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We can now provide a preliminary translation for modified numerals
(to be modified in important ways):

(42) exactlyn d|x| =n[¢] () :=ox(¢ Ap)A|x| =n
(43) atmostn 3|x| < n[p] (¢) :=ox(¢ Ap)Alx| <n
(44) atleastn 3J|x| > n[¢] (p) :=ox(¢ Ap) A|x| >n

For example, the sentence in (45) below is compositionally translated
as shown in (46a), which is just an abbreviation of the formula in (46b).
Intuitively, we store in x all the atomic entities that are wolves and that
came in; then, we test that there are 3 such atomic entities.

(45) Exactly three* wolves came in.
(46) a. J|x| = 3]wWOLF(x)] (COME-IN(X))
b. oX(WOLF(X) A COME-IN(X)) A |[X| =3

We obtain similar translations for other modified numerals.

(47) At most three* wolves came in.

a. J|x| < 3[wOLF(x)] (COME-IN(X))

b. ox(WOLF(X) A COME-IN(X)) A |X] <3
(48) At least three* wolves came in.

a. 3J|x| > 3[WOLF(x)] (COME-IN(X))

b. oX(WOLF(X) A COME-IN(X)) A |X]| >3

We can further elaborate on all the above sentences with Theyy bit JasperY
and derive intuitively correct truth conditions for the resulting discourses.

For example, for sentence (48) above, we correctly capture the max-
imality of cross-sentential anaphora to the modified numeral: at least
three wolves came in and all the wolves that came in bit Jasper.

(49) a. J|x| > 3[WOLF(x)] (COME-IN(X)) A
Jy[y = JASPER] (BITE(X,Y))
b. ox(WOLF(X) A COME-IN(X)) A |X| > 3 A
[y] Ay = JASPER A BITE(X,Y)

But we derive incorrect truth conditions for sentence (1). As the formu-
las in (50) below show, we do not derive the cumulative reading, true
only in Figure 2. Instead, we derive the ‘reading’ true in both Figure 1
and Figure 2: the maximal number of boys that saw exactly 5 movies
is 3. This is because the cardinality requirement |y| = 5 contributed by
the direct object is in the scope of the maximization operator ox(...)
contributed by the subject.

(50) a. 3[x| = 3[eov(x)] (3ly| = 5[moVIE(y)] (SEE(X,Y)))
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b. ox(BoY(x) Aoy(MOVIE(Y) ASEE(X,Y)) Aly] =5) A x| =3

What we want is a translation that places the cardinality requirement
ly| = 5 contributed by the direct object outside the scope of the maxi-
mization operator contributed by the subject:

(51) ox(BoY(x) Aoy(MOVIE(Y) ASEE(X,Y))) Aly| =5A x| =3

The formula in (51) above is equivalent to the one in (52) below. That
is, if the cardinality requirement |y| = 5 is somehow scoped out, the
two nested maximization operators ox(...cy(...)) contributed by the
subject and the direct object are equivalent to a global maximization op-
erator oxy(... ), defined in (53) below.

(52) oxy(BOY(X) AMOVIE(Y) ASEE(X,y)) Aly| =5A|x| =3
(53) [oxy(¢)]'oM = T iff
a. [[XIAly| A@lo" =T

b. there is no h’ such that [[x] A [y] A ¢](¢") = T and
h(x) < h'(x) or h(y) < h'(y)

The fact that the two nested maximization operators ox(...cy(...))
can be reduced to the global maximization operator oxy(...) in this
case follows from the semantics of the o operators and the fact that all
the formulas in their scope, i.e., BOY(X), MOVIE(y) and SEE(X,y), are
cumulatively-closed lexical relations.’

The formula in (52) closely reflects the intuitive characterization of
the cumulative reading of sentence (1): a global maximization operator
over both boys and movies is followed by the relevant cardinality re-
quirements. That is, we introduce the maximal set x of boys that saw
a movie and the maximal set y of movies seen by a boy and check that
there are 5 such movies and 3 such boys.

2.3 Post-suppositions

To be able to compositionally derive such a representation, we will take
cardinality requirements to be part of a dimension of meaning separate
from the asserted / at-issue meaning — but closely integrated with it. We
will take them to be post-suppositions, i.e., tests on the output context, as
opposed to presuppositions, which are tests on the input context. See
Lauer (2009) for another use of the same notion and Farkas (2002) and
Constant (2006) for related types of post-assertion constraints on output
contexts.

"The equivalence holds for a larger class of formulas, not only lexical relations, e.g.,
the equivalence also holds if there are random assignment formulas [z] in the scope of
the o operators.
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Post-suppositions are formulas introduced at certain points in the
interpretation that are passed on from local context to local context and
that need to be satisfied only globally, relative to the final output con-
text.

Thus, we enrich our notion of evaluation contexts: a context is an
assignment g indexed with a set of tests {, represented as g[Z]. That is,
output contexts will not store only the values of the previously intro-
duced variables, but also constraints on these values. This is parallel to
the way in which presuppositions anaphorically retrieve the values of
certain variables stored in the input context and, in addition, check that
these values satisfy various constraints.

All the operators above are interpreted in the same way except that,
if the input context g is indexed with a set of tests , this set is passed
on to the output context h. The interpretation function is not simply
[-7¢9, but [-]{lLAED where ¢ and ¢’ are sets of tests and 7 C {'.

We mark a formula ¢ as a post-supposition by superscripting it, as
shown below.

(54) [N = Tiffpisatest, g=hand ' =ZU{¢p} 8

A post-suppositional formula does not update the input assignment g
in any way. It is simply added to the input set of tests .

These tests are post-suppositional in the sense that they are required
to be true relative to the final output context — which grants them some-
thing very similar to widest scope. This is formalized by means of the
definition of truth below.

(55) Truth: aformula ¢ is true relative to an input context g[@], where
@ is the empty set of tests, iff there is an output assignment h and
a (possibly empty) set of tests {1, ..., ¥m} such that

a. [[4)]] h[{1,... }D—Tand
b. [y A .. /\gb]] (hielnel) —

The definition of truth treats the formulas ¢, . . ., ym as post-suppositions,
i.e., as tests performed on the final output context h — as opposed to pre-
suppositions, i.e., tests performed on input contexts.

Recall that dynamic conjunction over tests has the same properties
as classical static conjunction — in particular, it is commutative. So, it
does not matter in which order we conjoin the tests ¢y, ..., ym When we
check that the final output assignment h satisfies them.

The entire recursive definition of truth and satisfaction needs to be
reformulated in terms of assignments indexed with sets of tests g|[(]

84) is a test iff for any assignments g and h and any sets of formulas £ and ', if
[¢]]<g[€],h[é’]> =T,theng=hand{ ="
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rather than simply assignments g. The relevant definitions are provided
below. They are minimally different from the DPL-style ones provided
above — we simply index input and output assignments with sets of
tests ¢ and ¢’ and require that { = ¢’ for all non-post-suppositional /
at-issue updates.

(56) [[p(x)]]w[é} h(¢’

l=Tiffg=h,¢="andh(x) € *3(P)
G7) [R(x,y)]‘9lEhnE] h

< ) =Tiffg=h,¢ =¢"and (h(x),h(y)) € *3(R)
(58) [|x| = n]{ellhiET = Tiffg = h, ¢ = ¢’ and |h(x)| = n
(59) [Ix| < n]OEINED —Tiffg=h, ¢ =¢ and |h(x)| <n
(60) [[|x| > n]tellh& = Tiffg = h, = ¢’ and |h(x)| > n
]

61) [ A ]ORN = T iff there is a k and a ¢ such that
) — T and [[1’0]] (K[Z"].h[T) —
(62) [[x]]0EMED = Tiff h[x]gand £ = C’
(63) [[gx((l,)]](g[é],h[é’b — T iff
a. [ /\4,]]<g[é],h[c’}> —T
b. there is no h’ such that [[x] A ¢] 9N = T and
h(x) < h'(x)
(64) [[gxy(¢)]]<g[§],h[€’]> — Tiff
a. [[x]Aly] A¢]]<g[6],h[é’]> -T
b. there is no h’ such that [[x] A [y] A ¢] ENED = T and
h(x) < h'(x) or h(y) < h'(y)

Modified numerals are interpreted as before, except that the cardinality
requirements are now post-suppositional.

(65) exactlyn 3XI=N[¢] () := ox(p A ) A XI=D
(66) atmostn IXI=N[p] () 1= ox(p A ) A XI=D
(67) atleastn 3IXI="[¢] () := ox(p A ) A XIZD

That is, numeral modifiers exactly, at most, at least etc. can be thought
of as functions that take a bare numeral as their argument and intro-
duce: (i) a maximization operator ¢ that scopes over the random as-
signment and the restrictor and nuclear scope formulas and (ii) a post-
supposition that consists of the cardinality requirement (the bare nu-
meral contributes this cardinality requirement to the regular / at-issue
content).

Now, the translation of sentence (1) derives the intuitively correct
cumulative truth conditions, as shown in (68) below.
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(68) 3XI=3[gov(x)] (3V=5[mMoVIE(y)] (SEE(X,Y)))
ox(BOY(x) A ay(MOVIE(y) A SEE(X,y)) A YI=5) A IXI=3
ox(BOY(X) A oy(MOVIE(y) A SEE(X,y))) A V=5 A [XI=3
oxy(BOY(X) A MOVIE(Y) A SEE(X,y)) A YI=5 A XI=3

oXy(BOY(X) A MOVIE(Y) ASEE(X,Y)) Aly| =5A x| =3

® Q o T o

y)
y)
All the formulas in (68) are truth-conditionally equivalent (given the
definition of truth in (55)). Let us examine them in turn.

The formula in (68a) is what we derive if we follow our composi-
tional translation schemas. The next formula (68b) unpacks (68a) based
on the abbreviations defined for each of the translation schemas. These
two formulas follow more or less immediately from the basic defini-
tions. The following ones however exploit the more interesting proper-
ties of the system we have set up.

