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1 Folds

Back when we were dealing with recursion, we noticed a theme throughout many of the recursive
functions that operated on lists:

• we had an edge case for the empty list

• we introduced the x : xs pattern and then we did some action that involved a single element and
the rest of the list

∗Based primarily on Learn You a Haskell for Great Good! by Miran Lipovača, http://learnyouahaskell.com/.
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It turns out this is a very common pattern, so a couple of very useful functions were introduced to
encapsulate it. These functions are called folds. They’re like the map function, only they reduce the list
that map outputs to a single value.

That is, a fold takes:

• a binary function

• a starting value, a.k.a. the accumulator

• a list to fold up

And the fold works as follows:

• the binary function is called with the accumulator and the first element of the list (or the last
element, depending on whether we fold from the left or from the right), and produces a new
accumulator

• then, the binary function is called again with the new accumulator and the now new first (or last)
element, and so on

• once we’ve walked over the whole list, only the accumulator remains, which is what we’ve re-
duced the list to

The accumulator value (and hence the result) of a fold can be of any type. It can be a number, a
boolean or even a new list.

Folds can be used to implement any function where you traverse a list once, element by element,
and then return something based on that.

Whenever you want to traverse a list to return something, chances are you want a fold. That’s
why folds are, along with maps and filters, one of the most useful types of functions in functional
programming.

2 Left folds

First let’s take a look at the foldl function, also called the left fold:

• it folds the list up from the left side

• the binary function is applied to the starting accumulator and the head of the list

• that produces a new accumulator value and the binary function is called with that value and the
next element of the list etc.

Here’s its type:

ghci 1> : t foldl
foldl :: (a→ b→ a)→ a→ [b ]→ a

And here’s the documentation for foldl:
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ghci 2> :! hoogle -- info foldl
Prelude foldl :: (a -> b -> a) -> a -> [b] -> a

foldl, applied to a binary operator, a starting value (typically the left-identity of the opera-
tor), and a list, reduces the list using the binary operator, from left to right:

foldl f z [x1, x2, ..., xn ] ≡ (...((z ‘f ‘ x1) ‘f ‘ x2) ‘f ‘ ...) ‘f ‘ xn

The list must be finite.

From package base foldl :: (a -> b -> a) -> a -> [b] -> a

2.1 Implementing sum again

Let’s implement sum again, only this time we’ll use a fold instead of explicit recursion.

ghci 3> let {sum′ :: (Num a)⇒ [a ]→ a;
sum′ xs = foldl (λacc x→ acc + x) 0 xs}

Note how the starting value / accumulator 0 is indeed the left (and right) identity of the binary
operator +.

ghci 4> sum′ [3, 5, 2, 1 ]
11

Let’s examine how this fold happens:

• λacc x→ acc + x is the binary function

• 0 is the starting accumulator and xs is the list to be folded up

• first, 0 is used as the acc argument of the binary function and 3 is used as the x (i.e., the current
element) argument; 0 + 3 produces a 3 and this becomes the new accumulator value

• next, 3 is used as the accumulator value and 5 as the current element and 8 becomes the new
accumulator value

• now 8 is the accumulator value, 2 the current element, and the resulting new accumulator value
is 10

• finally, 10 is used as the accumulator value and 1 as the current element, producing an 11

This example makes it very clear that folds are really the functional-language counterparts of list-
based loops in imperative languages.

If we take into account that functions are curried, we can write the implementation of sum′ even
more succinctly in point free style:

ghci 5> let {sum′ :: (Num a)⇒ [a ]→ a;
sum′ = foldl (+) 0}

The lambda function (λacc x → acc + x) is the same as (+). And we can omit xs as the argument
because calling foldl (+) 0 will return a function that takes a list as its argument.
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ghci 6> sum′ [3, 5, 2, 1 ]
11

2.2 Implementing elem again

Let’s implement elem again, only this time with a left fold.

ghci 7> let {elem′ :: (Eq a)⇒ a→ [a ]→ Bool;
elem′ y ys = foldl (λacc x→ if x ≡ y then True else acc) False ys}

The starting accumulator here has to be a boolean value since the accumulator and the end result
are always of the same type when dealing with folds. If you don’t know what to use as a starting
accumulator, this will give you some idea.

