
Intro to Haskell Notes: Part 8

Adrian Brasoveanu∗

October 8, 2013

Contents

1 Modules 2
1.1 Importing modules . 2
1.2 Importing functions from modules . 3
1.3 Importing modules without certain functions . 3
1.4 Qualified imports . 3

2 Data.List 3
2.1 nub . 4
2.2 intersperse and intercalate . 4
2.3 concat and concatMap . 5
2.4 and and or . 5
2.5 any and all . 6
2.6 iterate . 6
2.7 splitAt . 7
2.8 takeWhile and dropWhile . 7
2.9 span and break . 8
2.10 sort . 9
2.11 group . 9
2.12 inits and tails . 9

2.12.1 Example: Searching through a list for a sublist with foldl and tails 10
2.13 isPrefixOf and isSuffixOf . 10
2.14 partition . 11
2.15 find . 11
2.16 elemIndex and elemIndices . 12
2.17 findIndex and findIndices . 13
2.18 zip3, zipWith3, zip4, zipWith4, . 14
2.19 lines and unlines . 14
2.20 words and unwords . 14
2.21 delete, \\, union and intersect . 15
2.22 insert . 16
2.23 genericLength, genericTake, genericDrop, genericSplitAt, genericIndex, genericReplicate 17

∗Based primarily on Learn You a Haskell for Great Good! by Miran Lipovača, http://learnyouahaskell.com/.

1

http://learnyouahaskell.com/

1 Modules

A Haskell module is a collection of related functions, types and typeclasses.
A Haskell program is a collection of modules where the main module loads up the other modules

and then uses the functions defined in them to do something.
Having code split up into several modules has several advantages:

• if a module is generic enough, the functions it exports can be used for many different program-
ming tasks

• if your own code is separated into self-contained modules which don’t rely on each other too
much (we also say they are loosely coupled), you can reuse (some of) them separately later on

• splitting code into several parts, each of which has a specific purpose, makes writing code more
manageable

The Haskell standard library is split into modules. Each of them contains functions and types that
are somehow related and serve a common purpose.

There’s a module for manipulating lists, one for manipulating sets, a module for concurrent pro-
gramming, a module for dealing with complex numbers etc.

All the functions, types and typeclasses that we’ve dealt with so far were part of the Prelude module,
which is imported by default. In this set of notes and the following one, we’re going to examine a few
useful modules and the functions that they make available.

1.1 Importing modules

But first, we’re going to see how to import modules. The syntax for importing modules in a Haskell
script is:

(1) import < moduleName>

This must be done before defining any functions, so imports are usually done at the top of the file.
We can import several modules in one script, we just have to put each import statement on a sepa-

rate line.

(2) import < moduleName1>
import < moduleName2>
import < moduleName3>
. . .

For example, let’s import the Data.List module, which makes available many useful functions for
working with lists.

ghci 1> : show imports
import Prelude – implicit

ghci 2> import Data.List

ghci 3> : show imports
import Prelude – implicit import Data.List

2

When we do import Data.List, all the functions that Data.List exports become available in the global
namespace, meaning that we can call them from wherever in the script.

In ghci, we can also import modules by running :m + Data.List.
If we want to load up the names from several modules inside GHCI, we don’t have to do :m + ...

several times, we can just load up several modules at once: :m + Data.List Data.Map Data.Set.
Note that if we’ve loaded a script in ghci that already imports a module, we don’t need to use

:m + ... to get access to it.

1.2 Importing functions from modules

If we just need a couple of functions from a module, we can selectively import just those functions. If
we want to import only the nub and sort functions from Data.List, we do this:

(3) import Data.List (nub, sort)

1.3 Importing modules without certain functions

We can also choose to import all of the functions of a module except a few select ones – that’s often use-
ful when several modules export functions with the same name and we want to avoid name conflicts.
For example, suppose we already have our own function that’s called nub and we want to import all
the functions from Data.List except the nub function. Then we do the following:

(4) import Data.List hiding (nub)

1.4 Qualified imports

Another way of dealing with name clashes is to do qualified imports. For example, the Data.Map
module, which offers a data structure for looking up values by key, exports a bunch of functions with
the same name as Prelude functions, like filter or null. So when we import Data.Map and then call filter,
Haskell won’t know which function to use.

Here’s how we solve this:

(5) import qualified Data.Map

This makes it so that if we want to reference Data.Map’s filter function, we have to do Data.Map.filter,
whereas just filter still refers to the normal filter we all know and love.