Formula (68c) is just like (68b) except that the post-supposition |Y/=5
contributed by the direct object is extracted from the scope of the ox
operator contributed by the subject and is placed at the ‘top level’. For-
mulas (68c) and (68b) are equivalent (with respect to both truth condi-
tions and context-change potential) because post-suppositions are sim-
ply collected and passed on from local context to local context and are
required to be satisfied only relative to the final output context.

Formula (68d) is just like (68c) except that the nested maximization
operators have been replaced with a single global operator. As we al-
ready observed in the previous subsection, the equivalence of these two
formulas (with respect to both truth conditions and context-change po-
tential) follows from the semantics of the o operators and the fact that
they only have cumulatively-closed lexical relations in their scope.

Finally, formula (68e) is just like (68d) except that the update-final
post-suppositions YI=% and [XI=3 are converted into at-issue tests |y| =5
and |x| = 3. The truth-conditional equivalence of the two formulas
(note that they do not have the same context-change potential) can be
derived from the definition of truth as follows.

Given an input context g[®], assume that the formula (68d) is true
relative to g[@)]. By the definition of truth in (55) above, (68d) is true iff:

(69) a. thereisan output context h[{|y| =5, |x| = 3}] such that
[(68d)](9l@lA{lyI=5xI=3}]) —

b. h[Q)] satisfies both tests in the set {|y| = 5, |x| = 3}

Given the semantic clauses for the o operator, dynamic conjunction and
post-suppositions in (64), (61) and (54) above (respectively), we can fur-
ther simplify (69a) as follows:
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(70) [[(68(1)]]<g[®],h[{\y|=5,\><|=3}]> — T iff
[oxy(BOY (X) A MOVIE(y) A SEE(x,y))] (9[22 — T

From (70), it follows that h[@)] is the output context that obtains after we
interpret the maximization update oxy(BOY (X) A MOVIE(Y) A SEE(X,Y))
relative to g[@]. In addition, (69b) states that h[®)] satisfies the tests
ly| = 5 and |x| = 3. But these are exactly the two statements needed
to establish that [(68e)](9[21N[2)) = T. Hence, we have that (68e) is also
true relative to the input context g[@].

We have just sketched the proof for: if (68d) is true relative to an
input context g[@)], then (68e) is also true relative to g[@]. The proof for
the other direction is similar and we omit it.

Importantly, the analysis does not predict that sentence (1) is equiv-
alent to the minimally different sentences below, in which the modified
numerals are replaced by the corresponding bare numerals (one at a
time):

(71) Three* boys saw exactly fiveY movies.
(72) Exactly three* boys saw fiveY movies.

This is because modified numerals differ from bare numerals in two
ways. On one hand, the cardinality requirement is a regular at-issue
update for bare numerals and a post-supposition for modified numer-
als. On the other hand, modified numerals contribute a maximization
operator, while bare numerals do not. We attributed both differences to
the presence of the modifier exactly (or at least, at most etc.).

Let us consider more closely the latter difference between modified
and bare numerals. Independent justification for this maximization op-
erator is provided by the contrast between the felicitous bare numeral
two and the infelicitous modified numeral at least two in the discourse
below (from Umbach 2006; see also Szabolcsi 1997, de Swart 1999 and
Krifka 1999).

Two
(73) a {#At least two

b. They were wearing black leather jackets.

c. Perhaps there were others also selling coke, but I didn’t no-
tice.

} boys were selling coke.

The variable introduced by the bare numeral two has different sets of
two boys as values in different output contexts if more than two boys
were selling coke. In the present system, this referential indeterminacy
is captured by the fact that the output contexts / variable assignments
obtained after the update with a bare numeral might assign different
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plural individuals to the variable contributed by the bare numeral. For
example, if three boys boy,, boy, and boys were selling coke, there are
three possible output contexts after the update with the bare numeral,
as shown below.

X

boy: @ boy,

[X]A|X|=2ABOY(X) ASELL-COKE(X) X

X

In contrast, the variable introduced by at least two has only one possible
value: the set of all boys who were selling coke. Determined reference
means just this: in any given world, all output contexts obtained af-
ter the update with a modified numeral assign the same value to the
variable contributed by the modified numeral. In the situation we are
considering, this is the set containing the three boys that were selling
coke.

(74)

ox(BOY(X) ASELL-COKE(xX))AlXZ2 X

(75) ‘ boy; & boy, & boys ‘

The perhaps continuation might not be the best diagnostic, since such
continuations are felicitous in many examples from COCA:®

(76) Areva, the world’s biggest nuclear power plant construction com-
pany, announced it would build at least two, and perhaps six,
EPR nuclear reactors in India.

(77) An American platoon surprised an armed Taliban column on
a forested ridgeline at night, and killed at least 13 insurgents,
and perhaps many more, with rifles, machine guns, Claymore
mines, hand grenades and a knife.

(78) At least one and perhaps two of the first four Rotarians were
Masons.

(79) Up until the last 20 years, vaccines contained at least 200 and
perhaps more than 3,000 antigens.

(80) Atleast4,000 people, and perhaps as many as 6,500, were Kkilled.

9See also the discussion in Geurts & Nouwen (2007) of examples like John invited
at least two boys, namely Pete and Billy, where it seems that we can refer to witnesses
independently of / in addition to the maximal witness set introduced by at least (I am
indebted to Rick Nouwen, p.c., for discussion of this point). It might be that modified
numerals introduce multiple discourse referents, but we will ignore this issue here.
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But, at the same time, there are plenty examples in COCA in which
plural anaphora to modified numerals is clearly maximal and which
do actually provide additional support for the proposal that modified
numerals contribute a maximization operator.

(81) At least:
a. There were at least 40 shots. They were single shots but
fairly close together.
b. Most Europeans speak at least two languages and they speak
them well by the time they’re out of school.

(82) At most:

a. Today’s main organization, the FARC, had at most 500 sol-
diers—and they prowled the most isolated areas of the coun-

try.
(83) Upto:
a. Program up to 37 alerts; they’ll reset automatically at mid-
night.
b. So you can submit up to three entries. They’ll be judged
on meaning, naturalness of syntax, originality and overall
elegance.

(84) As many as:
a. Out of some 14,000 wildebeests, as many as 3,000 behaved as
permanent residents. They could be found in specific areas.
b. There are, depending on how you count them, perhaps as
many as 720 national laboratories. They have collective
budgets of more than twenty billion dollars.

It is possible that the contrast between the referential indeterminacy of
bare numerals and the referential determinacy of modified numerals
(due to maximization) might be the reason behind the fact that modi-
fied numerals, unlike bare numerals / indefinites, do not trigger scalar
implicatures.t?

Finally, note that the bipartite structure of the meaning for modified
numerals, i.e.,

0ynder the (unconventional) assumption that scalar implicatures are just a way
to pragmatically resolve the referential indeterminacy associated with bare numerals
and singular indefinites, the presence of maximization would enable us to explain the
fact that modified numerals do not trigger scalar implicatures despite the fact that
they can easily be associated with Horn scales - e.g., in upward-entailing contexts, at
least three is less informative than at least four, which is less informative than at least
five etc. We leave the investigation of this conjecture for a future occasion.
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(i) first, introduce a plural individual that is maximal relative to the
part-of ordering <

(if) then, specify by means of a post-supposition how this plural indi-
vidual is related to a specific point on a (measurement) scale asso-
ciated with the same ordering (a specific cardinality, i.e., a specific
number of <-atoms)

can be generalized to other ontological domains (besides individ-
uals) that come with different kinds of orderings and associated mea-
surement scales (this is related to the suggestion in Nouwen 2010 that
class B modifiers are about maxima / minima).

The basic structure of the update should be the same: first, introduce
a variable of the appropriate type and assign it a value that is maximal
relative to the contextually-provided ordering; then, specify how that
value is related to a specific point on the contextually-provided scale
associated with the ordering.

The range of objects, orderings and scales that class B modifiers can
be used to refer to is fairly broad, as the at least examples below from
COCA indicate. The idea is that as long as we have variables for objects
of arbitrary static types (there are dynamic systems that allow this), we
do not need to invoke additional machinery, e.g., focus alternatives, to
capture the range of uses of class B modifiers.

(85) Finally, the Americans sent a convoy of soldiers speeding into
the valley to support or save their allies or at least secure the
dead.

(86) The themes and expressions of at least some of the sculptures
are likely to be influenced by our conversations.

(87) 1would argue that it is the condition of the works’ ephemerality
that enables or at least allows for these ” truth ™ tales to be spun.

(88) Itisat least possible that they — some of them — are serious about
finding a peaceful way out.

(89) Their forces in the K-G Pass seemed crippled by the losses, at
least temporarily.

(90) Shouldn’t we at least occasionally think about how we want to
leave our lives?

(91) These factors at least partly explain the amount of criticism di-
rected at Israel.

(92) “Atleast he’s here,” Jan says. “At least there’s that.”

11} am grateful to Lucas Champollion and an anonymous Journal of Semantics re-
viewer for emphasizing this point.
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In sum, the proposed analysis of modified numerals makes use of three
formal ingredients: (i) post-suppositions and their unusual ‘scoping’
behavior, (ii) adynamic interpretation procedure that preserves the out-
put context so that post-suppositions can be checked against it (in con-
trast, static semantics ‘flushes’ the output context once quantifiers are
interpreted and resets everything to the input context) and (iii) max-
imization operators that store maximal plural individuals relative to
certain variables.

Post-suppositions are the only ingredient requiring independent mo-
tivation — the other two are fairly uncontroversial and commonly used
in the semantic literature.'?

The following section (section 3) on the interaction between modi-
fied numerals and modals provides independent motivation for post-
suppositions. But before we turn to this, we discuss the distributive
readings of modified numerals and the scopal interactions between them
and distributive quantifiers like every+NP.

2.4 Distributive Readings

Up until now, we have shown how cumulative readings for both bare
and modified numerals can be compositionally captured. But both kinds
of numerals can also have distributive readings. Moreover, such dis-
tributive readings are the default ones for universal quantifiers like ev-
ery+NP or each+NP.