In this particular case, it makes sense to use False as a starting accumulator:

• we assume the element is not in the set until proven otherwise;

• nice consequence: if we call the fold with an empty list, the result will be just the starting value.

The elem′ function checks whether the current element in the list is the element we’re looking for:

• if it is, we set the accumulator to True;

• if it isn’t, we just leave the accumulator unchanged:

– if it was False before, it stays that way;
– and if it was True, we already have our final result so we don’t touch it.

ghci 8> 3 ‘elem′‘ [2, 3, 5, 7 ]
True

ghci 9> 9 ‘elem′‘ [2, 3, 5, 7 ]
False

We can rewrite this function in (almost) point free style too:

ghci 10> let {elem′′ :: (Eq a)⇒ a→ [a ]→ Bool;
elem′′ y = foldl (λacc x→ if x ≡ y then True else acc) False}

ghci 11> 3 ‘elem′′‘ [2, 3, 5, 7 ]
True

ghci 12> 9 ‘elem′′‘ [2, 3, 5, 7 ]
False
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3 Right folds

The right fold foldr works in a similar way to the left fold, except:

• we fold the list from the right;

• while the left fold’s binary function has the accumulator as the first argument and the current
value as the second one

λacc x→ ... (binary operator for foldl)

the right fold’s binary function has the current list element as the first argument and the accumu-
lator as the second one:

λx acc→ ... (binary operator for foldr)

These two differences go together: the binary function in a right fold takes the accumulator on the
right because we are folding the list from the right side.

Here’s the type of foldr:

ghci 13> : t foldr
foldr :: (a→ b→ b)→ b→ [a ]→ b

• as you can see, the type of the accumulator and also the type of the resulting value is b, while the
type of entities in the list to be folded over is a;

• and as we already mentioned, the binary operator is of type a→ b→ b, i.e., it takes a list element
as its first argument and the accumulator as its second argument;

• but unfortunately, the foldr function overall does not take the whole list (of type [a ]) as its first
argument and the accumulator as its second argument; instead, it preserves the same argument
order as foldl: the first argument is the accumulator and the list is the second argument;

• while this makes things a bit confusing (the binary operator has its arguments reversed, but foldr
as a whole doesn’t), it helps if we want to use foldr point-free style: we can simply specify the
accumulator and omit the list to be folded over, just like we do for foldl.

Finally, here’s the documentation for foldr:

ghci 14> :! hoogle -- info foldr
Prelude foldr :: (a -> b -> b) -> b -> [a] -> b

foldr, applied to a binary operator, a starting value (typically the right-identity of the oper-
ator), and a list, reduces the list using the binary operator, from right to left:

foldr f z [x1, x2, ..., xn ] ≡ x1 ‘f ‘ (x2 ‘f ‘ ...(xn ‘f ‘ z)...)

From package base foldr :: (a -> b -> b) -> b -> [a] -> b
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3.1 Implementing map

We’ll be implementing the map function with a right fold:

• the accumulator will be a list and we’ll accumulate the mapped list element by element;

• so the starting accumulator has to be an empty list.

ghci 15> let {map′ :: (a→ b)→ [a ]→ [b ];
map′ f xs = foldr (λx acc→ f x : acc) [ ] xs}

Implementing map with a right fold is the efficient thing to do: we start folding from the right, i.e.,
from the end of the list to be mapped over, so we can incrementally build the output list by prepending
elements. And recall that the prepend operator : is much more efficient than concatenation ++, which
is what we would have to use with a left fold:

• the list on the right-hand side of the prepend : or concat ++ operators is always left untouched,

• while the list on the left-hand side of the concat ++ operator is always ‘decomposed’ element by
element from the end to the beginning, and these elements are prepended to the right-hand side
list one at a time.