But typing out Data.Map in front of every function from that module is kind of tedious. That’s why
we can rename the qualified import to something shorter:

(6) import qualified Data.Map as M

To reference Data.Map’s filter function, we just use M.filter.

2 Data.List

We will now introduce several very useful functions in the Data.List module.
We’ve already met some of its functions (like map and filter) because the Prelude module imports

some functions from Data.List for convenience.
You don’t have to import Data.List via a qualified import because it doesn’t clash with any Prelude

names except for those that Prelude already takes from Data.List.
Let’s take a look at some of the functions that we haven’t seen before.

3

2.1 nub

nub tells us how many unique elements a list has, that is, it takes a list and weeds out duplicate ele-
ments.

ghci 4> nub [1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1]
[1, 2, 3, 4]

ghci 5> nub "Lots of words and stuff"
"Lots fwrdanu"

Composing length and nub by doing length ◦ nub produces a function that’s the equivalent of λxs→
length (nub xs).

ghci 6> let {numUniques :: (Eq a)⇒ [a]→ Int;
numUniques = length ◦ nub}

ghci 7> nub [1, 2, 4, 5, 4, 2, 37, 7, 2]
[1, 2, 4, 5, 37, 7]

ghci 8> numUniques [1, 2, 4, 5, 4, 2, 37, 7, 2]
6

2.2 intersperse and intercalate

intersperse takes an element and a list and then puts that element in between each pair of elements in
the list.

ghci 9> intersperse ’.’ "MONKEY"
"M.O.N.K.E.Y"

ghci 10> intersperse 0 [1, 2, 3, 4, 5, 6]
[1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6]

intercalate takes a list of lists and a list. It then inserts that list in between all those lists and then
flattens the result.

ghci 11> intercalate " " ["hey", "there", "guys"]
"hey there guys"

4

ghci 12> intercalate [0, 0, 0] [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
[1, 2, 3, 0, 0, 0, 4, 5, 6, 0, 0, 0, 7, 8, 9]

2.3 concat and concatMap

concat flattens a list of lists.

ghci 13> concat ["foo", "bar", "car"]
"foobarcar"

ghci 14> concat [[3, 4, 5], [2, 3, 4], [2, 1, 1]]
[3, 4, 5, 2, 3, 4, 2, 1, 1]

But it will just remove one level of nesting. So if we want to completely flatten [[[2, 3], [3, 4, 5], [2]],
[[2, 3], [3, 4]]], which is a list of lists of lists, we have to concatenate it twice.

ghci 15> concat [[[2, 3], [3, 4, 5], [2]], [[2, 3], [3, 4]]]
[[2, 3], [3, 4, 5], [2], [2, 3], [3, 4]]

ghci 16> concat ◦ concat $ [[[2, 3], [3, 4, 5], [2]], [[2, 3], [3, 4]]]
[2, 3, 3, 4, 5, 2, 2, 3, 3, 4]

Doing concatMap is the same as:

• first mapping a function over a list,

• then concatenating the list with concat.

ghci 17> replicate 4 1
[1, 1, 1, 1]

ghci 18> map (replicate 4) [1 . . 3]
[[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3]]

ghci 19> concatMap (replicate 4) [1 . . 3]
[1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3]

2.4 and and or

and takes a list of boolean values and returns True only if all the values in the list are True.

5

ghci 20> and $ map (>4) [5, 6, 7, 8]
True

ghci 21> and $ map (≡ 4) [4, 4, 4, 3, 4]
False

or is like and except it returns True if any of the boolean values in a list is True.

ghci 22> or $ map (≡ 4) [2, 3, 4, 5, 6, 1]
True

ghci 23> or $ map (>4) [1, 2, 3]
False

2.5 any and all

any and all take a predicate and then check if any or all the elements in a list satisfy the predicate,
respectively.

We usually use these two functions instead of:

• mapping over a list first,

• then doing and or or.

ghci 24> any (≡ 4) [2, 3, 5, 6, 1, 4]
True

ghci 25> all (>4) [6, 9, 10]
True

ghci 26> all (∈ [’A’ . . ’Z’]) "HEYGUYSwhatsup"
False

ghci 27> any (∈ [’A’ . . ’Z’]) "HEYGUYSwhatsup"
True

2.6 iterate

iterate takes a function and a starting value.
It applies the function to the starting value, then it applies that function to the result, then it applies

the function to that result again etc.
It returns all the results in the form of an infinite list.

