Computing Dynamic Meanings: Building Integrated Competence-Performance Theories for Semantics

Day 3, part 1: Introduction to Bayesian estimation for linguists

Jakub Dotlačil & Adrian Brasoveanu

ESSLLI 2018, August 8 2018

Plan: the basics of Bayesian statistical modeling

- Bayesian methods are not specific to ACT-R, or to cognitive modeling
- a general framework for doing plausible inference over data – both categorical ('symbolic') and numerical ('subsymbolic') data

.

Why a Bayesian 'detour'?

- Main goal: integrated, fully formalized theories of competence and performance
- That is, theories that formally / explicitly link:
 - theoretical constructs postulated by generative linguists
 - experimental data generated by widely used psycholinguistics methodologies
- The ACT-R cognitive architecture provides the bridge between ling. theory and exp. data
- ACT-R's performance / subsymbolic components come with a good number of numerical parameters / 'knobs'
- the 'knobs' need to be dialed in to specific settings based on (numerical) experimental data
- Bayesian methods do the 'dialing in' + extra useful stuff information about ranges of 'reasonable' values (credible intervals), quantitative comparison of alternative qualitative theories etc.

The Python libraries we need

- numpy: fast numerical and vectorial operations
- matplotlib and seaborn: plotting facilities
- pandas: data frames, i.e., data structures well suited for data analysis
 - Excel sheets on steroids; similar to R data frames
- finally, pymc3: the library for Bayesian modeling Monte Carlo (MC) methods for Python3

Loading the libraries

>>>	import numpy as np	1
		2
>>>	<pre>import matplotlib as mpl</pre>	3
>>>	<pre>import matplotlib.pyplot as plt</pre>	4
>>>	<pre>plt.style.use('seaborn')</pre>	5
>>>	import seaborn as sns	6
		7
>>>	import pandas as pd	8
		9
>>>	import pymc3 as pm	10

The data

- very simple data set from chapter 3 of Johnson (2008)
- download here: http://media.wiley.com/product_ancillary/46/14051442/ DOWNLOAD/3phonetics.zip
- unpack the zip file, the file containing the data set is cherokeeVOT.txt
- load data (values separated by a tab):

The data (ctd.)

31

Examine the data set:

79 2001

```
>>> VOT data.shape
(44, 3)
>>> VOT data.head(n=3)
   VOT year Consonant
   67
       1971
 127 1971
   79 1971
                    k
>>> VOT data.iloc[[0, 8, 18, 31], :]
    VOT year Consonant
    67
        1971
                     k
    109 1971
18 84 2001
                     k
```

.

10

11

12

The data (ctd.)

- voice onset times (VOTs) for the same speaker for:
 - 2 different years: 1971 and 2001
 - 2 consonants: [t] and [k]
- VOT is the point at which voicing/vocal fold vibration begins after the initial time of consonantal articulation
 - simple unaspirated voiceless stops like [t] in [khit] (kit) or [k] in [thik] (tic) have a VOT near 0: the voicing of a subsequent sonorant begins as soon as the stop is released.
 - aspirated stops like [kh] in [khIt] or [th] in [thIk] have a larger VOT: the voicing of the following vowel [I] does not start as soon as the stop is released.
 - the longer the VOT (the longer the vocal folds don't vibrate), the stronger the aspiration.

Main question about this data set

We can ask several questions about this data set; we focus on:

Did the VOT of the speaker change from 1971 to 2001? (aggregating over the 2 consonants)

q

Formalizing the main question

- so, we want to model VOT as a function of year
- one way: estimate the two means for the two years
- in a Bayesian framework, we estimate the means and our uncertainty about them – two full probability distributions, one for each of the means
- but: estimating mean VOTs will not give us a direct answer to our question: is there a difference in VOT between the two years?
- in a Bayesian framework, we could still answer the question given a two-mean model
- more straightforward (and closer to frequentist estimation) to estimate the difference between the two years directly

Formalizing the main question (ctd.)

- so, we estimate:
 - mean VOT for 1971 (together with our uncertainty about it)
 - mean difference between the 1971 VOT and 2001 VOT (together with our uncertainty about it)
- can obtain mean VOT for 2001 by starting with mean for 1971 and adding the difference
- to answer main question (did VOT change from 1971 to 2001?), we examine probability distribution for VOT difference:
 - is 'enough', e.g., 95%, of that probability distribution away from 0? (or some small region around 0)
 - if so, we're pretty confident the VOT changed

The structure of the statistical argument

- this type of argument is the opposite of what linguists are trying to do
- from very early on in our linguistic training:
 - we are presented with some data
 - we automatically assume there is a pattern in the data
 - we try to identify the pattern / generalization and build a theory to capture it
- as empirically-driven statistical modelers, we skeptically ask instead: is there really a pattern in the data?
- how sure are we that we're not hallucinating regularities in white noise / finding patterns in fleeting clouds?
- we're skeptical and quantify our (un)certainty about the presence of such patterns
- only if we are certain 'enough' that there is a pattern, we start building a theory for it

Formalizing the main question: final version

Our question about the VOT data set is unpacked as follows:

- i. can we actually show with enough credibility that the VOT actually changed between the two years (1971 and 2001)?
- ii. if we can, what is the magnitude of the change (in ms)?
- iii. finally, what is our uncertainty about that magnitude?

