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Decision Making

How do people make decisions? For example,

e Medicine: Which disease to diagnose?
Business: Where to invest? Whom to trust?
Law: Whether to convict?
Admissions/hiring: Who to accept?

Language interpretation: What meaning to select for a
word? How to resolve a pronoun? What quantifier scope to
choose for a sentence?



Decision Making

In all these cases, we use two kinds of information:
e Background knowledge:

prevalence of disease

previous experience with business partner
historical rates of return in market

relative frequency of the meanings of a word
scoping preference of a quantifier

etc.

e Specific information about this case:

test results

facial expressions and tone of voice

company business reports

various features of the current sentential and discourse
context

etc.



Decision Making

Example question from a study of decision-making for medical
diagnosis (Casscells et al. 1978):

Example

If a test to detect a disease whose prevalence is 1/1000 has a
false-positive rate of 5%, what is the chance that a person found
to have a positive result actually has the disease, assuming you
know nothing about the person’s symptoms or signs?



Decision Making

Most frequent answer: 95%

Reasoning: if false-positive rate is 5%, then test will be correct
95% of the time.

Correct answer: about 2%

Reasoning: assume you test 1000 people; only about one
person actually has the disease, but the test will be positive in
another 50 or so cases (5%). Hence the chance that a person
with a positive result has the disease is about 1/50 = 2%.

Only 12% of subjects give the correct answer.
Mathematics underlying the correct answer: Bayes’ Theorem.



Bayes’ Theorem

To analyze the answers that subjects give, we need:

Bayes’ Theorem
Given a hypothesis h and data D which bears on the

hypothesis:
p(Dih)p(h)
p(D)
p(h): independent probability of h: prior probability
p(D): independent probability of D: marginal likelihood /
evidence
p(D|h): conditional probability of D given h: likelihood
p(h|D): conditional probability of h given D: posterior probability

p(h|D) =

We also need the rule of total probability.



Total Probability

Theorem: Rule of Total Probability

If events By, Bs, . .., By constitute a partition of the sample
space Sand p(B;) #0fori=1,2,..., k,then for any event A
in S: .

p(A) = Z P(A|B)p(B))

By,Bs,...,By forma B, B
partition of S if they are B,
pairwise mutually exclusive

and if ’ \

B1UBQU...UB;(:S. B




Evidence/Marginal Likelihood and Bayes’ Theorem

Evidence/Marginal Likelihood

The evidence is also called the marginal likelihood because it is the
likelihood p(D|h) marginalized relative to the prior probability
distribution over hypotheses p(h):

D) =" p(DIh)p(h)
h

It is also sometimes called the prior predictive distribution because
it provides the average/mean probability of the data D given the prior
probability over hypotheses p(h).

Reexpressing Bayes’ Theorem

Given the above formula for the evidence, Bayes’ theorem can be
alternatively expressed as:

p(D|mp(h

)
p(hID) = 5= p(OIMP(F)



Bayes’ Theorem for Data D and Model Parameters ¢

In the specific case of a model with parameters 6 (e.g., the bias
of a coin), Bayes’ theorem is:

p(Dil0;)p(0;)
p(0;| D) = > p(D,-IIHj)P(jej)
=

parameter values

data values 0;

D; p(D;) = ]%P(DIWI)P(QJ')

p(6) 1



Application of Bayes’ Theorem

In Casscells et al.’s (1978) example, we have:

e h: person tested has the disease;
o h: person tested doesn’t have the disease;
e D: person tests positive for the disease.

p(h) =1/1000 = 0.001 p(h) =1 — p(h) = 0.999
p(D|h) = 5% = 0.05 p(D|h) =1 (assume perfect test)

Compute the probability of the data (rule of total probability):
p(D) = p(D|h)p(h)+p(D|h)p(h) = 1-0.001+0.05-0.999 = 0.05095
Compute the probability of correctly detecting the illness:

p(h)p(Dlh) ~ 0.001 -1

= =0.01
p(D) 0.05095 ~ 001963

p(h|D) =




Base Rate Neglect

Base rate: the probability of the hypothesis being true in the
absence of any data, i.e., p(h) (the prior probability of disease).

Base rate neglect: people tend to ignore / discount base rate
information, as in Casscells et al.’s (1978) experiments.

e has been demonstrated in a number of experimental
situations;

e often presented as a fundamental bias in decision making.

Does this mean people are irrational/sub-optimal?



Base Rates and Experience

Casscells et al.’s (1978) study is abstract and artificial. Other
studies show that

e data presentation affects performance (1 in 20 vs. 5%);

e direct experience of statistics (through exposure to many
outcomes) affects performance;
(which is why you should tweak the R and JAGS code in this
class extensively and try it against a lot of simulated data sets)

e task description affects performance.