6

ghci 28> take 10 $ iterate (∗2) 1
[1, 2, 4, 8, 16, 32, 64, 128, 256, 512]

ghci 29> take 3 $ iterate (++"hihi") "haha"
["haha", "hahahihi", "hahahihihihi"]

2.7 splitAt

splitAt takes a number and a list. It then splits the list at that many elements, returning the resulting
two lists in a tuple.

ghci 30> splitAt 3 "heyman"
("hey", "man")

ghci 31> splitAt 100 "heyman"
("heyman", "")

ghci 32> splitAt (−3) "heyman"
("", "heyman")

ghci 33> let (a, b) = splitAt 3 "foobar" in b ++ a
"barfoo"

2.8 takeWhile and dropWhile

takeWhile (which we’ve alread met) takes elements from a list while the predicate holds and then when
an element is encountered that doesn’t satisfy the predicate, it stops.

ghci 34> takeWhile (>3) [6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 4, 3, 2, 1]
[6, 5, 4]

ghci 35> takeWhile (6≡ ’ ’) "This is a sentence"
"This"

Say we wanted to know the sum of all third powers that are under 10000. We can’t just:

• map (↑3) over [1 . .],

• then apply a filter,

• and then try to sum up the result,

7

because filtering an infinite list never finishes. We may know that all the elements here are ascend-
ing, but Haskell doesn’t.

Instead, we can do this:

ghci 36> sum $ takeWhile (<10000) $ map (↑3) [1 . .]
53361

• we apply (↑3) to an infinite list;

• once an element that’s over 10000 is encountered, the list is cut off;

• now we can sum up the resulting list.

dropWhile is similar to takeWhile, only it drops all the elements while the predicate is true.

ghci 37> dropWhile (6≡ ’ ’) "This is a sentence"
" is a sentence"

ghci 38> dropWhile (<3) [1, 2, 2, 2, 3, 4, 5, 4, 3, 2, 1]
[3, 4, 5, 4, 3, 2, 1]

2.9 span and break

span is like takeWhile, only it returns a pair of lists:

• the first list contains everything in the list resulting from takeWhile;

• the second list contains the part of the list that would have been dropped by takeWhile.

ghci 39> span (6≡ ’ ’) "This is a sentence"
("This", " is a sentence")

ghci 40> let
(fw, rest) = span (6≡ ’ ’) "This is a sentence"

in
"First word:"++ fw ++ ", the rest:"++ rest

"First word:This, the rest: is a sentence"

Whereas span spans the list while the predicate is true, break breaks it when the predicate is first
true:

• doing break p is the equivalent of doing span (¬ ◦ p).

ghci 41> break (≡ 4) [1, 2, 3, 4, 5, 6, 7]
([1, 2, 3], [4, 5, 6, 7])

8

ghci 42> span (6≡ 4) [1, 2, 3, 4, 5, 6, 7]
([1, 2, 3], [4, 5, 6, 7])

When using break, the second list in the result will start with the first element that satisfies the
predicate.

2.10 sort

sort simply sorts a list. The type of list elements has to be in the Ord typeclass so that the elements can
be sorted.

ghci 43> sort [8, 5, 3, 2, 1, 6, 4, 2]
[1, 2, 2, 3, 4, 5, 6, 8]

ghci 44> sort "This will be sorted soon"
" Tbdeehiillnooorssstw"

2.11 group

group takes a list and groups adjacent elements into sublists if they are equal.

ghci 45> group [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 2, 2, 2, 5, 6, 7]
[[1, 1, 1, 1], [2, 2, 2, 2], [3, 3], [2, 2, 2], [5], [6], [7]]

If we sort a list before grouping it, we can find out how many times each element appears in the
list.

ghci 46> map (λl@(x : xs)→ (x, length l)) ◦ group ◦ sort $ [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 2, 2, 2, 5, 6, 7]
[(1, 4), (2, 7), (3, 2), (5, 1), (6, 1), (7, 1)]

2.12 inits and tails

inits and tails are like init and tail, only they recursively apply init / tail to a list until there’s nothing
left.

ghci 47> inits "w00t"
["", "w", "w0", "w00", "w00t"]

ghci 48> tails "w00t"
["w00t", "00t", "0t", "t", ""]

ghci 49> let w = "w00t" in zip (inits w) (tails w)

