
Computing Dynamic Meanings:
Building Integrated

Competence-Performance Theories for
Semantics

Day 1, part 1: Introduction to ACT-R

Jakub Dotlačil & Adrian Brasoveanu

ESSLLI 2018, August 6 2018



Course plan

▶ Providing a framework to connect theoretical linguistics
to performance behavioral measures (on-line data) in a
formally and computationally explicit way

▶ Applying the framework to examples from syntax &
semantics, and on several experimental types (self-paced
reading, eye tracking…)

▶ Hands-on (Python3 code supplied and discussed)
▶ Upcoming book – Brasoveanu and Dotlačil (in prep.)

2



Course plan by day [subject to change]

▶ Monday: Intro to the ACT-R cognitive architecture
(Adaptive Control of Thought-Rational) and the pyactr
Python3 library

▶ Tuesday: Syntactic parsing and Bayesian methods of
model fitting

▶ Wednesday: Embedding ACT-R models of linguistic
phenomena into Bayesian models → first examples of
modeling experimental data

▶ Thursday: DRT (Discourse representation Theory) and
ACT-R, modeling memory recall and self-paced reading
data

▶ Friday: extensions – more memory recall,
psycholinguistic corpora and their modeling

3



Practicalities

▶ Advanced course – combination of several topics not
often combined

▶ Knowledge of Python useful, but not required
▶ Slides & code available at:

https://people.ucsc.edu/~abrsvn/esslli-2018-course.html

4



Today’s plan

▶ Intro into ACT-R (Adaptive Control of Thought-Rational)
& pyactr

▶ Toy examples of models in pyactr

5



Introduction to ACT-R

▶ Cognitive architecture
▶ A theory about the structure of the human mind
▶ Summary of various cognitive sub-disciplines into one

model
▶ ACT-R, Soar, [EPIC, Connectionist / Neural network

models]

6



ACT-R – a bit of history

▶ Developed in the 70’s and 80’s as ACT (Adaptive Control
of Thought)

▶ John R. Anderson, inspired by Allen Newell
▶ In the 90’s – ACT-R (Adaptive Control of

Thought-Rational)
▶ In the 00’s and later – focus on neural implementation

Anderson and Lebiere (1998); Anderson et al. (2004); Anderson (2007)

7



ACT-R – what can it do?

▶ It models cognitive components (memory, reasoning…)
and interfaces (visual, motor modules…)

▶ It models (simulates) human performance (reaction
times, accuracies) and neurobehavioral data (EEG, brain
images)

▶ Traditionally, mainly used to model responses and
reaction times (but cf. Anderson 2007, 2012)

8



ACT-R

▶ Symbolic and subsymbolic systems meet (hybrid
architecture)

▶ abstract, symbolic structures to describe human
knowledge

▶ subsymbolic part to describe human performance
▶ modular
▶ Strengths: hybrid (theoretical linguistics friendly);

interaction of modules; memory
▶ Weaknesses: garden of forking paths; hand-coding;

overfitting (but this is a problem for all complex
statistical models)

9



ACT-R

2 main types of modules:
▶ interacting with environment (perceptual and motor

actions…)
▶ representing internal cognitive capabilities

10



ACT-R

2 types of knowledge
▶ declarative knowledge

▶ knowledge of facts
▶ the current king of the Netherlands
▶ 2 + 5 = 7
▶ lexical knowledge

▶ procedural knowledge

▶ knowledge displayed in behavior
▶ how to drive / walk / swim / ride a bicycle

11



ACT-R

2 types of knowledge
▶ declarative knowledge

▶ knowledge of facts
▶ the current king of the Netherlands
▶ 2 + 5 = 7
▶ lexical knowledge

▶ procedural knowledge
▶ knowledge displayed in behavior
▶ how to drive / walk / swim / ride a bicycle

11



Declarative knowledge in ACT-R

▶ encapsulated in chunks
▶ attribute-value matrices / feature structures / sets of

slot-value pairs

phonology : /kɑɹ/
meaning : JcarK
category : noun
number : sg

12



Relation between chunks

▶ c1 = c2 iff c1, c2 have the same slot-value pairs
▶ c1 ≤ c2 iff c1 carries less information than/is more

general than/subsumes c2
▶ c1 ≤ c2 iff the slots in c1 are in c2 and for each slot in c1

the value of slot is identical to the value of the same slot
in c2

phonology : /kɑɹ/
meaning : JcarK
number : sg

≤

phonology : /kɑɹ/
meaning : JcarK
category : noun
number : sg

13



Relation between chunks

p: kɑɹ c: n n: sg

p: kɑɹ
c: n

p: kɑɹ
n: sg

c: n
n: sg

p: kɑɹ
c: n
n: sg

14



Relation between chunks

▶ c1 ⊓ c2 – meet of c1 and c2
▶ c1 ≤ c2 ⇔ c1 ⊓ c2 = c1
▶ chunks in general form a pseudocomplemented

semi-lattice, ⟨C,⊓⟩
cf. unification-based grammars (LFG, HPSG, Shieber (2003))