A simple way to capture distributive readings is to add a distribu-
tive operator 0x, needed not only for distributively-interpreted bare or
modified numerals, but also for the interpretation of universal quantifi-
cation, as shown in (93) below.

(93) Vx[g] () = ox(¢) A ox(¢)

A universal quantifier introduces the set of all individuals x that satisfy
the restrictor ¢ — by means of ox(¢) — and then checks that each of these
individuals also satisfies the nuclear scope  — by means of 5x(i).

We define the distributivity operator 6x in two steps.

Let us first ignore post-suppositions and define the basic notion of
distributivity.

12This might sound as an overstatement with respect to the second ingredient, but
situation-based E- / D-type accounts of donkey anaphora simply encapsulate the dy-
namics of interpretation in the rules for extending / updating minimal situations. See
Brasoveanu (2008) and Dekker (2010) for a more detailed discussion of the common
insights behind both dynamic and situation semantics.
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(94) [ox(¢)]'®" = T iff g = h and for all atoms a < g(x), if we let
g’ be such that g'[x]g and g’(x) = a, then there is a k such that

[p]@% =T

Informally, we distributively interpret a formula ¢ relative to a plural
individual g(x) by checking that ¢ is satisfied by each atom a that is
part of g(x).

The definition above does this by temporarily reassigning the vari-
able x so that it stores each atom a relative to the variable x, one atom
at a time. Relative to this temporary new assignment g/, we check that
a further update with the formula ¢ is possible, i.e., we check that there
is at least one possible output assignment k such that ¢ is true relative
to the pair of assignments (g, k).

After we loop through all atoms a that are part of g(x) and check
that, for each of them, a further update with ¢ is possible, we know that
the plural individual g(x) distributively satisfies ¢, so we simply pass
on the original input assignment g. Thus, distributive formulas of the
form ox(¢) are tests.

Taking quantificational distributivity to contribute a test is not a nec-
essary feature of all possible dynamic systems. In fact, it is mistaken to
do so given that subsequent anaphora to universal quantifiers and in-
definites in their scope is possible, as the example of quantificational
subordination in (95) below (from Karttunen 1976) shows.

(95) a. Harvey* courts @¥ woman at every* convention.
b. Shey always, comes to the banquet, with himy.

c. Theyqgirlis usuallyﬁ’ also very pretty.

But given our DPL-style system in which output contexts are single as-
signments, taking distributivity to contribute a test is more or less a
forced choice.'3

We return to the issue of distributivity when we discuss cumulative
readings for universal quantifiers in section 4. The important point here
is that it is natural to interpret distributive updates as tests, just as it is
natural to interpret distributive quantifiers as tests in DRT and FCS.

The second step in our definition of distributivity éx is to bring post-
suppositions into the picture.

The addition of post-suppositions makes necessary two modifica-
tions to the definition above. The first one is trivial: just as the distribu-
tivity operator is a test relative to the input variable assignment g, i.e.,

B3For various ways of extending DPL to keep track of the quantificational depen-
dencies introduced by (and within the scope of) distributive quantification, see van
den Berg (1996), Nouwen (2003), Brasoveanu (2007) and Dekker (2008) among others.
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we require that g = h, the distributivity operator is also a test relative
to the input set of post-suppositions Z, i.e., we require { = .

(96) [ox(¢)](9EINE) = Tiff g = h, = ¢’ and for all atoms a < g(x),
if we let g’ be such that g’[x]g and g’(x) = a, then there isa k and
a (possibly empty) set of tests {¢1, ..., ¥m} such that

b. 1 A ... Ay KEKED) =T

The second modification is less obvious: we let the distributivity oper-
ator ox discharge all the post-suppositions {¢, ..., ¥)m} contributed by
the formula ¢ in its scope, as shown in (96b) above.

The reason for this is that distributivity is externally static, i.e., itis a
test relative to the input variable assignment g: whatever new variables
/ discourse referents are introduced in the scope of the operator §x, they
are not accessible outside its scope since the output assignment h is the
same as the input assignment g.

Therefore, any post-suppositional cardinality requirements introduced
within the scope of the distributivity operator x have to be discharged
/ satisfied locally. If they were passed on to the output context h, they
would try to access variables whose values are not available in that con-
text because their values were both introduced and ‘flushed’ within the
scope of éx.

In a sense, distributivity operators are to post-suppositions what
clausal boundaries are to movement in syntax: they mark locality do-
mains / barriers. Thus, just like presuppositions or scalar implica-
tures in theories like Chierchia et al. (2009), post-suppositions are not
always satisfied globally, but can be satisfied / discharged at interme-
diate points in the semantic composition, i.e., in more local output con-
texts.

This is not unexpected. We work with quantificational alternatives,
i.e., with contexts / assignments that are the result of interpreting quan-
tificational expressions, and not with focus alternatives, as Krifka (1999).
So we expect various quantificational operators (universals, modals, at-
titude verbs, negation etc.) that are interpreted as tests in DRT / FCS
/ DPL style systems to block the ‘projection’ of post-suppositions and
discharge them locally, in their scope.

The distributive operator 6x enables us to capture both the scopal
interactions between modified numerals and universal quantifiers and
the distributive readings of the modified numerals themselves.

Let us examine the latter first. As we observed at the very beginning
of the paper, sentence (1) has a distributive reading, which is probably
the most familiar one in the formal semantics literature. To derive this
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reading, we assume that modified numerals can optionally be distribu-
tive, i.e., can optionally have a § operator over their nuclear scope, as
shown in (97) below.

©7) 3X19] 3(y) i= ox(@ A dx()) A K=

The surface-scope distributive reading for sentence (1) is provided in
(98) below; the three formulas in (98) are truth-conditionally equiva-
lent. Note that the embedded distributive operator dy contributed by
the direct object is semantically vacuous in this case, so it is omitted in
(98c) to improve readability. Also, note that the post-supposition Y/=5
contributed by the direct object is trapped in the scope of the operator
éx contributed by the subject, so it is locally discharged / satisfied. That
is, it can be locally replaced with a non-post-suppositional test |y| = 5,
as shown in (98c).

98) a. IXI=3[BoY(X)] 6(IVI=3[MoOVIE(y)] S(SEE(X,Y)))
b. ox(BOY(X) A
ox(oy(MOVIE(y) A Sy(SEE(X,y))) A V=) A
|x|=3
c. ox(BOY(X) A
Ox(oy(MOVIE(Y) A SEE(X,Y)) Aly] =5)) A
x| =3

The formula in (98c) is intuitively interpreted as follows. First, intro-
duce the set of all boys x such that, when we take each boy one at a
time, there are exactly 5 movies y that each of them saw. That is, store
in x all the boys such that each of them saw exactly 5 movies. Then,
check that x stores exactly 3 atoms.

To see how the distributivity operator § enables us to account for the
scopal interaction between universal quantifiers and modified numer-
als, consider the sentence in (99) below.

(99) Every* student ate from exactly oneY cake.

It has two possible quantifier scopings, which yield two readings that
are truth-conditionally independent:'4

(i) every student x is such that s/he ate from exactly one cake y, pos-
sibly different from student to student;

(if) there is exactly one cake y such that every student x ate from it,
although it may be that every student ate from more than one
cake.

14) assume that inverse scope readings are available with modified numerals.
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Given the translation schema for universal quantifiers in (93) above,
the two possible quantifier scopings of sentence (99) are represented as
shown below, and these translations derive the intuitively correct truth
conditions. Yet again, the final formulas omit semantically vacuous dis-
tributivity operators to improve readability.

(100) a. Vx[sTUDENT(x)] (3YI=1[caKE(y)] 6(EAT-FROM(X,Y)))
b. oX(STUDENT(X)) A
OX(oy(CAKE(Y) A Sy(EAT-FROM(X,Y))) A
yI=1)
C. OX(STUDENT(X)) A
OX(cy(CAKE(Y) A EAT-FROM(X,Y)) A

ly|=1)
3VI=1cAKE(y)] 5(VX[STUDENT ()] (EAT-FROM(X,Y)))

b. oy(CAKE(y) A
OY(0X(STUDENT (X)) A 6X(EAT-FROM (X,Y)))) A
ly|=1

(101)

o

c. oy(CAKE(Y) A
OY(0X(STUDENT (X)) A EAT-FROM (X,Y))) A

ly| =1

The present analysis of cumulative and distributive readings for modi-
fied numerals (which can be straightforwardly applied to bare numer-
als as well) predicts that ceteris paribus, cumulative readings are more
salient than distributive readings for modified (or bare) numeral sen-
tences. This is because distributive readings require the addition of
distributive operators on top of whatever representation we need for
cumulative readings.’® This prediction is confirmed by the experimen-
tal results in Gil (1982) and Brooks & Braine (1996); see also Dotlacil
(2010) for an overview of these results and critical discussion.!®

15] am indebted to Ede Zimmermann for this observation (p.c.).

16 As an anonymous Journal of Semantics reviewer points out, Brooks & Braine (1996)
do not strictly speaking show that sentences with bare numerals are preferably inter-
preted cumulatively rather than distributively. Rather, they show that such sentences
preferably have non-distributive, i.e., collective and branching /7 cumulative, read-
ings. They test sentences like Three boys climbed up a tree in which the branching and
cumulative readings collapse. Under the assumption that the branching reading is
just a strengthening of the cumulative reading and not an independent reading in its
own right, Brooks & Braine (1996) do support the hypothesis that cumulative readings
are preferred over distributive readings.
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3 Modals and Modified Numerals

This section provides independent evidence for the analysis of modi-
fied numerals in terms of post-suppositions. In particular, we will take
advantage of post-suppositions and their unusual ‘scoping’ behavior to
account for the unexpected scopal interactions between modified nu-
merals and modal verbs.

To analyze modal verbs, we expand our language and its models in
the usual way. We add a set of possible worlds 27 disjoint from © and
variables over possible worlds w*, w, w’, wy, w, and so on.