We’ll come back to this in a moment. Now let’s look at an example involving the map′ function to
see how foldr works step by step:

ghci 16> map′ (+3) [1, 2, 3 ]
[4, 5, 6 ]

When we map the unary function (+3) over the list [1, 2, 3 ] with map′, we approach the list from
the right:

• we take the last element, which is 3, and apply the function (+3) to it, which results in 6

• we prepend the result to the accumulator, which is [ ], so the new accumulator is 6 : [ ], i.e., [6 ]

• now we apply (+3) to 2, and we prepend the result to the current accumulator; so the accumu-
lator is now 5 : [6 ], i.e., [5, 6 ]

• finally, we apply (+3) to 1 and prepend that to the current accumulator; so the final result is
4 : [5, 6 ], i.e., [4, 5, 6 ]

Just as with functions involving foldl, we could write the map′ function in point free style because
of the (somewhat confusing, but convenient) order in which the accumulator and list arguments are
fed to the foldr function:

ghci 17> let {map′′ :: (a→ b)→ [a ]→ [b ];
map′′ f = foldr (λx acc→ f x : acc) [ ]}

ghci 18> map′′ (+3) [1, 2, 3 ]
[4, 5, 6 ]
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4 Right folds vs. left folds

Note that we can implement the map function with a left fold too.

ghci 19> let {map′′′ :: (a→ b)→ [a ]→ [b ];
map′′′ f = foldl (λacc x→ acc ++ [ f x ]) [ ]}

ghci 20> map′′′ (+3) [1, 2, 3 ]
[4, 5, 6 ]

But as we already discussed, the ++ function is much more expensive than :, so we usually use right
folds when we’re building up new lists from a list.

In addition, right folds work on infinite lists while left folds don’t:

• if we take an infinite list, choose an element and fold the list up from the right starting with that
element, we’ll eventually reach the beginning of the list;

• however, if we take an infinite list and we try to fold it up from the left, we’ll never reach the end.

5 Folding without explicit accumulators: foldl1 and foldr1

The foldl1 and foldr1 functions work like foldl and foldr, except we don’t need to provide an explicit
starting accumulator:

• they take the first (or last) element of the list to be the starting accumulator and then start the fold
with the element next to it.

Here are their types and documentation:

ghci 21> : t foldl1
foldl1 :: (a→ a→ a)→ [a ]→ a

ghci 22> :! hoogle -- info foldl1
Prelude foldl1 :: (a -> a -> a) -> [a] -> a

foldl1 is a variant of foldl that has no starting value argument, and thus must be applied to
non-empty lists.

From package base foldl1 :: (a -> a -> a) -> [a] -> a

ghci 23> : t foldr1
foldr1 :: (a→ a→ a)→ [a ]→ a
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ghci 24> :! hoogle -- info foldr1
Prelude foldr1 :: (a -> a -> a) -> [a] -> a

foldr1 is a variant of foldr that has no starting value argument, and thus must be applied to
non-empty lists.

From package base foldr1 :: (a -> a -> a) -> [a] -> a

Because foldl1 and foldr1 depend on the lists they fold up having at least one element, they cause
runtime errors if called with empty lists. foldl and foldr on the other hand work fine with empty lists.

When making a fold, think about how it acts on an empty list: if the function doesn’t make sense
when given an empty list, you can probably use a foldl1 or foldr1 to implement it.

5.1 Implementing sum again

We can now implement the sum function in a very clear and concise (point free) way:

ghci 25> let sum′ = foldl1 (+)

ghci 26> sum′ [1 . . 10 ]
55

6 Strict folds

foldl′ and foldl1′ are stricter versions of their respective lazy incarnations. They are made available in
the Data.List module, which will be discussed in the following set of lecture notes.

We need strict folds because when we use lazy folds on really big lists, we might get stack overflow
errors:

• the accumulator value isn’t actually updated as the folding happens because of the lazy nature
of the folds;

• what actually happens is that the accumulator makes a promise that it will compute its value
when asked to actually produce the result; this promise is called a thunk;

• and this happens for every intermediate accumulator, so all those thunks overflow the stack.