▶ the empty chunk is the bottom element (no slot-value
specified)

▶ the unification (join) operation ⊔ is not always defined
(no contradicting knowledge allowed)

15



More on chunks

▶ Chunks can carry a negative value or a variable
(such chunks are never part of the declarative memory)

phonology : /kɑɹ/
meaning : ∼ JboyK
number : sg

≤

phonology : /kɑɹ/
meaning : JcarK
category : noun
number : sg

16



More on chunks

▶ Chunks can carry a negative value or a variable
(such chunks are never part of the declarative memory)

phonology : /kɑɹ/
meaning : = x
number : sg

≤

phonology : /kɑɹ/
meaning : JcarK
category : noun
number : sg

17



More on chunks

▶ Chunks are recursive (values of chunks can be chunks)

phonology : /kɑɹ/

meaning :
constant_name : car′

arity : 1
number : sg

18



Modules and buffers

▶ ACT-R is modular (declarative module, procedural
module…)

▶ Modules are not directly accessible – they can only be
accessed through buffers

▶ Buffers serve a dual function:
▶ individually, they provide the interface to modules
▶ as a whole, they represent agent’s current state;

productions fire based on contents of buffers

▶ Buffers can hold only one chunk (cognitive ‘bottleneck’)

19



ACT-R in one picture

Bothell: slides, Introduction to ACT-R

20



Procedural knowledge in ACT-R

A condition and an action:
▶ When the condition (left-hand side) is met, perform the

action (right-hand side)
▶ Many productions, but only one can fire at a time

(another cognitive ‘bottleneck’)

21



Procedural knowledge in ACT-R

Left-hand side:
▶ Specify a buffer – a chunk in condition must subsume it

Right-hand side:
▶ Specify a buffer (use =buffer> in pyactr), specify how the

current chunk must be modified
▶ Specify a buffer (use +buffer> in pyactr), specify what

chunk must be created
▶ Flush a buffer (use ~buffer> in pyactr); the chunk is

automatically harvested and stored in declarative
memory

22



Example: numerical quantifiers
– Evaluating numerical quantifiers relative to visual display
– Computable by finite-state machines

▶ There is more than 1 dot.

start: goal buffer – [counted: 0 end: 2]
Rule1
=goal>
counted 0
end 2
=visual>
value dot
==>
=goal>
counted 1
+visual>
cmd move

Rule2
=goal>
counted 1
end 2
=visual>
value dot
==>
=goal>
counted 2
+visual>
cmd move

Rule3
=goal>
counted 2
end 2
=visual>
value dot
==>
-goal>

23



Declarative memory: basic subsymbolic
components

▶ ACT-R: retrieval from declarative memory is a power
function of time elapsed since item presentation

▶ the power function is used to compute (base) activation
and is based on the number of practice trials /
‘rehearsals’ of a word (1) (free parameters enumerated in
parentheses)

▶ activation of an item is in turn used to compute accuracy
(2) and latency (3) for retrieval processes

(1) Ai = log
(

n∑
k=1

t−d
k

)
(d: decay)

(2) Pi =
1

1+e−
Ai−τ

s
(s: noise, τ : threshold)

(3) Ti = Fe−fAi (F:factor, f: exponent)24



Figure: Activation, retrieval probability and retrieval latency as a
function of time (threshold – dotted black line; 5 presentations –
red)

0.0

2.5

A
ct

iv
at

io
n

(lo
gi

ts
)

0.0

1.0

P
ro

ba
bi

lit
y

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Time (s)

0.0

0.5

La
te

nc
y

(s
)

25



Example: frequency effects in lexical decision

▶ for any word, every time a speaker is exposed, the
presentation contributes to its activation

▶ the ‘schedule of presentations’ is determined by a word’s
frequency (we ignore other factors in this model)

▶ we predict shorter times of retrieval and higher accuracy
for high frequency words

▶ predictions confirmed: we come back to this

26



On to some basic pyactr models …

27



Anderson, John R. 2007. How can the human mind occur in the
physical universe? . Oxford University Press.

Anderson, John R. 2012. Tracking problem solving by
multivariate pattern analysis and hidden markov model
algorithms. Neuropsychologia 50:487–498.

Anderson, John R., Daniel Bothell, and Michael D. Byrne.
2004. An integrated theory of the mind. Psychological
Review 111:1036–1060.

Anderson, John R., and Christian Lebiere. 1998. The atomic
components of thought . Hillsdale, NJ: Lawrence Erlbaum
Associates.

Brasoveanu, Adrian, and Jakub Dotlačil. in prep. Formal
Linguistics and Cognitive Architecture. Language, Cognition,
and Mind (LCAM) Series. Dordrecht: Springer. The pyactr
library (Python3 ACT-R) is available here:
https://github.com/jakdot/pyactr.

https://github.com/jakdot/pyactr


Shieber, Stuart M. 2003. An introduction to unification-based
approaches to grammar . Microtome Publishing.


	Intro to ACT-R
	ACT-R – declarative & procedural
	Declarative memory: basic subsymbolic components