In order to give modals an analysis that is parallel to the analysis of
guantification over individuals proposed above, we let the domain of
possible worlds consists of both atomic worlds and collections / non-
atomic worlds, which are simply sets of worlds.

If the reader is not comfortable with this choice because collective
readings for modalities do not seem to be available (in contrast to col-
lective readings in the individual domain), s/he should simply regard
it as a formal trick whose only purpose is to simplify the logic: if we
countenance ‘non-atomic worlds’, we do not need to introduce distinct
variables for worlds on one hand and sets of worlds on the other and
distinct types for these two kinds of variables. Everything we will say
about modal quantification can be easily reformulated in terms of sets
of worlds rather than in terms of ‘non-atomic worlds’.

Thus, just as we did for the domain of individuals ©, we will take
the domain of possible worlds 20 to be the power set of a given non-
empty set WO (this is the set of possible worlds as they are usually con-
ceived of in modal logic): 20 = o1 (WO) := p(WO)\ {?}.

The sum of two worlds w & w' is the union of the sets w and w’. The
part-of relation over worlds w < w' is the partial order induced by in-
clusion C over the set ot (WO): w < w' := w C w'. Atomic worlds
are the singleton subsets of WO, identified by means of the predicate
atom(w) := Yw' < w(w’ = w). The strict part-of relation is the corre-
sponding order induced by strict inclusion: w < w' :=w C w’.

We relativize the basic interpretation function J to atomic worlds: for
any atomic world u € 20 and any n-ary relation R, J3,(R) C @".

We take the variable w* to be the designated variable for the actual
world. For any discourse-initial assignment g that we will consider, we
assume that |g(w*)| = 1 or equivalently that atom(w*) is true. The des-
ignated variable w* performs roughly the same function as the world w
in FCS (Heim 1982) style contexts of the form (w, g).*’

Cardinality requirements, random assignment, maximization and

17*Roughly’ because, as Philippe Schlenker notes (p.c.), w* is unshiftable while the
implicit world argument used by Heim (1982) is shiftable.
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distributivity are defined for possible worlds in the same way that we
defined them for individuals:

(102) |g(w)] is the cardinality of the set of atoms in g(w), i.e.:
|M)V=Hﬂ<g(>ﬂwm(ﬂ|

(103) [|w| = n]{eld] =Tiffg=h,¢=¢"and |h(w)| =n

(104) [|w| < n]telln&) = Tiffg = h, ¢ = ¢’ and |h(w)| < n

(105) [jw| > n](OlEhiE) = Tiffg =h, ¢ = ¢’ and |h(w)| > n

(106) [(w]]{elEED = Tiff hjw]g and ¢ = ¢’

(107)  [ow(g)]{9lIAED) = T iff
aMMAﬂ@mWW:T
b. there is no h’ such that [[[w] A ¢](9€IMED = T and

h(w) < h’(w)

(108)  [ow(¢)](9EIPET = T iff g = h, = ¢’ and for all atoms u <
g(w), if we let g’ be such that g’'{w]g and g’(w) = u, then there is
akanda (possibly empty) set of tests {¢1, ..., ¥m} such that

a. [[q‘)]] ZL kg {¢r¥m}t]) — T and
b.MqA”.A%ﬂH@WD:T

We relativize variables / discourse referents for individual x,y,... to
possible worlds. That is, in the spirit of Stone (1999), the value of a
variable x relative to an assignment g is not an individual, but a partial
individual concept, i.e., a partial function from atomic worlds to individ-
uals that exist in those atomic worlds. The individuals that are in the
range of such partial individual concepts can be atomic or non-atomic.

Thus, for any assignment g and any variable ‘over individuals’ x,
g(x) isin fact not an individual, but a partial function from a non-empty
subset (usually a strict subset) of the atomic worlds {u € 20 : atom(u)}
to the domain of individuals © (recall that ® includes both atomic and
not-atomic individuals).

Thus, random assignment to variables ‘over individuals’ is relativized
to possible worlds w, as shown below.

(109)  [[xw]]OINED = T iff h[x]g, ¢ = ¢’ and
Dom(h(x)) = {u < h(w) : atom(u)}

Informally, (109) says that introducing a new variable / discourse ref-
erent x relative to a world-variable w means that:

e the input assignment g differs from the output assignment h at
most with respect to the value of x,
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e the input set of post-suppositions ¢ is simply passed on to the
output context,

¢ and finally, the partial individual concept assigned to x by the out-
put assignment h is defined only for the atomic worlds u that are
part of h(w).

Recall that h(w) = g(w), since h[x|g requires h to differ from g at most
with respect to the value assigned to x. Therefore, the last bullet above
ultimately says that the partial individual concept assigned to x is de-
fined only for the atomic parts u of the contextually provided world
W.

The actual individuals (atomic or not) assigned to each of these atomic
worlds u are left completely unconstrained, much as in the extensional
system we introduced before.

Maximization / summation over individuals is also relativized to
possible worlds w: the partial individual concept h(x) is maximal in a
pointwise manner, i.e., relative to each atomic world u in its domain.
That is, for any atomic world u that is part of w, the (plural) individ-
ual h(x)(u) contains all and only the atomic individuals that satisfy ¢
relative to u.

(110) [[gxw(¢)]]<g[6],h[é’}> — T iff

a. [[xw] /\¢]]<g[6],h[é’]> =T
b. there is no h’ such that [[x,] A ¢] 9NN = T and for any
atom u < g(w) whatsoever, h(x)(u) < h(x)(u)

Intensional lexical relations are interpreted distributively relative to the
world of evaluation w. That is, cumulatively-closed lexical relations are
required to hold at every atomic world u that is part of w.

(111) [P (X)](9INET) = T iff g = h, ¢ = ¢’ and for each atom u <
h(w):
e uc Dom(h(x))
e h(x)(u) € *3u(P)

(112) [Rw(x,y)]9EEN = T iff g = h, £ = ¢’ and for each atom
u < h(w):

29



The definitions of pointwise maximization over individual concepts
and cumulatively-closed intensional lexical relations will become clearer
if we look at an example. Consider the formula oxy (BOOKw(X)).

(113)  [oxw(BOOK (x))]{9EIPETD = T iff

o [[xw] A BOOK(X)]{9ENED = T: we introduce a new par-
tial individual concept h(x) whose domain is the set of atomic
worlds u < h(w) and require that, relative to each such
atomic world u, the (possibly non-atomic) individual h(x)(u)
consists of entities that are books in u

— that is, we introduce a new partial individual concept
h(x) such that Dom(h(x)) = {u < h(w) : atom(u)} and,
for all atoms u < h(w), h(x)(u) € *J,(BOOK)

— note that there is an implicit existential commitment (as
expected for new discourse-referent introduction): we
effectively require each atomic world u < h(w) to con-
tain at least some entities that are books

e there is no h’ such that [[[xy] A BOOKy (x)]9lEINED = T
and for any atom u < g(w) whatsoever, h(x)(u) < h(x)(u):
this is the maximization requirement

— we previously required h(x)(u) to store only books rel-
ative to each atomic world u < h(w); the maximiza-
tion requirement makes sure that h(x)(u) stores all the
books in u, for each atomic world u < h(w)

— thus, for each atom u < h(w), h(x)(u) is the sum indi-
vidual containing all and only the books in u and the
partial individual concept h(x) is the collection of all
these sum individuals relative to their respective atomic
worlds

Cardinality requirements for variables ‘over individuals’ are also rela-
tivized to possible worlds, as shown below. For each atomic world u
that is part of the world w, the cardinality of x relative to u is n, less
than or equal to n, greater than or equal to n etc.

(114) [|x| =w n](9EIPED = T iff g = h, ¢ = ¢’ and for each atom
u < h(w):
e uec Dom(h(x))
o [h(x)(u)|=n
(115) [|x| <w n]{9MNED = T iff g = h, { = ¢’ and for each atom
u < h(w):
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e uc Dom(h(x))
e [h(x)(u)] <n

(116) [|x| >w n]{9LNE = T iff g = h, { = ¢’ and for each atom
u < h(w):

e uc Dom(h(x))
o [h(x)(u)] >n

Finally, proper names are interpreted as rigid designators relative to a
possible world w: the partial individual concepts they introduce denote
the same individual relative to each atom u in w, formally encoded by
the formula below.

(117)  [x =w JASPER]WELNET) = T iff g = h, = ¢’ and for each atom
u < h(w):

e uc Dom(h(x))
e h(x)(u) is the individual Jasper

As an anonymous reviewer points out, we want negation to discharge
post-suppositions in its scope. The simplest examples showing this,
e.g., Peter did not read at least 4 books, are not very natural but examples
of the form If Peter had not read at least 4 books, ... are clearly acceptable
and interpreted as If Peter had not read more than 3 books, ..., i.e., with the
cardinality post-supposition trapped within the scope of negation. This
can be achieved by defining negation as a distributive modal operator
along the lines of Brasoveanu (2010a: p. 497, fn. 24), i.e., by making use
of the distributivity operator over worlds defined in (108) above. Since
this is not a central concern here, we will not pursue it any further.

3.1 Minimal Requirements

Consider now the sentence in (118) below (based on Nouwen 2010).
The most salient reading of this sentence is: the minimum number of
books that Jasper is allowed to read (if he wants to please his mother) is
10.

(118) Jasper* should™ read at least tenY books (to please hisx mother).

As Nouwen (2010) observes, under standard assumptions about the se-
mantics of minimizers and necessity modals, there is no satisfactory
analysis of minimal requirements. The reason is that at least is ana-
lyzed in terms of a minimum operator that retrieves the least number
of books Jasper reads in the deontically-ideal worlds quantified over by
should. If there is at least one deontically-ideal world in which Jasper
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reads no books, the minimum number is 0. If Jasper reads books in ev-
ery deontically-ideal world, the minimum number is 1. Either way, the
minimum number of books obtained in this way cannot be greater than
or equal to 10.