[("", "w00t"), ("w", "00t"), ("w0", "0t"), ("w00", "t"), ("w00t", "")]

9

2.12.1 Example: Searching through a list for a sublist with foldl and tails

Let’s use a fold to implement searching through a list for a sublist.

ghci 50> let {search :: (Eq a)⇒ [a]→ [a]→ Bool;
search needle haystack =

let nlen = length needle
in foldl (λacc x→ if take nlen x ≡ needle then True else acc)

False
(tails haystack)}

• first we call tails on the list through which we’re searching;

• then we go over each tail and see if it starts with what we’re looking for.

ghci 51> search "cat" "i’m a cat burglar"
True

2.13 isPrefixOf and isSuffixOf

With that, we actually just made a function that behaves like isInfixOf .
isInfixOf searches for a sublist within a list and returns True if the sublist we’re looking for is some-

where inside the target list.

ghci 52> "cat" ‘isInfixOf ‘ "i’m a cat burglar"
True

ghci 53> "Cat" ‘isInfixOf ‘ "i’m a cat burglar"
False

ghci 54> "cats" ‘isInfixOf ‘ "i’m a cat burglar"
False

isPrefixOf and isSuffixOf search for a sublist at the beginning and at the end of a list, respectively.

ghci 55> "hey" ‘isPrefixOf ‘ "hey there!"
True

ghci 56> "hey" ‘isPrefixOf ‘ "oh hey there!"
False

10

ghci 57> "there!" ‘isSuffixOf ‘ "oh hey there!"
True

ghci 58> "there!" ‘isSuffixOf ‘ "oh hey there"
False

2.14 partition

partition takes a predicate and a list and returns a pair of lists:

• the first list in the result contains all the elements that satisfy the predicate;

• the second contains all the ones that don’t.

ghci 59> partition (∈ [’A’ . . ’Z’]) "BOBsidneyMORGANeddy"
("BOBMORGAN", "sidneyeddy")

ghci 60> partition (>3) [1, 3, 5, 6, 3, 2, 1, 0, 3, 7]
([5, 6, 7], [1, 3, 3, 2, 1, 0, 3])

It’s important to understand how this is different from span and break:

• span and break are done once they encounter the first element that doesn’t / does satisfy the
predicate;

• in contrast, partition goes through the whole list and splits it up according to the predicate.

ghci 61> span (∈ [’A’ . . ’Z’]) "BOBsidneyMORGANeddy"
("BOB", "sidneyMORGANeddy")

2.15 find

find takes a predicate and a list and returns the first element that satisfies the predicate. But it returns
that element wrapped in a Maybe value.

We’ll be covering algebraic data types in depth soon but for now, this is what we need to know:

• a Maybe value can either be Just < something> or Nothing;

• much like a list can be either an empty list or a list with some elements, a Maybe value can be
either ‘no elements’ or a single element;

• and just like the type of a list of integers is [Int], the type of maybe having an integer is Maybe Int.

ghci 62> find (>4) [1, 2, 3, 4, 5, 6]
Just 5

11

ghci 63> find (>9) [1, 2, 3, 4, 5, 6]
Nothing

ghci 64> : t find
find :: (a→ Bool)→ [a]→ Maybe a

ghci 65> :! hoogle -- info find
Data.List find :: (a -> Bool) -> [a] -> Maybe a

The find function takes a predicate and a list and returns the first element in the list matching
the predicate, or Nothing if there is no such element.

From package base find :: (a -> Bool) -> [a] -> Maybe a

2.16 elemIndex and elemIndices

elemIndex is similar to elem, only it doesn’t return a boolean value but a Maybe index:

• if the element we’re looking for is in our list, it returns its index wrapped in a Just;

• if the element is not in our list, it returns a Nothing.

ghci 66> : t elemIndex
elemIndex :: Eq a⇒ a→ [a]→ Maybe Int

ghci 67> :! hoogle -- info elemIndex
Data.List elemIndex :: Eq a => a -> [a] -> Maybe Int

The elemIndex function returns the index of the first element in the given list which is equal
(by ==) to the query element, or Nothing if there is no such element.