We're looking for an answer of the form:

- there was a change of x_{mean} ms on average
- we're 95% certain that the actual value of the change is somewhere in the interval $(x_{lower limit}, x_{upper limit})$
- this interval excludes 0, which shows that change is actually credible

Now, let's specify the actual model.

officially, the model we are about to specify is called a t-test, or a linear regression with one binary categorical predictor

How does Bayesian estimation work?

- start with a prior belief about the quantities of interest (VOT for 1971, VOT difference between 2001 and 1971)
 - 'prior': these are our beliefs before we see the data
 - beliefs take the form of full probability distributions: we say what values are possible for the quantities of interest and which of them plausible (before we see the data)
- then, update prior beliefs with the data stored in the "VOT" and "year" columns of our data set
- result: we shift/update our prior beliefs in the direction of the data; 2 posterior probability distributions
 - posterior distribution of the mean 1971 VOT
 - posterior distribution of VOT difference

More about posterior probability distributions

- posteriors: weighted average of the priors and the data
- if priors very strong (not the case here; see next slide), posteriors reflect the data to smaller extent
- if a lot of data, and with low variability, posteriors reflect data to larger / overwhelming extent

Weak priors

We have weak prior beliefs about VOTs. We know:

- VOT has to be positive (we're dealing with voiceless stops here)
- a VOT cannot really be more than 500-600 ms: the average word-per-minute rate is more than 100, so it takes about half a second (500 ms) to say a full word in normal speech
- prior belief for 1971 VOT: half-normal (half-Gaussian)
 with a standard deviation of 200 ms
- that is, a normal (Gaussian) distribution centered at 0 and 'folded over' so that all the probability mass over negative values gets transferred to the positive values

Weak prior for 1971 VOT

- ▶ plot a normal and half-normal dist. with sd = 200
- in the process, introduce basics of pymc3 models

```
>>> from pymc3.backends import SQLite
>>> from pymc3.backends.sqlite import load
>>> VOT model = pm.Model()
>>> with VOT model:
        norm = pm.Normal('norm', mu=0, sd=200)
        half norm = pm.HalfNormal('half norm',\
                                   sd=200)
        #db = SQLite('half_normal_trace.sqlite')
                                                     8
        #trace = pm.sample(draws=5000, trace=db, \
                                                     9
                            #n init=500)
                                                     10
        # load results / trace of previous run
                                                     11
        trace = load('half normal trace.sqlite')
                                                     12
                                                     13
```

```
>>> def generate half normal prior figure():
        fig, (ax1, ax2) = plt.subplots(ncols=2,\
. . .
                           nrows=1, sharey=True)
        fig.set size inches (4.6, 2.9)
        sns.distplot(trace['norm'], hist=True,\
                                                      5
                      ax=ax1)
                                                      6
        ax1.set xlabel('Normal density, sd = 200')
        sns.distplot(trace['half norm'], hist=True, \gamma
                      ax=ax2)
        ax2.set xlabel('Half-normal density,\
                                                      10
                        sd = 200'
                                                      11
        plt.tight layout(pad=0.5, w pad=0.2,
                                                      12
                          h pad=0.7
                                                      13
        plt.savefig('half normal prior.pgf')
                                                      14
        plt.savefig('half normal prior.pdf')
                                                      15
```

>>> generate half normal prior figure()

. . .

16

Figure: A normal and a half-normal probability density

Weak priors for 1971 VOT and VOT difference

- we use the half-normal density in the right panel of the figure as our prior for the 1971 VOT
 - very weak, low information prior with very mild constraints:
 - we know the VOT is positive
 - we think it is somewhere in the (0,600) ms interval, with a (reasonable) preference for the (0,400) ms interval
- we use the normal density in the left panel of the figure as our prior for the VOT difference
 - the prior allows for a positive difference (2001 VOT > 1971 VOT), a negative difference (2001 VOT < 1971 VOT), or 0 difference (2001 VOT = 1971 VOT)</p>
 - difference cannot be larger than 600 ms in absolute value since both VOTs are positive and at most about 600 ms

Model for the data: the likelihood function

- let's specify the model for how (we think) nature generated the data
- need to estimate 2 quantities:
 - the mean VOT for 1971: VOT_{1971}
 - the mean difference between the 1971 and the 2001 VOTs: $VOT_{2001-1971}$
- need to mathematically specify how VOT is a function of year with these 2 quantities
- rewrite the *year* variable as taking either a value of 0 (VOT from 1971) or a value of 1 (VOT from 2001) 'dummy coding' / 'one-hot encoding'

```
>>> VOT_data["dummy_year"] =\
... (VOT_data["year"] == 2001).astype("int")
```