The intuitively correct truth conditions follow automatically in the
present framework. The reason is that our analysis of modified numer-
als is fairly close to their analysis as generalized quantifiers (given the
maximization operator they contribute) — and a generalized-quantifier
analysis of modified numerals straightforwardly accounts for minimal
requirements.!8

However, analyzing modified numerals as generalized quantifiers
fails to account for maximal permissions (to be discussed in the next
subsection). This was one of the reasons for their reanalysis as minimiz-
ers / maximizers, i.e., in terms of a complex structure involving both
a quantifier over degrees and a quantifier over individuals (see Hackl
2000, Heim 2000, Ferreira 2007, Nouwen 2010 and references therein).

That is, the generalized-quantifier analysis of modified numerals
captures one type of scopal interactions with modals (minimal require-
ments), while the minimizer / maximizer analysis captures another
type (maximal permissions). We show that the post-suppositional anal-
ysis of modified numerals is able to account for both types of interac-
tions.

We analyze necessity modals as distributive universal quantifiers in
the modal domain.

(119) NECw(¢) := ow(Ry+(w)) A dw(¢)

In (119) above, R is a contextually-provided accessibility relation, i.e.,
a modal base +/— a built-in ordering source. The formula Ry« (w) is
intuitively interpreted as: w is an R-accessible world from the actual
world w*. Just as with lexical relations, we take the formula Ry-(w)
to be interpreted in terms of the cumulative closure of the accessibility
relation J(R). In particular, if u and U’ are R-accessible from w*, then
u @ u’ is also R-accessible from w*.
Sentence (118) is translated as follows:

(120) a. NECW(Ixw[X =w JASPER]
(E”yEWlO[BOOKW(y)] (READW(X, M)
b. ow(Rw+(w)) A
OW([Xw] A X =y JASPER A
oyw(BOOKyw(Y) A READy(X,y)) A [¥I2w10)

18] am indebted to Rick Nouwen for this observation (p.c.).
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c. oW(Rw:(W)) A
OW([Xw] A X =w JASPER A
oYw(BOOKw(Y) A READw(X,Y)) A ly| >w 10)

The update in (120) instructs us to first introduce all the worlds that
are R-accessible from the actual world w* and store them in w. These
are the deontically-ideal worlds that the modal verb should universally
guantifies over. Then, we distributively check that for each ideal atomic
world u in w: if we store Jasper in x and in y all the books that Jasper
read in world u, the cardinality of the set of books is at least 10.

That s, Jasper reads at least 10 books in every deontically-ideal world
u (since w collects all such deontically-ideal worlds), so we derive the
correct truth conditions: the minimum number of books that Jasper is
allowed to read (if he wants to please his mother) is 10.

The truth conditions derived by (120) might seem a bit too permis-
sive: they are compatible with a situation in which Jasper should read
20 or more books.?® | want to suggest that these are, in fact, the correct
truth conditions for sentence (118). That is, strictly speaking, sentence
(118) is true in a situation in which Jasper should read 20 or more books,
but it would be uncooperative for the speaker to use it in such a situa-
tion.

That is, | take modified numerals to contribute epistemic implica-
tures of the kind proposed in Buring (2008) for at least. Consider, for
example, the sentence in (121) below (from Buring 2008).

(121) Paul has at least four guitars.

This non-modalized sentence is cooperatively used only if the speaker
(i) is certain that Paul has 4 guitars, (ii) considers it possible that Paul
has exactly 4 guitars and (iii) considers it possible that Paul has more
than 4 guitars.

Similarly, the modalized sentence in (118) is cooperatively used only
if the speaker considers it possible that reading exactly 10 books is enough
for Jasper to please his mother.

Consider also the example below from Nouwen (2010) (see also Geurts
& Nouwen 2007 and Krifka 2007):

(122) Jasper invited maximally fifty people to his party.

Following the proposal in Buring (2008), this sentence is cooperatively
used only if the speaker (i) is certain that Jasper did not invite more
than 50 people to his party, (ii) considers it possible that Jasper invited
exactly 50 people to his party and (iii) considers it possible that Jasper

191 am indebted to Rick Nouwen for this observation (p.c.).
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invited less than 50 people to his party. That is, if (122) is cooperatively
uttered, it indicates that the speaker does not know exactly how many
people Jasper invited. So, (122) is interpreted as being about the non-
trivial (i.e., non-singleton) range of cardinalities possible at that point in
discourse. It is therefore unacceptable for a speaker to utter (122) and
continue with: 43, to be precise.?°

Thus, it seems that we do not need to derive the modal flavor of this
kind of non-modalized indicative sentences by inserting covert modals
or covert speech act operators (as Geurts & Nouwen 2007, Krifka 2007
and Nouwen 2010 suggest).

3.2 Maximal Permissions

This subsection shows that we correctly analyze maximal permissions,
e.g., (123) below (from Nouwen 2010). The most salient reading of this
sentence is: the maximum number of people Jasper is allowed to invite
is 10.

(123) Jasper* is allowed" to invite at most ten¥ people.

We take possibility modals to be the modal counterpart of maximal
some. Furthermore, we analyze some and might / allow etc. in a way
that is parallel to modified numerals, i.e., in terms of a maximization
operator ¢ followed by a post-suppositional cardinality requirement.

The maximization operator ¢ is justified by the maximal (E-type)
anaphora exemplified by the following well-known examples (see Evans
1977, 1980 and Roberts 1987, 1989).

(124) Harry bought some sheep. Bill vaccinated them.
(125) A wolf might come in. It would eat Jasper first.

The most salient reading of (124) is that Bill vaccinated all the sheep
that Harry bought. Similarly, the most salient reading of (125) is that
for every epistemically-possible scenario of a wolf coming in, the wolf
eats Jasper first.

The translation schemas for some and possibility modals are pro-
vided below.

(126) some (extensional version)  3XI=Lp] () := ox(p A ) A XIZ1

(127) POSW(¢) := IV Rw+ (W)] (¢)
:= oW(Ry: (W) A ) A WIZ1

20As Rick Nouwen points out (p.c.), it seems that only class B modified numerals
trigger such modalized implicatures, but not class A modified numerals. A discourse
like Jasper invited fewer than fifty people to his party. 43, to be precise. is felicitous.

34



Sentence (123) is translated as follows:

(128) a. POSw(Ixw[X =w JASPER]
(3VI=wi0[pERSONY (V)] (INVITEW(X,Y))))
b. ow(Rw+ (W) A [Xw] A X =w JASPER A
oyw(PERSONw (Y) A INVITEy(X,y)) A YI=w10) A
|w|>1
c. oW(Rw+ (W) A [Xw] A X =w JASPER A
oyw(PERSONw(Y) A INVITEW(X,Y))) A
ly|<wl0 A lw|>1
d. ow(Rw+ (W) A [Xw] A X =w JASPER A
oyw(PERSONw(Y) A INVITEW(X,Y))) A
ly| <w 10A[w] >1

The update in (128) instructs us to introduce all the worlds w that are
R-accessible from the actual world w* (i.e., deontically-ideal) such that
Jasper invites some people in w. For each world w, we store in y all the
people invited by Jasper. Finally, we check that there is at least 1 such
ideal world w and that the cardinality of the set y of invited people in
each world w taken individually is at most 10.

The *scoping’ behavior of post-suppositions is crucial for the deriva-
tion of the correct truth conditions. This is what enables us to go from
the formula in (128b) above to the formula in (128c), where the car-
dinality requirement [Y/=w10 contributed by the narrow-scope modified
numeral is ‘scoped out’ from underneath the possibility modal. This is
parallel to the way in which we derive cumulative readings with non-
increasing modified numerals.

Once the cardinality requirement |Y/=w10 js ‘scoped out’, we can sub-
stitute the post-suppositions with at-issue tests salva veritate, as shown
in (128d).

3.3 Distributive Permissions

Analyzing possibility modals in parallel to modified numerals predicts
that they can also have distributive readings of the following form:

(129) POSW(5(¢)) := IWIELRy+ (W)] 5(9)
= oW(Rw+ (W) A dw(g)) A WIZ1

The resulting distributive translation of sentence (123) is given below.

(130) a. POSwW(J(Ixw[x =w JASPER]
(3YI=w10[pERSONY (Y)] (INVITEW(X,¥)))))
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b. ow(Rw+ (W) A
OW([Xw] A X =y JASPER A

oYw(PERSONw (Y) A INVITEw (X, y)) A WISwl0)) A
lw|>1

c. oW(Rw+ (W) A
OW([Xw] A X =w JASPER A
oYw(PERSONw (Y) A INVITEW (X, Y)) A ly| <w 10)) A
w| > 1

The update in (130) is interpreted as: there is at least 1 world w that is
R-accessible from the actual world w* such that the maximum number
of people Jasper invites in w is at most 10. That is, inviting at most 10
people is something that Jasper is allowed to do. This is a consequence
of the fact that the distributivity operator 6 over the nuclear scope of
the possibility modal forces the post-suppositions to be interpreted ‘in
situ’.

This rather weak reading is not intuitively available for sentence
(123). We will follow Nouwen (2010) and assume that such readings
are blocked by the availability of (and competition with) the parallel
construction with a bare numeral instead of a modified numeral.

In general, the proposal that bare numerals can block modified nu-
merals predicts that whenever (i) an operator, e.g., POSw, can have
both a cumulative and a distributive reading and (ii) this operator has
a modified numeral in its scope, the distributive reading that locally
discharges the post-supposition contributed by the modified numeral
competes with and is blocked by the parallel construction with a bare
numeral. The rest of this subsection attempts to sketch how this block-
ing mechanism is supposed to work; many details and various related
issues and examples are not addressed by this preliminary sketch.?!

The reason is that the post-supposition contributed by the modified
numeral is trapped ‘in situ’ and behaves like it is part of the regular
at-issue meaning, so it is more economical (in a sense that will remain
unspecified here) to instead use the bare numeral, which has no post-
suppositional component to begin with.

For concreteness, the bare numeral counterpart of sentence (123) is
provided in (131) below. Just as before, the possibility modal can be
interpreted cumulatively or distributively, as shown in (132) and (133)
respectively. Either way, we obtain the same reading: there is at least 1
world w that is R-accessible from the actual world w* such that Jasper
invites 10 people in w. That is, inviting 10 people is something that
Jasper is allowed to do.

