
Intro to Haskell Notes: Part 9

Adrian Brasoveanu∗

October 13, 2013

Contents

1 Data.Char 1
1.1 Predicates over characters . 1
1.2 GeneralCategory . 2
1.3 toUpper, toLower . 3
1.4 The Caesar cipher . 3

2 Data.Set 5
2.1 fromList . 5
2.2 intersection . 6
2.3 difference . 6
2.4 union . 6
2.5 empty, null, size, member, singleton, insert, delete . 7
2.6 isSubsetOf and isProperSubsetOf . 7
2.7 map and filter . 8
2.8 setNub . 8

3 Making our own modules 9

4 Hierarchical modules 10

1 Data.Char

ghci 1> import Data.Char

The Data.Char module does what its name suggests: it exports functions that deal with characters.
But they’re also helpful when filtering and mapping over strings because they’re just lists of characters.

1.1 Predicates over characters

Here are some of the exported predicates over characters (functions of type Char→ Bool):

• isSpace checks whether a character is a white-space character; that includes spaces, tab characters,
newlines etc.

• isLower checks whether a character is a lower-case character
∗Based primarily on Learn You a Haskell for Great Good! by Miran Lipovača, http://learnyouahaskell.com/.

1

http://learnyouahaskell.com/

• isUpper checks whether a character is an upper-case character

• isAlpha checks whether a character is a letter

• isAlphaNum checks whether a character is a letter or a number

• isDigit checks whether a character is a digit

• isLetter checks whether a character is a letter

• isNumber checks whether a character is numeric

• isPunctuation checks whether a character is punctuation

• isSymbol checks whether a character is a fancy mathematical or currency symbol

Most of the time, we use these to filter out strings.
For instance, let’s say we’re making a program that takes a username and the username can only be

comprised of alphanumeric characters. We can use the Data.List function all in combination with the
Data.Char predicates to determine if the username is OK.

ghci 2> all isAlphaNum "bobby283"
True

ghci 3> all isAlphaNum "eddy the fish!"
False

1.2 GeneralCategory

The Data.Char also exports a datatype GeneralCategory that’s like Ordering.
The Ordering type can have a value of LT, EQ or GT – a sort of enumeration. It describes a few

possible results that can arise from comparing two elements.
The GeneralCategory type is also an enumeration. It presents us with a few possible categories

that a character can fall into. The main function for getting the general category of a character is
generalCategory. Its type is listed below.

ghci 4> : t generalCategory
generalCategory :: Char→ GeneralCategory

ghci 5> generalCategory ’ ’
Space

ghci 6> generalCategory ’A’
UppercaseLetter

ghci 7> generalCategory ’a’
LowercaseLetter

2

ghci 8> generalCategory ’.’
OtherPunctuation

ghci 9> generalCategory ’9’
DecimalNumber

1.3 toUpper, toLower

toUpper converts a character to upper-case. Spaces, numbers and the like remain unchanged.

ghci 10> map toUpper "wow that’s great r2-d2"
"WOW THAT’S GREAT R2-D2"

toLower converts a character to lower-case.

ghci 11> map toLower "WOW THAT’S GREAT R2-D2"
"wow that’s great r2-d2"

1.4 The Caesar cipher

The Caesar cipher is an old and fairly simple method of encoding messages by shifting each character
in a message by a fixed number of positions in the alphabet. We can easily create a sort of Caesar cipher
of our own, only we won’t confine ourselves to the alphabet.

ghci 12> let {encode :: Int→ String→ String;
encode shift msg = map chr $ map (+shift) $ map ord msg}

Here, we first convert the string to a list of numbers with the function ord.

ghci 13> :! hoogle -- info "ord :: Char -> Int"
Data.Char ord :: Char -> Int

The Prelude.fromEnum method restricted to the type Data.Char.Char.

From package base ord :: Char -> Int

Here’s an example:

ghci 14> map ord "Heeeeey"
[72, 101, 101, 101, 101, 101, 121]

Then we add the shift amount to each number:

ghci 15> map ((+3) ◦ ord) "Heeeeey"
[75, 104, 104, 104, 104, 104, 124]

3

Then we finally convert the list of numbers back to characters with the function chr.

ghci 16> :! hoogle -- info "chr :: Int -> Char"
Data.Char chr :: Int -> Char

The Prelude.toEnum method restricted to the type Data.Char.Char.