From package base elemIndex :: Eq a => a -> [a] -> Maybe Int

ghci 68> 4 ‘elemIndex‘ [1, 2, 3, 4, 5, 6]
Just 3

ghci 69> 10 ‘elemIndex‘ [1, 2, 3, 4, 5, 6]
Nothing

ghci 70> import Data.Maybe (fromJust)

12

ghci 71> fromJust (4 ‘elemIndex‘ [1, 2, 3, 4, 5, 6])
3

ghci 72> [1, 2, 3, 4, 5, 6] !! fromJust (4 ‘elemIndex‘ [1, 2, 3, 4, 5, 6])
4

elemIndices is like elemIndex, only it returns a list of indices – in case the element we’re looking for
appears several times in our list.

Because we’re using a list to represent the indices, we don’t need a Maybe type: failure is represented
as the empty list, which is very much synonymous to Nothing.

ghci 73> : t elemIndices
elemIndices :: Eq a⇒ a→ [a]→ [Int]

ghci 74> :! hoogle -- info elemIndices
Data.List elemIndices :: Eq a => a -> [a] -> [Int]

The elemIndices function extends elemIndex, by returning the indices of all elements equal
to the query element, in ascending order.

From package base elemIndices :: Eq a => a -> [a] -> [Int]

ghci 75> ’ ’ ‘elemIndices‘ "Where are the spaces?"
[5, 9, 13]

ghci 76> map ("Where are the spaces?"!!) (’ ’ ‘elemIndices‘ "Where are the spaces?")
" "

2.17 findIndex and findIndices

findIndex is like find, but it returns the index of the first element that satisfies the predicate wrapped in
a Maybe.

findIndices returns the indices of all elements that satisfy the predicate in the form of a list.

ghci 77> findIndex (≡ 4) [5, 3, 2, 1, 6, 4]
Just 5

ghci 78> findIndex (≡ 7) [5, 3, 2, 1, 6, 4]
Nothing

13

ghci 79> [5, 3, 2, 1, 6, 4] !! fromJust (findIndex (≡ 4) [5, 3, 2, 1, 6, 4])
4

ghci 80> findIndices (∈ [’A’ . . ’Z’]) "Where Are The Caps?"
[0, 6, 10, 14]

ghci 81> map ("Where Are The Caps?"!!) (findIndices (∈ [’A’ . . ’Z’]) "Where Are The Caps?")
"WATC"

2.18 zip3, zipWith3, zip4, zipWith4, . . .

We already covered zip and zipWith. We noted that they zip together two lists, either in a tuple or with
a binary function (i.e., a function that takes two parameters).

But what if we want to zip together three lists? Or zip three lists with a function that takes three
parameters? We have zip3, zip4 etc. for that, and zipWith3, zipWith4 etc. These variants go up to 7.

ghci 82> zipWith3 (λx y z→ x + y + z) [1, 2, 3] [4, 5, 2, 2] [2, 2, 3]
[7, 9, 8]

ghci 83> zip4 [2, 3, 3] [2, 2, 2] [5, 5, 3] [2, 2, 2]
[(2, 2, 5, 2), (3, 2, 5, 2), (3, 2, 3, 2)]

Just like with normal zipping, lists that are longer than the shortest list that’s being zipped are cut
down to size.

2.19 lines and unlines

lines is a useful function when dealing with files or input from somewhere. It takes a string and returns
every line of that string in a separate list.

ghci 84> lines "first line\nsecond line\nthird line"
["first line", "second line", "third line"]

’\n’ is the character for a unix newline. Backslashes have special meaning in Haskell strings and
characters.

unlines is the inverse function of lines. It takes a list of strings and joins them together using a ’\n’.

ghci 85> unlines ["first line", "second line", "third line"]
"first line\nsecond line\nthird line\n"

2.20 words and unwords

words and unwords are for splitting a line of text into words or joining a list of words into a text.

14

ghci 86> words "hey these are the words in this sentence"
["hey", "these", "are", "the", "words", "in", "this", "sentence"]

ghci 87> words "hey these are the words in this\nsentence"
["hey", "these", "are", "the", "words", "in", "this", "sentence"]

ghci 88> unwords ["hey", "there", "mate"]
"hey there mate"

2.21 delete, \\, union and intersect

delete takes an element and a list and deletes the first occurence of that element in the list.

ghci 89> delete ’h’ "hey there ghang!"
"ey there ghang!"

ghci 90> delete ’h’ ◦ delete ’h’ $ "hey there ghang!"
"ey tere ghang!"

ghci 91> delete ’h’ ◦ delete ’h’ ◦ delete ’h’ $ "hey there ghang!"
"ey tere gang!"