211 am indebted to an anonymous reviewer for emphasizing this point and for
her/his insightful comments and suggestions about this subsection.
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(131) Jasper* is allowed" to invite tenY people.

(132) a. POSw(Ixw[X =w JASPER]
(3yw[|y] =w 10 A PERSONw(y)]
(INVITEW(X,Y))))
b. ow(Rw+ (W) A [Xw] A X =w JASPER A
[yw] A || =w 10 A PERSONw(Y) A INVITEW(X,Y))
Alw| >1
(133) a. POSwW(d(Ixw[X =w JASPER]
(3yw[|y| =w 10 A PERSONy(Y)]
(INVITEW(X,Y)))))
b. ow(Ry+ (W) A
OW([Xw] A X =w JASPER A
[yw] A |y| =w 10 A PERSONw(Y) A INVITEw(X,Y)))
Alw| >1

Importantly, blocking goes through if we take into account the epis-
temic implicatures associated with sentence (123) and not only its at-
issue content.?? As far as the at-issue content is concerned, (132) and
(133) say that inviting 10 people is something that Jasper is allowed to
do. In contrast, (130) says that inviting 10 people or less is something
that Jasper is allowed to do.

Thus, (132) and (133) are false if Jasper invites exactly 5 people in
every R-accessible world (that is, he may and must invite exactly 5 peo-
ple), while (130) is true in this case — as far as its at-issue content is con-
cerned. However, sentence (123) (under the reading in (130)) would not
be used cooperatively in this case (see the discussion of Buring 2008
and epistemic implicatures above) since the modified numeral at most
tenY people indicates that the speaker considers it possible that Jasper is
allowed to invite exactly 10 people. Covertly enriching the meaning of
modified numerals in this way, i.e., by taking into account epistemic im-
plicatures, is similar to the strategy employed in Nouwen (2010), where
covert ambiguity is the driving force behind some of the cases in which
blocking applies.

As an anonymous reviewer points out, even when (123) is enriched
with epistemic implicatures, it still does not say the exact same thing
as (131): (123) says that for some number n < 10, Peter is allowed to
invite n people — and both n = 10 and n < 10 are live possibilities; in
contrast, (131) says something about n = 10 but it does not say anything
about numbers n < 10. Given that issues related to the exact form of
the blocking mechanism are sufficiently far from the core proposal of
this paper, we will leave this problem open here.

22] am indebted to an anonymous reviewer and Rick Nouwen (p.c.) for insightful
discussions of this issue.
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Assuming we can ultimately provide a satisfactory characterization
of the blocking mechanism, we could also use it to derive the infelic-
ity of minimal permissions like sentence (134) below: the distributive
reading of the possibility modal in (134) is blocked by the bare numeral
construction in (135).

(134) #A course is allowed to have at least four registered students (to
be approved by the administration).

(135) A course is allowed to have four registered students.

(136) A course must have at least four registered students (to be ap-
proved by the administration).

The cumulative reading of the possibility modal in (134) is presumably
blocked by the alternative, unambiguous construction in (136), where
the possibility modal is replaced with its unambiguously distributive
universal counterpart.

Interestingly, the cumulative reading of the possibility sentence in
(134) is blocked by the necessity sentence in (136), but the cumulative
reading of (123) above seems to not be blocked by its necessity counter-
part in (137) below. Once again, we will leave this issue open.

(137) Jasper* is required" to invite at most tenY people.

In sum, we have shown in this section — see subsections 3.1 and 3.2 in
particular — that an analysis of modified numerals in terms of quan-
tificational alternatives and post-suppositions enables us to correctly
account for the puzzling scopal interactions between modified numer-
als and modals noticed in the previous literature (see Krifka 1999 for a
related discussion of interactions with attitude reporting verbs).

This account of the scopal interactions between modals and mod-
ified numerals provides an independent justification for the analysis
of modified numerals in terms of post-suppositions. More broadly, in
view of the systematic patterns of interaction between modified numer-
als and other quantificational expressions, this section provides addi-
tional justification for analyzing modified numerals in terms of quan-
tificational and not focus alternatives.

4 Cumulative Readings for Universal Quanti-
fiers

This final contentful section outlines a way in which the present account
of cumulativity can be generalized to capture the fact that distributive
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universal quantifiers can also have cumulative readings, as observed in
Schein (1993), Kratzer (2000) and Champollion (2010) among others.
Consider the sentence below:

(138) Three* copy editors (between them) caught everyY mistake in
the manuscript.

Sentence (138) is cumulatively interpreted as: there are three copy edi-
tors such that each of them caught at least one mistake and every mis-
take was caught by at least one of the three editors.

Given the analysis of distributive universal quantifiers proposed above,
sentence (138) is translated as shown in (139) below. For expository
simplicity, we revert to the extensional version of the system without
post-suppositions throughout this section.

(139) a. 3Ix[|x| =3 AEDITOR(X)] (VY[MISTAKE(Y)] (CATCH(X,Y)))
b. [x] A x| =3 AEDITOR(X) A
cy(MISTAKE(Y)) A dy(CATCH(X,Y))

However, the update in (139) does not derive the intuitively correct cu-
mulative reading, but the distributive reading of sentence (138): each
mistake y is such that (each of) the three editors x caught it. The rep-
resentation that captures the cumulative reading does not have a dis-
tributivity operator dy, as shown in (140) below.

(140) [x] A |x] = 3 AEDITOR(X) A
oy (MISTAKE(Y)) A CATCH(X,Y)

One way out would be to say that universal quantifiers of the form ev-
ery+NP are only optionally distributive, i.e., only optionally contribute
a distributivity operator dy over their nuclear scope, just as we took
modified numerals to be only optionally distributive in subsection 2.4
above. However, this would make the incorrect prediction that ev-
ery+NP quantifiers can have collective readings much like modified nu-
merals can. And although everyone and modified numerals can have
collective readings, as shown in (141) and (142) below, every+NP can-
not.?3

(141) Everyone gathered in the park.

23 COCA search for every followed by gather within a 4-word window revealed
about 20 examples, but none of them had the required form, i.e., the same syntactic
structure as the intuitively infelicitous example in (143) above. In contrast, there are
about 20 COCA examples of the required form with everyone followed by gather within
a 4-word window — and 2 examples of the form At least n students gather, resulting
from a search for at least + CARDINAL-NUMERAL followed by gather within a 4-word
window.
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(142) Exactly / At least three students gathered in the park.
(143) #Every student gathered in the park.

The optional-distributivity account of cumulative readings for univer-
sal quantifiers also makes incorrect predictions with respect to other
examples that do not involve collective readings. Consider the example
below from Kratzer (2000).

(144) Every* copy editor caught 500Y mistakes in the manuscript.

As Kratzer (2000) notes, this sentence does not have a cumulative read-
ing to the effect that between them, the copy editors caught a total of
500 mistakes in the manuscript. The only available reading is the dis-
tributive one: every copy editor is such that s/he caught 500 mistakes.
However, the optional-distributivity account incorrectly predicts that a
cumulative reading is in fact available for this example.

Finally, the optional-distributivity account also fails to generalize to
the mixed cumulative-distributive sentence below from Schein (1993):

(145) Three* video games taught everyY quarterback two* new plays.

As Kratzer (2000) observes, everyY quarterback and three* video games are
related cumulatively: between them, a total of three video games taught
all the quarterbacks. But everyY quarterback behaves just like an ordinary
distributive quantifier with respect to two” new plays: every quarterback
learned two possibly different plays. The optional-distributivity ac-
count can only derive an across-the-board distributive or an across-the-
board cumulative reading for this sentence, but not the correct mixed
(cumulative-distributive) reading.

4.1 Evaluation Pluralities vs Ontological Pluralities

We will therefore outline an alternative way to incorporate pluralities
into a dynamic system and capture the fact that universal quantifiers
can have cumulative and mixed cumulative-distributive readings.

The basic idea is that, instead of enriching our ontology with plu-
ral / non-atomic individuals, we can enrich our contexts of evaluation
and take them to consist of sets of variable assignments instead of sin-
gle assignments (see van den Berg 1996, Nouwen 2003, Wang 2005 and
Brasoveanu 2007 among others for more discussion). That is, instead
of adding ontological / domain-level pluralities, we add evaluation /
discourse-reference-level pluralities.

The models we will work with are exactly like the FOL models, i.e.,
M = (D,7T), where D is the domain of individuals and J is the basic
interpretation function such that 3(R) C @" for any n-ary relation R.
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Importantly, the domain of individuals © consists of atomic individuals
only.

An 9t-assignment g is a total function from the set of variables V
to ©. As we already remarked, the essence of quantification in FOL is
pointwise / variablewise manipulation of variable assignments, abbre-
viated h[x]g: h differs from g at most with respect to the value it as-
signs to x. We generalize this to sets of assignments H[x|G cumulative-
guantification style, as shown below.

forallh € H, there isa g € G such that h[x]g

(146) H[X|G = { forall g € G, thereisah € H such that h[x]g

Formally, this is a natural generalization: H[x|G is an equivalence re-
lation over sets of assignments, just as h[x|g is an equivalence relation
over single assignments.

A set of assignments G can be represented as a matrix. The rows of
the matrix represent variable assignments g1, go, g3 etc. The columns
represent variables X, y etc. The objects in the cells of the matrix are
values that assignments assign to variables: boy; = g1 (X), boy, = g2(x),

movie; = gi1(y), movie; = ga(y) etc.

147 G |...| x y
g1 | ... | boy; | movie;
g2 | ... | boys | movie,
gs | ... | boys | movies

or simply:
X y
boy; | movie;
boy, | movie;
boys | movies

Just as in DPL, formulas denote binary relations between input and out-
put contexts. But these contexts are now sets of assignments instead of
single assignments.