From package base chr :: Int -> Char

For example:

ghci 17> map (chr ◦ (+3) ◦ ord) "Heeeeey"
"Khhhhh|"

If you’re a composition cowboy, you could write the encode function more concisely following the
code in the example above:

ghci 18> let {encode :: Int→ String→ String;
encode shift msg = map (chr ◦ (+shift) ◦ ord) msg}

Let’s try encoding a few messages.

ghci 19> encode 3 "Heeeeey"
"Khhhhh|"

ghci 20> encode 4 "Heeeeey"
"Liiiii}"

ghci 21> encode 1 "abcd"
"bcde"

ghci 22> encode 5 "Merry Christmas! Ho ho ho!"
"Rjww~%Hmwnxyrfx&%Mt%mt%mt&"

Decoding a message is just shifting it back by the same number of places:

ghci 23> let decode shift msg = encode (negate shift) msg

ghci 24> encode 3 "Im a little teapot"
"Lp#d#olwwoh#whdsrw"

4

ghci 25> decode 3 "Lp#d#olwwoh#whdsrw"
"Im a little teapot"

ghci 26> decode 5 ◦ encode 5 $ "This is a sentence"
"This is a sentence"

2 Data.Set

The Data.Set module offers us sets in the mathematical sense:

• all the elements in a set are unique;

• and because they’re internally implemented with trees (for speed), they’re ordered;

• checking for membership, inserting, deleting etc. is much faster than doing the same thing with
lists;

Because the names in Data.Set clash with a lot of Prelude and Data.List names, we do a qualified
import.

ghci 27> import qualified Data.Set as S

2.1 fromList

Besides inserting into a set and checking for membership, the most common operation when dealing
with sets is probably converting a list into a set.

Let’s say we have two pieces of text. We want to find out which characters were used in both of
them.

ghci 28> let text1 =
"I just had an anime dream. Anime... Reality... Are they so different?"

ghci 29> let text2 =
"The old man left his garbage can out "++
"and now his trash is all over my lawn!"

The fromList function works much like you would expect. It takes a list and converts it into a set.

ghci 30> let set1 = S.fromList text1

5

ghci 31> let set2 = S.fromList text2

ghci 32> : t S.fromList
S.fromList :: Ord a⇒ [a]→ S.Set a

ghci 33> set1
fromList " .?AIRadefhijlmnorstuy"

ghci 34> : t set1
set1 :: S.Set Char

ghci 35> set2
fromList " !Tabcdefghilmnorstuvwy"

As you can see, the items are ordered and each element is unique.

2.2 intersection

Now let’s use the intersection function to see which elements are in both sets.

ghci 36> S.intersection set1 set2
fromList " adefhilmnorstuy"

2.3 difference

We can use the difference function to see which letters are in the first set but aren’t in the second one
and vice versa.

ghci 37> S.difference set1 set2
fromList ".?AIRj"

ghci 38> S.difference set2 set1
fromList "!Tbcgvw"

2.4 union

Or we can see all the unique letters used in both sentences by using union.

6

ghci 39> S.union set1 set2
fromList " !.?AIRTabcdefghijlmnorstuvwy"

2.5 empty, null, size, member, singleton, insert, delete

The empty, null, size, member, singleton, insert and delete functions all work like you’d expect them to.

ghci 40> S.empty
fromList []

ghci 41> S.null S.empty
True

ghci 42> S.null $ S.fromList [3, 4, 5, 5, 4, 3]
False

ghci 43> S.size $ S.fromList [3, 4, 5, 3, 4, 5]
3

ghci 44> S.singleton 9
fromList [9]

ghci 45> S.insert 4 $ S.fromList [9, 3, 8, 1]
fromList [1, 3, 4, 8, 9]

ghci 46> S.insert 8 $ S.fromList [5 . . 10]
fromList [5, 6, 7, 8, 9, 10]

ghci 47> S.delete 4 $ S.fromList [3, 4, 5, 4, 3, 4, 5]
fromList [3, 5]