The strict folds aren’t lazy and actually compute the intermediate values as they go along instead
of filling up the stack with thunks.

So if you ever get stack overflow errors when doing lazy folds, try switching to their strict versions.

ghci 27> :! hoogle -- info "foldl’"
Data.List foldl’ :: (a -> b -> a) -> a -> [b] -> a

A strict version of foldl.

From package base foldl’ :: (a -> b -> a) -> a -> [b] -> a
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ghci 28> :! hoogle -- info "foldl1’"
Data.List foldl1’ :: (a -> a -> a) -> [a] -> a

A strict version of foldl1

From package base foldl1’ :: (a -> a -> a) -> [a] -> a

Strict right folds, i.e., the foldr′ and foldr1′ functions, are made available in various other modules,
for example:

ghci 29> :! hoogle -- info "foldr’"
Data.Foldable foldr’ :: Foldable t => (a -> b -> b) -> b -> t a -> b

Fold over the elements of a structure, associating to the right, but strictly.

From package base foldr’ :: Foldable t => (a -> b -> b) -> b -> t a -> b

ghci 30> :! hoogle -- info "foldr1’"
Data.ByteString.Char8 foldr1’ :: (Char -> Char -> Char) -> ByteString -> Char

A strict variant of foldr1

From package bytestring foldr1’ :: (Char -> Char -> Char) -> ByteString -> Char

7 More examples with folds

To see how powerful folds are, we’re going to implement a bunch of standard library functions by
using folds. This is also excellent practice for writing ‘looping’ functions in a purely functional manner.

We’ll use point free style extensively because it enables us to focus on the functions themselves
rather than the data we operate on.

7.1 Implementing maximum again

ghci 31> let {maximum′ :: (Ord a)⇒ [a ]→ a;
maximum′ = foldr1 (λx acc→ if x > acc then x else acc)}

7.2 Implementing reverse again

ghci 32> let {reverse′ :: [a ]→ [a ];
reverse′ = foldl (λacc x→ x : acc) [ ]}

Our reverse′ definition takes the empty list as the starting accumulator, approaches our list from the
left and prepends to the accumulator. In the end, we build up a reversed list.

Note that λacc x → x : acc looks like the prepend : function, only its arguments are flipped. That’s
why we could have also written our reverse′ as:

foldl (flip (:)) [ ]
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7.3 Implementing product

ghci 33> let {product′ :: (Num a)⇒ [a ]→ a;
product′ = foldr1 (∗)}

7.4 Implementing filter

ghci 34> let {filter′ :: (a→ Bool)→ [a ]→ [a ];
filter′ p = foldr (λx acc→ if p x then x : acc else acc) [ ]}

7.5 Implementing head again

ghci 35> let {head′ :: [a ]→ a;
head′ = foldr1 (λx → x)}

head is more clearly implemented by pattern matching, which is what we did before, but we can
also do it using folds.

The previous pattern-matching implementation is provided below for ease of reference:

(1) head′ :: [a ]→ a
head′ [ ] = error "Can’t call head on an empty list, dummy!"
head′ (x: _) = x

7.6 Implementing last

ghci 36> let { last′ :: [a ]→ a;
last′ = foldl1 (λ x→ x)}

7.7 Summary: Unpacking the folds into successive function applications

Another way to picture right and left folds (already hinted at in the documentation) is as follows.
Suppose we have a right fold with the binary function f and the starting accumulator z. If we’re

right folding over the list [3, 4, 5, 6 ], we’re essentially doing this:

f 3 (f 4 (f 5 (f 6 z)))

That is, f is called with the last element in the list and the accumulator, the result is given as the
accumulator to the penult value, and so on.