\\ is the list difference function. It acts like set difference: for every element in the right-hand list,
it removes the first matching element in the left one.

ghci 92> [1 . . 10] \\ [2, 5, 9]
[1, 3, 4, 6, 7, 8, 10]

ghci 93> "He is a big baby" \\ "big"
"He s a i baby"

ghci 94> "He is a big baby" \\ " big"
"Hes a i baby"

ghci 95> "He is a big baby" \\ "big "
"Hes a i baby"

15

ghci 96> "He is a big baby" \\ "bbig "
"Hesa i aby"

Here’s another example that makes the behavior of \\ very clear: doing [1 . . 10] \\ [2, 5, 9] is like
doing:

ghci 97> delete 2 ◦ delete 5 ◦ delete 9 $ [1 . . 10]
[1, 3, 4, 6, 7, 8, 10]

union also acts like a function on sets: it returns the union of two lists.
In particular, it goes over every element in the second list and appends it to the first one if it isn’t

already in yet.
Duplicates are removed from the second list (only).

ghci 98> "hey man" ‘union‘ "man what’s up"
"hey manwt’sup"

ghci 99> [1 . . 7] ‘union‘ [5 . . 10]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

intersect works like set intersection. It returns only the elements that are found in both lists.

ghci 100> [1 . . 7] ‘intersect‘ [5 . . 10]
[5, 6, 7]

2.22 insert

insert takes an element and a list of elements that can be sorted and inserts it into a specific position in
the list.

The position is determined as follows: insert starts at the beginning of the list, keeps going until
it finds an element that’s equal to or greater than the element that we’re inserting, and it does the
insertion right before that element.

ghci 101> insert 4 [3, 5, 1, 2, 8, 2]
[3, 4, 5, 1, 2, 8, 2]

ghci 102> insert 4 [1, 3, 4, 4, 1]
[1, 3, 4, 4, 4, 1]

The 4 is inserted right after the 3 and before the 5 in the first example and in between the 3 and 4 in
the second example.

If we use insert to insert into a sorted list, the resulting list will still be sorted.

16

ghci 103> sort [3, 5, 1, 2, 8, 2]
[1, 2, 2, 3, 5, 8]

ghci 104> insert 4 $ sort [3, 5, 1, 2, 8, 2]
[1, 2, 2, 3, 4, 5, 8]

ghci 105> insert ’g’ $ [’a’ . . ’f’] ++ [’h’ . . ’z’]
"abcdefghijklmnopqrstuvwxyz"

2.23 genericLength, genericTake, genericDrop, genericSplitAt, genericIndex, genericReplicate

What length, take, drop, splitAt, !! and replicate have in common is that they take an Int as one of their
parameters or return an Int.

But they could be more generic if they just took any type that’s part of the Integral or Num type-
classes (depending on the functions).

That’s why Data.List provides their more generic equivalents genericLength, genericTake, genericDrop,
genericSplitAt, genericIndex and genericReplicate, respectively.

For instance, length has this type signature:

ghci 106> : t length
length :: [a]→ Int

If we try to get the average of a list of numbers by doing let xs = [1 . . 6] in sum xs / length xs, we
get a type error, because we can’t use / with an Int.

ghci 107> let xs = [1 . . 6] in sum xs / length xs

genericLength, on the other hand, has this type signature:

ghci 108> : t genericLength
genericLength :: Num i⇒ [b]→ i

Because a Num can act like a floating point number, getting the average like this works out just fine:

ghci 109> let xs = [1 . . 6] in sum xs / genericLength xs
3.5

17

	Modules
	Importing modules
	Importing functions from modules
	Importing modules without certain functions
	Qualified imports

	Data.List
	nub
	intersperse and intercalate
	concat and concatMap
	and and or
	any and all
	iterate
	splitAt
	takeWhile and dropWhile
	span and break
	sort
	group
	inits and tails
	Example: Searching through a list for a sublist with foldl and tails

	isPrefixOf and isSuffixOf
	partition
	find
	elemIndex and elemIndices
	findIndex and findIndices
	zip3, zipWith3, zip4, zipWith4, …
	lines and unlines
	words and unwords
	delete, 92 92 , union and intersect
	insert
	genericLength, genericTake, genericDrop, genericSplitAt, genericIndex, genericReplicate