Suggests subjects may be interpreting questions and
determining priors in ways other than experimenters assume.

Evidence that subjects can use base rates: diagnosis task of
Medin and Edelson (1988).



Bayesian Statistics

Bayesian interpretation of probabilities is that they reflect
degrees of belief, not frequencies.
» Belief can be influenced by frequencies: observing many
outcomes changes one’s belief about future outcomes.
¢ Belief can be influenced by other factors: structural
assumptions, knowledge of similar cases, complexity of
hypotheses, etc.

e Hypotheses can be assigned probabilities.



Bayes’ Theorem, Again

p(Dlh)p(h)

p(D)
p(h): prior probability reflects plausibility of h regardless of
data.
p(D|h): likelihood reflects how well h explains the data.
p(h|D): posterior probability reflects plausibility of h after taking
data into account.

Upshot:

p(h|D) =

e p(h) may differ from the “base rate” / counting

¢ the base rate neglect in the early experimental studies
might be due to equating probabilities with relative
frequencies

e subjects may use additional information to determine prior
probabilities (e.g., if they are wired to do this)



Distributions

So far, we have discussed discrete distributions.
e Sample space S is finite or countably infinite (integers).

¢ Distribution is a probability mass function, defines
probability of r.v. having a particular value.

o Ex: p(Y = n) = (1 —6)""10 (Geometric distribution):

X
Gmometri c( 7)
5

0.2

k
1 2 2 4 5 6 7 8 % 1011

(Image from http://eom.springer.de/G/g044230.htm)



Distributions

We will also see continuous distributions.
e Support is uncountably infinite (real numbers).

e Distribution is a probability density function, defines
relative probabilities of different values (sort of).

e Ex: p(Y = y) = A\e™V (Exponential distribution):
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(Image from Wikipedia)



Discrete vs. Continuous

Discrete distributions (p(+) is a probability mass function):
e 0<p(Y=y)<1forallye$§
. ;p(Y =y)= ;p(y) =
e p(y) =>p(y|x)p(x) (Law of Total Prob.)
o E[Y]= XZ}’ -p(y) (Expectation)
Continuous d?stributions (p(+) is a probability density function):

e p(y)>0forally
f p(y)dy =1 (if the support of the dist. is R)

. py) [, p(y[x)p(x)ax (Law of Total Prob.)
o E[X]= [, x-p(x)dx (Expectation)



Prediction

Simple inference task: estimate the probability that a particular
coin shows heads. Let

e 0:the probability we are estimating.

e H: hypothesis space (values of 8 between 0 and 1).
e D: observed data (previous coin flips).

e ny, ny: number of heads and tails in D.

Bayes’ Rule tells us:

pto10) = PEEC)

How can we use this for predictions?

o p(DI0)p(9)



Maximum Likelihood Estimation

1. Choose 60 that makes D most probable, i.e., ignore p(6):

0 = argmax p(D|6)
0

This is the maximum likelihood (ML) estimate of 6, and turns
out to be equivalent to relative frequencies (proportion of heads
out of total number of coin flips):

Np
Np + Ny

0 =

¢ Insensitive to sample size (10 coin flips vs 1000 coin flips),
and does not generalize well (overfits).



Maximum A Posteriori Estimation

2. Choose 6 that is most probable given D:

f = argmax p(#|D) = argmax p(D|#)p(6)
0 0

This is the maximum a posteriori (MAP) estimate of 8, and is
equivalent to ML when p(0) is uniform.

e Non-uniform priors can reduce overfitting, but MAP still
doesn’t account for the shape of p(6|D):

\ \




Posterior Distribution and Bayesian Integration

3. Work with the entire posterior distribution p(6|D).

Good measure of central tendency — the expected posterior
value of ¢ instead of its maximal value:

E[0] = /GpQ\DdG/Q D‘e /HpD\H

This is the posterior mean, an average over hypotheses. When
prior is uniform (i.e., Beta(1,1), as we will soon see), we have:

Ny + 1
Elf] = ————
1] Np+ ng+ 2
e Automatic smoothing effect: unseen events have non-zero
probability.
Anything else can be obtained out of the posterior distribution:
median, 2.5% and 97.5% quantiles, any function of ¢ etc.



E.g.: Predictions based on MAP vs. Posterior Mean

Suppose we need to classify inputs y as either positive or
negative, e.g., indefinites as taking wide or narrow scope.

There are only 3 possible hypotheses about the correct method
of classification (3 theories of scope preference): hy, ho and hs
with posterior probabilities 0.4, 0.3 and 0.3, respectively.

We are given a new indefinite y, which hy classifies as positive /
wide scope and hy and hg classify as negative / narrow scope.

¢ using the MAP estimate, i.e., hypothesis hy, y is classified
as wide scope

¢ using the posterior mean, we average over all hypotheses
and classify y as narrow scope
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