Lexical relations are tests — again, just as in DPL. They require the
output context H to be the same as the input context G (i.e., they simply
pass on the input context) and check that H satisfies the lexical relation
R in a distributive way. That is, each assignment h € H is required to
satisfy R. Note that we do not make any use of the cumulative-closure
operators * / **,
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(148) [R(X1,...,xn)]®H = Tiff G = Handforallh € H,
(h(x1),...,h(xn)) € J(R)

A typical output set of assignments H = {h, h’, h”, ... } that satisfies the

atomic formula R(xy, ..., Xn) in such a distributive way is provided in
(149) below.
(149) H | ... X1 Xn

h | ... aa(=h(x) | ... | an(=h(Xn))

(a1,...,an) € I(R)

W] [ EN) [ | BN (X)) ...

(B1,....Bn) € I(R)
] [ nENa) ]| mEN ) -

<r)/11 s :'Yn> € j(R)

Just as before, cardinality constraints on the values of a variable x are
tests, as shown by the semantic clauses below. But now we collect all the
values that the current context of evaluation stores in column x (since
there are no plural individuals!) and then place requirements on the
cardinality of this set of values. The set that is the result of collecting all
the values stored in column x of a matrix G is abbreviated as G(x).

(150) G(x):={g(x):g € G}

(151) |G(x)] is the cardinality of the set of individuals G(x)
(152) [|x] = n]{®H) =T iff G = Hand |H(x)| =n

(153) [|x] < n]{®H) =T iff G=Hand |H(x)| <n

(154) [|x| > n]{®H) = Tiff G = Hand |H(x)| > n

Dynamic conjunction and random assignment are defined DRT / FCS /
DPL style. In particular, dynamic conjunction is interpreted as relation
composition.

(155) [¢ A ¢](GH) = T iff there is a K such that [¢]{¢K) = T and
[p] " =T

(156) Random assignment:
[[x]]{&H = T iff H[x]G
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4.2 Bare Numerals and Singular Indefinites, Evaluation-
Plurality Style

Unsurprisingly, the format for the translation of singular indefinite ar-
ticles and bare numerals remains the same as before. This is because
the only real change to the dynamic system is the way we incorporate
pluralities in our logic.

(157) 3x[[x| =nA¢] ()

For singular indefinite articles, n is 1. For the bare numeral two, n is
2. For the bare numeral three, n is 3 etc. Two example translations are
provided below - and they are identical to the ones in (26) and (27)
above.

(158) AX wolf came in. ~ Ix[|x| = 1 A WOLF(x)] (COME-IN(X))
(159) Two* wolves came in. ~» 3x[|X| = 2 A WOLF(X)] (COME-IN(X))

Just as before, we ‘decompose’ the translation schema for bare numer-
als and singular indefinites into the same flat conjunction of elementary
formulas. The only difference is that these elementary formulas are
interpreted according to the new evaluation-plurality based semantic
clauses provided above.

(160) Ix[|x| =nA¢] (¥) == [X|Alx| =nApAY
Proper names also receive the same translation.
(161) 3x[x = JASPER] (¢) := [X] A X = JASPER A ¢

Just as before, pronouns are indexed with the variable introduced by
their antecedent and their translation is that variable itself.

The two-sentence discourse in (30) above, repeated below for conve-
nience, is also compositionally translated just as we translated it before.

(162) AX wolf came in. Itk bit Jasper”.
(163) a. 3Ix[|x| =1 AWOLF(x)] (COME-IN(X)) A
Jyly = JASPER] (BITE(X,Y))
b. [X] A[X| =1 AWOLF(X) A COME-IN(X) A
[y] Ay = JASPER A BITE(X,Y)

The actual interpretation of the formulas is different, however. Sup-
pose, for simplicity, that our input context G is the singleton set {g},
where g assigns some arbitrary values to all variables. The conjunction

of formulas in (163b) above updates this input context as shown in (164)
below. It is instructive to compare the sequence of evaluation-plurality
based updates depicted in (164) and the corresponding ontological-plurality
based updates depicted in (32) above.

43



X

Ix

X wolf,
X

X X

X wolf, wolf
g wolf, | |x|=1 WOLF(x X COME-IN(X '
(164) {9} — wolf, .

X wolf

X

I>< I

X movie;
wolf, .
movie;
X y

| wolf, | jasper |

X y
| wolf, | movie, |

X y
wolf; | jasper X y
wolf; | movie, | wolf, | jasper | « y
Ll; ) , y=JASPER ) , BITE(X,yZ ‘ W0|f1 ‘ jasper ‘
| wolf, | jasper | | wolf, | jasper |
X y

wolf, | jasper
wolf, | agatha

X y

The update in (164) proceeds as follows. We first introduce x, i.e., as-
sign it a random value. The result: many matrices, some containing
only one row, some containing two rows etc. and assigning all possible
individuals or combinations thereof to x. That is, we now have a graph
with many paths. Then, the test |x| = 1 eliminates some of the paths in
the graph, namely all those paths that end in a matrix assigning more
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than one entity to x. That is, any matrix with multiple rows is elimi-
nated). The test wOLF(x) eliminates further paths in the graph, namely
all those that end in a matrix where x is not assigned a wolf. The test
COME-IN(x) eliminates all the wolves that didn’t come in.

Then, we introduce another variable y that extends the graph in
many different ways. The subsequent test y = JASPER prunes down
the graph by eliminating all the matrices that don’t assign Jasper to y.
Finally, the test BITE(X,y) keeps only the matrices H such that, for any
row h € H, the individual h(x) bit the individual h(y).

Except for the fact that we allow matrices with multiple rows, the
interpretation graph in (164) is not different from the one in (32) - and
is not different from the way interpretation proceeds in classical FOL or
classical DRT / FCS.

Just as before, we can depict updates by choosing a single, typical
path through the graph:

[X]A|X|=1AWOLF(X) ACOME-IN(X) X
(165) {9}
[YIAY=IASPERABITE(X,Y) X Y

| wolf, | jasper |

The definition of truth is also the same as before: it says that a formula
is true if there is at least one successful path through the graph 7/ binary
relation denoted by ¢.

(166) Truth: a formula ¢ is true relative to an input set of assignments
G iff there is an output set of assignments H such that [¢](¢H) =
T,

We get cumulative readings for bare numerals automatically, as shown
below. Note that the final, rightmost output context in (39) is just the
matrix representation of part of Figure 1: each assignment / row in this
matrix corresponds to one of the ‘seeing’-arrows in Figure 1.

(167) Three* boys saw fiveY movies.
(168) a. 3Ix[|x| =3 ABoOY(X)] (Fy[|ly| =5AMOVIE(Y)] (SEE(X,Y)))
b. [X] A x| =3ABOY(X)A[y]Aly| =5AMOVIE(Y) ASEE(X,Y)

X
[x]A|x|=3ABoY(x) | boy;

(169) {g) ZEEEE P
boy,
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X y
boy: | movie;
boys | movie;
boys | movies
boys | moviey
boy, | moviey
boy, | movies

[YIAly[=5AMOVIE(Y) ASEE(X,Y)

Importantly, the lexical relations BoY(x), MoVIE(Yy) and SEE(X,y) are
not cumulatively closed: there are no * or ** operators. Lexical relations
are distributively interpreted relative to their input set of assignments,
i.e., they relate atomic individuals as in classical FOL. We can do this
and still capture cumulative readings for bare numerals because we cu-
mulate in the meta-language, at the level of contexts of evaluation.

4.3 Universal Quantifiers

We are now able to translate distributive universal quantification as in
(170) below. A universal quantifier introduces the set of all individuals
x that satisfy the restrictor ¢ — by means of Mx(¢) — and then checks that
each of these individuals also satisfies the nuclear scope ¢ — by means
of Dx(¢).

(170)  vx[¢] (y) := Mx(¢) A Dx(¢)

The maximization operator Mx is the evaluation-plurality counterpart
of the Link-style ox operator we introduced for ontological pluralities.
Similarly, the distributivity operator Dx is the counterpart of the 6x op-
erator.?*

(171)  [Mx(9)]{CH) = T iff
a [X]Ag]leH =T
b. thereis no H’ such that H(x) € H’(x) and
[[X] A )& =T
(172) Gx=a:={g € G:9(x) =a}
(173) [Dx(¢)]{¢H = T iff G(x) = H(x) and for any a € G(x),
[[4)]]<Gx:a,Hx:a> =T

(174) Updating the set of assignments G with a formula ¢ distribu-
tively over x:

24| am grateful to an anonymous Journal of Semantics reviewer for a very helpful and
detailed discussion of the relative merits of the unselective distributivity operator |
had in a previous version of the paper (and in Brasoveanu 2010b) and the selective
distributivity operator Dx that is used here.
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Definition (173) states that updating a set of assignments G with a for-
mula ¢ distributively over a variable x means:

(i) generating the x-partition of G, i.e., {Gx=a:a € G(X)},
(if) updating each cell Gx—, in the partition with the formula ¢,

(iii) and finally, taking the union of the resulting output sets of assign-
ments.

The first conjunct G(x) = H(x) in (173) is required to ensure that there
is a bijection between the partition induced by the variable x over the
input context G and the one induced over the output context H. With-
out this requirement, we could introduce arbitrary new values for x in
the output context H, i.e., arbitrary new partition cells.?® The second
conjunct is the one that actually defines the distributive update: the
formula ¢ relates every partition cell in the input context G to the cor-
responding partition cell in the output context H.

We can now capture the cumulative reading of sentence (138) above.
This sentence is translated as shown in (175) below.

(175) a. 3Ix[|x| =3 AEDITOR(X)] (VY[MISTAKE(Y)] (CATCH(X,Y)))
b. [X] A x| =3 AEDITOR(X) A
My(MISTAKE(Y)) A Dy(CATCH(X,Y))
c. [X] A|x] =3 AEDITOR(X) A
My(MISTAKE(Y)) A CATCH(X,Y)

We introduce a set x of three editors and the set y of all mistakes and
check that for every assignment h in the resulting output context H, the
editor h(x) caught the mistake h(y).

