
Computing Dynamic Meanings: Building
Integrated Competence-Performance Theories

for Semantics
Day 1, part 2: pyactr tutorial

Jakub Dotlačil & Adrian Brasoveanu

ESSLLI 2018, August 6 2018



Plan

▶ symbolic system

simple agreement model
▶ environment module

counting model

2



pyactr

Install pyactr:
▶ use pip, or
▶ go to github:

https://github.com/jakdot/pyactr

3



Basic workflow in (py)actr

1. create chunks
2. create model

▶ store chunks in declarative memory
▶ (create extra modules/buffers)
▶ create rules
▶ (create environment process)

3. run the model with parameters of interest

4. read off behavioral data from the simulation

4



Agreement model

1. John definitely [Concept sleep].

▶ The code for this model is available at:
https://people.ucsc.edu/~abrsvn/esslli-2018-day1.html

▶ example1.py

5



Agreement model I; creating chunks

import pyactr as actr

#chunktypes
actr.chunktype("word", "form category meaning\

number person function")

actr.chunktype("concept", "meaning")

6



Agreement model I; creating chunks

chunk_john = actr.chunkstring(string="""
isa word
form john
category noun
meaning john
number sg
person 3
function subject""")

chunk_definitely = actr.chunkstring(string="""
isa word
form definitely
category adverb
meaning definitely
function speaker_adverb""")

7



Agreement model I; creating chunks

chunk_sleeps = actr.chunkstring(string="""
isa word
form sleeps
category verb
meaning sleep
number sg
person 3
function predicate""")

chunk_concept_sleep = actr.chunkstring(string="""
isa concept
meaning sleep""")

8



Agreement model I; creating chunks

print(chunk_definitely < chunk_john)

False

print(chunk_john < chunk_john)
False

print(chunk_john <= chunk_john)
True

print(chunk_sleeps < chunk_concept_sleep)
False

print(chunk_concept_sleep < chunk_sleeps)
True

print(chunk_concept_sleep == chunk_sleeps)
False

9



Agreement model I; creating chunks

actr.chunktype("read", "task current_word")

starting_goal = actr.chunkstring(string="""
isa read
task speaking
current_word None""")

10



Agreement model II; creating model

#II: create model

agreement = actr.ACTRModel()

11



Agreement model III; store chunks in the declarative
memory

#III: store chunks in the decl. memory and buffers

agreement.decmem.add(chunk_john)
agreement.decmem.add(chunk_definitely)
agreement.decmem.add(chunk_sleeps)

agreement.goal.add(starting_goal)

12



Agreement model IV; create extra modules

agreement.set_goal(name="imaginal", delay=0.05)

agreement.goals["imaginal"].add(chunk_concept_sleep)

13



Agreement model V; create productions

agreement.productionstring(name="match current word", string="""
=g>
isa read
task speaking
=imaginal>
isa concept
meaning sleep
==>
=g>
isa read
task recalling_subject
+retrieval>
isa word
category noun
function subject
""")

14



Agreement model V; create productions
agreement.productionstring(name="agree", string="""

=g>
isa read
task recalling_subject
=imaginal>
isa concept
meaning =x
=retrieval>
isa word
category noun
function subject
number =n
==>
=g>
isa read
task recalling_verb
+retrieval>
isa word
category verb
meaning =x
number =n
""")

15



Agreement model V; create productions

agreement.productionstring(name="done", string="""
=g>
isa read
task recalling_verb
?retrieval>
state free
=retrieval>
isa word
==>
~imaginal>
=g>
isa read
task done
current_word =retrieval
""")

16



Agreement model VI; run the model

agreement_sim = agreement.simulation()
agreement_sim.run()

17



Read off behavioral data from the simulation

▶ example2.py

18



Create environment process

▶ example3.py

Counting

19



Counting + environment

import pyactr as actr
actr.chunktype("counting", "state counted end")
environment = actr.Environment(focus_position=(20, 20))
counter = actr.ACTRModel(environment)
counter.goal.add(actr.chunkstring(name="reading", string="""

isa counting
state start
counted 0
end 3"""))

20



Counting + environment, rules
counter.productionstring(name="move attention", string="""

=g>
isa counting
state start
?visual_location>
buffer full
=visual_location>
isa _visuallocation
?visual>
buffer empty
state free
==>
=g>
isa counting
state encode
~visual_location>
+visual>
isa _visual
cmd move_attention
screen_pos =visual_location""")

21



Counting + environment, rules

counter.productionstring(name="encode first letter", string="""
=g>
isa counting
state encode
counted 0
=visual>
isa _visual
value ~None
==>
~visual>
=g>
isa counting
state search
counted 1
""")

22



Counting + environment, rules

counter.productionstring(name="find_probe", string="""
=g>
isa counting
state search
?visual_location>
buffer empty
==>
=g>
isa counting
state start
?visual_location>
attended False
+visual_location>
isa _visuallocation
screen_x lowest
screen_y closest""")

23



Counting + environment, rules

counter.productionstring(name="stop", string="""
=g>
isa counting
state search
counted =x
end =x
==>
~g>
""")

24



Exercises

1. Counting up to 5

2. ‘most’ (e.g., ‘most letters are As’)

25