2.6 isSubsetOf and isProperSubsetOf

We can also check for subsets or proper subsets.

ghci 48> S.fromList [2, 3, 4] ‘S.isSubsetOf ‘ S.fromList [1, 2, 3, 4, 5]
True

7

ghci 49> S.fromList [1, 2, 3, 4, 5] ‘S.isSubsetOf ‘ S.fromList [1, 2, 3, 4, 5]
True

ghci 50> S.fromList [2, 3, 4, 8] ‘S.isSubsetOf ‘ S.fromList [1, 2, 3, 4, 5]
False

ghci 51> S.fromList [1, 2, 3, 4, 5] ‘S.isProperSubsetOf ‘ S.fromList [1, 2, 3, 4, 5]
False

2.7 map and filter

We can also map over sets and filter them.

ghci 52> S.filter odd $ S.fromList [3, 4, 5, 6, 7, 2, 3, 4]
fromList [3, 5, 7]

ghci 53> S.map (+1) $ S.fromList [3, 4, 5, 6, 7, 2, 3, 4]
fromList [3, 4, 5, 6, 7, 8]

2.8 setNub

Sets are often used to weed out duplicates in a list by first making the list into a set with fromList and
then converting the set back to a list with toList.

The Data.List function nub already does this, but it is much faster to weed out duplicates for large
lists if you convert them to sets and then convert them back to lists.

However, using nub only requires the type of the list elements to be part of the Eq typeclass, whereas
if we want to convert the list to a set, the type of the list elements has to be in Ord.

ghci 54> let setNub xs = S.toList $ S.fromList xs

ghci 55> setNub "HEY WHATS CRACKALACKIN"
" ACEHIKLNRSTWY"

ghci 56> import Data.List

ghci 57> nub "HEY WHATS CRACKALACKIN"
"HEY WATSCRKLIN"

8

As we already mentioned, setNub is generally faster than nub on big lists. But as you can see, nub
preserves the ordering of the list’s elements, while setNub does not.

3 Making our own modules

We’ve looked at some modules so far, but how do we make our own module?
Almost every programming language enables you to split your code up into several files and

Haskell is no different. When making programs, it’s good practice to take functions and types that
work towards a similar purpose and put them in a module. That way, you can easily reuse those
functions in other programs by just importing your module.

Let’s see how we can make our own modules by making a little module that provides some func-
tions for calculating the volume and area of a few geometrical objects. We’ll start by creating a file
called Geometry.hs.

We have repeatedly said that a module exports functions. What that means is that:

• when we import a module, we can use the functions that it explicitly exports;

• it can define functions that its functions call internally, i.e., inside the module, but we can only
see and use the functions that it exports.

At the beginning of a module:

• we specify the module name; if we have a file called Geometry.hs, then we should name our
module Geometry;

• then, we specify the functions that it exports;

• after that, we can start writing the functions.

Here’s the full code in the file:

module Geometry
(sphereVolume
, sphereArea
, cubeVolume
, cubeArea
, cuboidArea
, cuboidVolume
) where
sphereVolume :: Double→ Double
sphereVolume radius = (4.0 / 3.0) ∗ pi ∗ (radius ↑ 3)
sphereArea :: Double→ Double
sphereArea radius = 4 ∗ pi ∗ (radius ↑ 2)
cubeVolume :: Double→ Double
cubeVolume side = cuboidVolume side side side
cubeArea :: Double→ Double
cubeArea side = cuboidArea side side side
cuboidVolume :: Double→ Double→ Double→ Double
cuboidVolume a b c = rectangleArea a b ∗ c
cuboidArea :: Double→ Double→ Double→ Double
cuboidArea a b c = rectangleArea a b ∗ 2 + rectangleArea a c ∗ 2 + rectangleArea c b ∗ 2
rectangleArea :: Double→ Double→ Double
rectangleArea a b = a ∗ b

9

We defined a helper function called rectangleArea that calculates the area of a rectangle based on
the lengths of its sides. Notice that we used it in our functions in the module (namely cuboidArea and
cuboidVolume) but we didn’t export it. That’s because we want our module to just present functions for
dealing with 3D objects.