For example, if we take f to be + and the starting accumulator value to be 0, we have:

3 + (4 + (5 + (6 + 0)))

Similarly, doing a left fold over that list with g as the binary function and z as the starting accumu-
lator is the equivalent of:
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g (g (g (g z 3) 4) 5) 6

For example, if g is the flip (:) function and [ ] is the starting accumulator (so we’re reversing the
list), then calling foldl on the list [3, 4, 5, 6 ] is equivalent to:

flip (:) (flip (:) (flip (:) (flip (:) [ ] 3) 4) 5) 6

And if we evaluate this expression, we get 6 : 5 : 4 : 3 : [ ], i.e., [6, 5, 4, 3 ], as expected.

8 Scans

scanl and scanr are like foldl and foldr, but they report all the intermediate accumulator states in the
form of a list. Similarly, scanl1 and scanr1 are analogous to foldl1 and foldr1.

ghci 37> :! hoogle -- info scanl
Prelude scanl :: (a -> b -> a) -> a -> [b] -> [a]

scanl is similar to foldl, but returns a list of successive reduced values from the left:

scanl f z [x1, x2, ... ] ≡ [z, z ‘f ‘ x1, (z ‘f ‘ x1) ‘f ‘ x2, ... ]

Note that

last (scanl f z xs) ≡ foldl f z xs ◦

From package base scanl :: (a -> b -> a) -> a -> [b] -> [a]

ghci 38> :! hoogle -- info scanr
Prelude scanr :: (a -> b -> b) -> b -> [a] -> [b]

scanr is the right-to-left dual of scanl. Note that

head (scanr f z xs) ≡ foldr f z xs ◦

From package base scanr :: (a -> b -> b) -> b -> [a] -> [b]

As the documentation makes clear, when using a scanl, the final result will be in the last element of
the resulting list while a scanr will place the result in the head.

Scans are used to monitor the progression of a function that can be implemented as a fold. Here are
some examples:

ghci 39> scanl (+) 0 [3, 5, 2, 1 ]
[0, 3, 8, 10, 11 ]

ghci 40> scanl1 (+) [3, 5, 2, 1 ]
[3, 8, 10, 11 ]

Note that scanl (+) 0, and scanl1 (+) in particular, are just ways of obtaining cumulative sums over
a list, which are useful for the examination of empirical probability distributions among other things.
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ghci 41> scanl (flip (:)) [ ] [3, 2, 1 ]
[ [ ], [3 ], [2, 3 ], [1, 2, 3 ] ]

ghci 42> scanr (+) 0 [3, 5, 2, 1 ]
[11, 8, 3, 1, 0 ]

ghci 43> scanr1 (+) [3, 5, 2, 1 ]
[11, 8, 3, 1 ]

ghci 44> scanl1 (λacc x→ if x > acc then x else acc) [3, 4, 5, 3, 7, 9, 2, 1 ]
[3, 4, 5, 5, 7, 9, 9, 9 ]

8.1 Sum the square roots of natural numbers until we exceed 1000

Let’s answer this question: how many numbers does it take for the sum of the square roots of all
natural numbers to exceed 1000?

• to get the square roots of all natural numbers, we just do map sqrt [1 . . ];

• now, to get the sum, we could do a fold, but we’re going to do a scan because we’re interested in
how the sum progresses;

• once we’ve done the scan, we just see how many sums are under 1000.

ghci 45> let {sqrtSums :: Int;
sqrtSums = 1 + length (takeWhile (<1000) $ scanl1 (+) $ map sqrt [1 . . ])}

• the first sum in the scan list will be 1;

• the second will be 1 plus the square root of 2;

• the third will be that plus the square root of 3, and so on;

• if there are X sums under 1000, then it takes X + 1 elements for the sum to exceed 1000.

ghci 46> sqrtSums
131

We use takeWhile here instead of filter because filter doesn’t work on infinite lists:

• we know the list is ascending, but filter doesn’t;

• so we use takeWhile to cut the scan list off at the first occurence of a sum greater than 1000.
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ghci 47> sum $ map sqrt [1 . . 131 ]
1005.0942035344083

ghci 48> sum $ map sqrt [1 . . 130 ]
993.6486803921487
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