25Nouwen (2003) was the first to observe that we need to add the first conjunct in
(173) to the original definition of distributivity in van den Berg (1996).
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Crucially, letting universal quantifiers distribute over evaluation plu-
ralities, as opposed to ontological pluralities, allows them to have cu-
mulative readings (and does not incorrectly predict that they can have
collective readings). The reason is that evaluation-level distributivity
distributes over variable assignments at the same time as it distributes
over the values assigned to the targeted variable. Therefore, we op-
erate over both sets of entities (editors and mistakes) that we need to
cumulate over simultaneously. In fact, the distributivity operator Dy is
semantically vacuous in (175a) / (175b) and it can be omitted — as we
did in (175c).

The distributivity operator D is not always vacuous, however. Con-
sider again the example from Kratzer (2000) in (144) above. As we al-
ready observed, this sentence does not have a cumulative reading to
the effect that between them, the copy editors caught a total of 500 mis-
takes in the manuscript. The only available reading is the distributive
one: every copy editor is such that s/he caught 500 mistakes.

We derive the distributive reading if the universal quantifier takes
scope over the numeral. That is, the evaluation-plurality based analysis
of universal quantifiers automatically restricts the availability of cumu-
lative readings: they are possible only if universal quantifiers have nar-
row scope relative to the numerals they ‘cumulate’ with. As long as the
non-surface scope 500> >every is somehow blocked for sentence (144),
we correctly derive the unavailability of the cumulative reading.

The translation of the surface-scope reading every>>500 for sen-
tence (144) is provided in (176) below.

(176) a. Vx[EDITOR(x)] (Fy[|ly| = 500 A MISTAKE(y)] (CATCH(X,Y)))

b. Mx(EDITOR(X)) A
Dx([y] A |y| =500 A MISTAKE(Y) A CATCH(X,Y))

We introduce the set of all copy editors x and we check that each of them
caught 500 mistakes. The distributivity operator D is not semantically
vacuous in this case, so it cannot be omitted.

Finally, the analysis of universal quantifiers as distributors over eval-
uation pluralities also generalizes to the mixed cumulative-distributive
sentence in (145) above. We capture the correct reading if we preserve
the surface-scope relations between the three quantifiers: three > > every
>> two. The resulting translation, which derives the intuitively correct
truth conditions, is provided below.

(177) a. 3Ix[|x| = 3 A GAME(X)]

(Vy[Q.BACK(y)]
(3z[|z] = 2 APLAY(2Z)] (TEACH(X,Y,2))))

b. [X] A x| =3AGAME(X) A My(Q.BACK(Y)) A
Dy([z] A |z| =2 APLAY(Z) A TEACH(X,Y,2))
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We will not further pursue this evaluation-plurality dynamic system
here or try to integrate the two kinds of pluralities into a single system
(see Brasoveanu 2008 for a way to do that). A system countenancing
both evaluation pluralities (sets of assignments) and ontological plurali-
ties (non-atomic individuals) is needed?® to capture the meaning of uni-
versal quantifiers like every* three houses among other things. The out-
put matrix resulting after the interpretation of such a quantifier would
store a non-atomic individual consisting of three houses in each x-cell
and would have as many cells as there are non-atomic individuals that
have three houses as their atomic parts.

We only mention that post-suppositions and the resulting analy-
sis of cumulative readings for modified nhumerals proposed above, to-
gether with the account of the scopal interactions between modals and
modified numerals, can be straightforwardly incorporated into a dy-
namic system based on evaluation pluralities instead of ontological plu-
ralities. A brief sketch of how this can be done is provided in Brasoveanu
(2010b).

In sum, we ended up distinguishing between two kinds of plural-
ities in this section, namely (i) evaluation pluralities, i.e., sets of as-
signments, and (ii) ontological pluralities, i.e., non-atomic individuals
(which we would ultimately want to allow alongside evaluation plu-
ralities). The maximization operator Mx and the distributivity operator
Dx, needed for distributive quantification, are to evaluation pluralities
what the familiar Link-style sum and distributivity operators ox and éx
are to ontological pluralities. The bigger picture that seems to emerge
is that cumulativity is just non-distributivity with respect to evaluation
pluralities, while collectivity (group readings, ‘partial covers’ etc.) is
just non-distributivity with respect to domain pluralities.

5 Conclusion

The goal of the paper was to provide an account of cumulative readings
with non-increasing modified numerals. To this effect we introduced
post-suppositions, which are constraints on output contexts, in contrast
to presuppositions, which constrain input contexts.

Unlike presuppositions, post-suppositions are part of the proposal
to update the Context Set / Common Ground (Stalnaker 1978) since
they are part and parcel of regular truth conditions. Hence, both post-
suppositional and at-issue meaning can be challenged, questioned etc.
But post-suppositions are distinct from regular at-issue meaning with

%6 Contra van den Berg (1996) among others.
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respect to their evaluation order: they constrain the final, global output
context obtained after the regular at-issue update is interpreted.

But just as presuppositions (or implicatures in theories like Chier-
chia et al. 2009), post-suppositions can be satisfied / discharged non-
globally, e.g., in the scope of distributivity operators.

Post-suppositions constrain quantificational alternatives (where a
quantificational alternative is a context that is the result of interpreting
a quantificational expression), not focus alternatives, as Krifka (1999)
would have it. We therefore expect various quantificational operators
(universals, modals, attitude verbs, negation etc.) to block the ‘projec-
tion’ of post-suppositions and discharge them locally, in their scope.

While similar to the actual (syntactic) wide scope that bona fide quan-
tificational expressions can take, post-suppositional pseudo wide scope
has slightly different semantic properties. These distinct properties en-
able us to account for the differences in semantic behavior between class
A and class B modified numerals noticed in Nouwen (2010): class A
modifiers contribute degree quantifiers that can take actual wide scope,
while class B modifiers contribute post-suppositional cardinality require-
ments.

Class B modified numerals (e.g., at most three books) are maximal, just
like cardinal definites (e.g., the three books). In Romanian, for example,
both modified numerals and cardinal definites contain a definite arti-
cle. But modified numerals and cardinal definites are different in two
respects:?’ (i) numerals introduce a new maximal discourse referent /
variable, while definites anaphorically retrieve an old discourse refer-
ent / variable that is presupposed to be maximal; (ii) the cardinality
requirement contributed by numerals is a post-supposition, while the
cardinality requirement contributed by definites is a presupposition.

The fact that modified numerals introduce a new variable storing a
maximal set of entities and separately from this variable, a ‘wide-scope’
post-supposition makes them very similar to (discourse referents for)
properties. This is very much in line with the property-based semantics
for existential constructions in McNally (1998)%® — and it might enable
us to account for the fact that modified numerals, in contrast to cardinal
definites, are felicitous in existential constructions, e.g., There were {at
most / *the} three books on the table (from McNally 1998).

Ultimately, enriching contexts of evaluation with post-suppositions
follows the same basic insight and strategy as the enrichment brought
by classical dynamic semantics relative to static semantics. That is, en-
riching contexts of evaluation and (therefore) the inventory of opera-

271 am indebted to Sandy Chung, Donka Farkas, Jim McCloskey and Louise Mc-
Nally for discussion of this point.
28] am indebted to Louise McNally for this observation (p.c.).
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tors that can be defined over them enables us to keep our interpretation
compositional and surface-based. The reason for this is that local oper-
ations over enriched contexts have global effects via the recursive def-
inition of truth and satisfaction, which preserves these local contextual
changes and non-locally passes them on.

We end the paper by mentioning three directions for future inves-
tigation. First, one should provide a compositional analysis for adver-
bial / ‘floated’ uses of exactly, precisely, maximally, approximately etc. in
which the modifier is non-adjacent and can simultaneously target mul-
tiple numerals, as shown in the examples below.?® Note, in particular,
that the cumulative reading of (182) is one in which at the most simulta-
neously targets four games and five days.

(178) Three boys saw five movies, exactly / precisely / at (the) most.3°

(179) It was a kind of pension where, at the most, there were four or
five guests. (COCA)

(180) One person, at most, infects two others ... (COCA)
(181) Everyone has to show me five dust balls, at least. (COCA)

(182) The league limits teams to playing two games in a row — or, at
the most, four games in five days, NBA spokesman Tim Frank
says. (COCA)

The analysis of modified numerals proposed in Brasoveanu (2010b)
uses an unselective maximization operator for modified numerals, thereby
analyzing them in parallel to adverbs of quantification like usually, al-
ways etc. (they both quantify over cases, in the sense of Lewis 1975).
Maybe an analysis along these lines will be able to generalize to the
phenomena exemplified above.

Second, it seems that the availability of cumulative vs distributive
readings is sensitive to questions under discussion:3! cumulative read-
ings seem unavailable as answers to single who/how many questions
like (183) below, but available as answers to multiple wh-questions like
(184). Moreover, sentences with such cumulative readings seem to have
a particular intonation pattern.

(183) How many boys saw exactly five movies?
(184) How many boys saw how many movies?

2] am indebted to Pranav Anand, Jim McCloskey and an anonymous Amsterdam
Colloquium 2009 reviewer for discussion of this point.

30nterestingly, the adverbial modifier cannot be duplicated so that each occurrence
can target a separate bare numeral: *Three boys exactly saw five movies exactly / precisely.

311 am indebted to an anonymous Amsterdam Colloquium 2009 reviewer for bring-
ing this point to my attention.

51



Cumulative readings are also unavailable in cases in which a paral-
lelism discourse relation needs to be established, e.g.:

(185) Mary saw exactly five movies and exactly three boys did too /
saw exactly five movies too.

This is not unexpected: quantifier scope, which also involves manipu-
lating the evaluation order of certain expressions, is sensitive to ques-
tions under discussion and discourse relations. The observation that
information structure and quantificational phenomena like cumulative
readings are connected is already made in Zeevat (1994). The broader
guestion is: how do focus alternatives and quantificational alternatives
interact?

Finally, the relationship between a post-suppositional account of items
like exactly, precisely etc. and their account as slack-regulating, halo-
adjusting expressions along the lines of Lasersohn (1999) needs to be
more closely investigated.3?
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