When making a module, we usually export only those functions that act as a sort of interface to
our module so that the implementation is hidden. If someone is using our Geometry module, they
don’t have to concern themselves with functions that we don’t export. We can decide to change those
functions completely or delete them in a newer version (we could delete rectangleArea and just use ∗
instead) and no one will mind because we weren’t exporting them in the first place.

ghci 58> : l Geometry

ghci 59> sphereArea 4
201.06192982974676

Geometry.hs has to be in the same folder as the program importing it.

4 Hierarchical modules

Modules can also be given a hierarchical structures. Each module can have a number of sub-modules
and they can have sub-modules of their own.

Let’s section these functions off so that Geometry is a module that has three sub-modules, one for
each type of object.

First, we’ll make a folder called Geometry. Mind the capital G. In it, we’ll place three files: Sphere.hs,
Cuboid.hs, and Cube.hs.

Then we add code to these files. Let’s start with Geometry.Sphere. Notice how we placed it in a
folder called Geometry and then defined the module name as Geometry.Sphere.

module Geometry.Sphere
(volume
, area
) where
volume :: Double→ Double
volume radius = (4.0 / 3.0) ∗ pi ∗ (radius ↑ 3)
area :: Double→ Double
area radius = 4 ∗ pi ∗ (radius ↑ 2)

Now we add the Cuboid and Cube submodules in the corresponding hs files.

module Geometry.Cuboid
(volume
, area
) where
volume :: Double→ Double→ Double→ Double
volume a b c = rectangleArea a b ∗ c
area :: Double→ Double→ Double→ Double
area a b c = rectangleArea a b ∗ 2 + rectangleArea a c ∗ 2 + rectangleArea c b ∗ 2
rectangleArea :: Double→ Double→ Double
rectangleArea a b = a ∗ b

10

module Geometry.Cube
(volume
, area
) where
import qualified Geometry.Cuboid as Cuboid
volume :: Double→ Double
volume side = Cuboid.volume side side side
area :: Double→ Double
area side = Cuboid.area side side side

Notice how in all three sub-modules, we defined functions with the same names:

• we can do this because they’re separate modules;

• but if we want to use functions from Geometry.Cuboid in Geometry.Cube, we can’t just import them
with import Geometry.Cuboid because we would import functions with the same names as the
one in Geometry.Cube;

• so we need to do a qualified import – namely, import qualified Geometry.Cuboid as Cuboid – to
avoid the name clash.

In general, if we want to use two or more of these modules at the same time, we have to do qualified
imports because they export functions with the same names. If we want to do this in ghci, a good way
is to create a file GeomAll.hs with the following content:

module GeomAll where
import qualified Geometry.Sphere as Sphere
import qualified Geometry.Cuboid as Cuboid
import qualified Geometry.Cube as Cube

and then load it in ghci as follows:

ghci 60> : l GeomAll

If we’re not working in ghci, we can simply add the import commands directly at the top of the
script in which we need the Geometry module.

We can now call various functions from the Geometry module, e.g., Sphere.area, Sphere.volume, Cuboid.area
etc., in ghci or inside our script.

ghci 61> Sphere.area 4
201.06192982974676

ghci 62> Sphere.volume 4
268.082573106329

ghci 63> Cube.area 4
96.0

11

ghci 64> Cube.volume 4
64.0

To summarize, if you have a file that’s really big and has a lot of functions:

• try to see which functions serve a common purpose;

• put them in their own module;

• import the module next time you’re writing a program that requires some of the same function-
ality.

12

	Data.Char
	Predicates over characters
	GeneralCategory
	toUpper, toLower
	The Caesar cipher

	Data.Set
	fromList
	intersection
	difference
	union
	empty, null, size, member, singleton, insert, delete
	isSubsetOf and isProperSubsetOf
	map and filter
	setNub

	Making our own modules
	Hierarchical modules