Model for the data: the likelihood function

VOT as a function of year:

$$VOT = VOT_{1971} + year \cdot VOT_{2001-1971} + noise$$

- if *VOT* comes from 1971, our dummy-coding for *year* says that year = 0 $VOT = VOT_{1971} + 0 \cdot VOT_{2001-1971} + noise = VOT_{1971} + noise$
- if *VOT* comes from 2001, our dummy-coding for *year* says that year = 1 $VOT = VOT_{1971} + 1 \cdot VOT_{2001-1971} + noise = VOT_{2001} + noise$

Posterior beliefs

- we now implement the model and ask pymc3 to give us the posterior distributions for the quantities of interest
 - mean VOT 1971
 - mean_VOT_diff

Model implementation: priors

```
>>> year = np.array(VOT data["dummy year"])
>>> VOT = np.array(VOT data["VOT"])
>>> VOT model = pm.Model()
>>> with VOT model:
        # priors
        mean VOT 1971 =\
            pm.HalfNormal('mean VOT 1971', sd=200)
        mean VOT diff =\
                                                      8
            pm.Normal('mean VOT diff', mu=0,
. . .
                       sd=200)
                                                      10
        sigma = pm.HalfNormal('sigma', sd=200)
                                                      11
                                                      12
```

Model implementation: likelihood and posteriors

```
>>> with VOT_model:
        # likelihood
        observed VOT =\
            pm.Normal('observed VOT',
                mu=mean VOT 1971 + \
                   year*mean VOT diff,
                sd=sigma, observed=VOT)
        # sample posteriors
        #db = SQLite('VOT model trace.sqlite')
        #trace = pm.sample(draws=5000, trace=db, \
                                                     10
                            #n init=50000, njobs=4)
                                                     11
        # we use a previous run
                                                     12
        trace = load('VOT model trace.sqlite')
                                                     13
                                                     14
```

More about model likelihood

- each observed VOT: an imperfect, noisy reflection of the mean VOT for the year in which VOT was collected
- add normally distributed noise to that mean to obtain actual VOT
- this normal distribution for the noise has a standard deviation sigma
- we do not know how big the noise is, so specify weak, low information prior (half-normal because sigma has to be positive)
- likelihood for observed VOTs: normal distribution around the year mean with a sigma standard deviation

Estimated model parameters

- (i) the mean VOT for 1971 (mean_VOT_1971)
- (ii) the mean difference in VOT between 2001 and 1971 (mean_VOT_diff)
- (iii) the magnitude of the noise / dispersion of the actual VOTs around the two mean VOTs for years 1971 and 2001 (sigma)

Figure: VOT model: posterior distributions

Answering our theoretical question

To answer the theoretical question of interest, we examine the 95% credible interval (CRI) for the VOT difference:

(the 95% highest posterior density CRI; the central 95% CRI also OK)

```
>>> mean_VOT_difference = trace['mean_VOT_diff']
>>> pm.hpd(mean_VOT_difference).round(2)
array([-50.92, -5.39])
```

We are 95% certain that the difference in VOT between 2001 and 1971 is:

- negative
- between the values listed above

Other quantities of interest

We can find out information about other quantities of interest:

```
>>> mean VOT difference.mean().round(2)
-28.42
>>> mean_VOT_difference.std().round(2)
11.63
>>> mean VOT 1971 = trace['mean VOT 1971']
>>> mean VOT 1971.mean().round(2)
113.13
>>> mean VOT 1971.std().round(2)
9.02
>>> noise = trace['sigma']
                                                      10
>>> noise.mean().round(2)
                                                      11
37.19
                                                      12
>>> noise.std().round(2)
                                                      13
4.64
                                                      14
```

Quick comparison with frequentist estimation

Means & sd.s \approx frequentist ones, e.g., using lm() in R:

Summary

We've shown how to:

- formulate a Bayesian model for a problem of interest
- estimate the model parameters
- use the estimates to answer the theoretical question

Advantages of Bayesian methods for data analysis and cognitive modeling:

- mathematically encode the common-sense idea that
 - we have beliefs about what is plausible and (un)likely to happen
 - we learn from experience and update these beliefs
- access to a very powerful and flexible way of empirically evaluating linguistic theories
- theories faithfully and directly encoded in specific structures for the priors and for the way we think the data is generated (the likelihood)

Where we're going next

- taking mathematically specified cognitive models and embedding them in a Bayesian model for empirical evaluation – essential when we start introducing the performance / subsymbolic components of ACT-R
 - subsymbolic components of ACT-R: a good number of real-valued parameters / 'knobs'
 - Bayesian inference enables us to learn the best settings for these parameters from the data
- also, embedding rich cognitive theories in Bayesian models enables us to do quantitative comparison for qualitative theories

Johnson, K. 2008. Quantitative methods in linguistics.

Blackwell Pub.