
Incremental interpretation and dynamic semantics

Adrian Brasoveanu and Jakub Dotlačil

May 9, 2015

Abstract

The goal of this paper is to motivate and define a strictly incremental semantics for dynamic predicate
logic (Groenendijk and Stokhof 1991). In particular, we will extend the incremental semantics for dynamic
propositional logic introduced in Vermeulen (1994) to first-order predicate logic (borrowing central notions
from Visser 2002). We call the resulting logical system Incremental Dynamic Predicate Logic and we show
how this system can be used to derive correct truth conditions for apparently non-incremental structures
like donkey conditionals in a strictly incremental fashion. That is, the correct meanings for donkey condition-
als are derived by means of a strictly left-to-right compositional procedure. This is accomplished without
having to type-shift the meanings of the individual words (as in Steedman 2001, for example), and with
dynamic conjunction / sequencing as the only compositional operation.

1 Introduction and basic proposal

The goal of this paper is to motivate and define an incremental semantics for Dynamic Predicate Logic
(DPL; Groenendijk and Stokhof 1991), i.e., to extend the incremental semantics for Dynamic Propositional
Logic (DPropL) introduced in Vermeulen (1994) to first-order predicate logic. We call the resulting logical
system Incremental Dynamic Predicate Logic (IDPL) and we show how this system can be used to derive
correct truth conditions for apparently non-incremental structures like donkey conditionals in a strictly
incremental fashion, i.e., strictly left-to-right and word by word.

Let us follow Vermeulen (1994, pp. 244-246)) for the time being, and focus exclusively on semantics at the
propositional / sentential level. We want an incremental semantics for DPropL to respect three principles:

(1) a. Incrementality: we can interpret texts as we hear them.
b. Pure compositionality: ‘pure’ – we do not assume that a full syntactic analysis precedes inter-

pretation; unlike standard (neo)Montagovian semantics, or even the incremental DRS construc-
tion algorithm in Kamp and Reyle (1993)

c. Break-in: every segment of a text should be interpretable, even if what comes after, or came
before, is unknown; wherever we ‘break in’ in a text, interpretation should be possible

Together, (1a-1c) entail associativity: text meanings have to form an algebra with an associative opera-
tion (‘merger’ / conjunction) by which the meanings can be glued together.

This straightforwardly captures texts that are actually conjoined:

(2) a. Bob inherited a donkey (p), and Jane bought it from him (q), and she sold it to Bill (r).
b. rrpp; qq; rss “ rrp; pq; rqss

The problem is that conditionals do not have an associative semantics. The text in (3) below is intuitively
interpreted as in (4), not as in (5): if p is false, the text is false, not true.

(3) The driver was not working that night (p) and if the butler was working that night (q), the butler
committed the murder (r). p; if ; q; then; r; end

(4) Intended interpretation: p; pif ; q; then; r; endq (in classical propositional logic: p^ pq Ñ rq)

(5) By associativity: pp; if ; qq; then; r; end (in classical propositional logic, basically: pp^ qq Ñ r)

1

An incremental, fully associative semantics forces the bracketing in (6) below, which is equivalent to the
incorrect interpretation in (5):

(6) ppppp; ifq; qq; thenq; rq; end

How can we provide an associative semantics for conditionals that derives the right truth conditions?
The formulas in (3-6) already hint at the basic solution: everything is conjoined / merged with an associative
operation – namely, ; – and the right truth conditions are derived by using three special formulas if , then,
and end.

Of course, what matters are not the syntactic objects if , then, and end, but the way they are interpreted,
i.e., the way they update / manipulate semantic evaluation contexts.

Which brings us to the basic solution pursued in Vermeulen (1994): memory. The semantic evaluation
contexts will keep track of the denotations of the previous formulas, i.e., they will be update histories. The
formulas if , then, and end leverage these detailed, structured evaluation contexts and manipulate them
in specific ways so that the correct truth conditions for conditionals are derived – in a purely associative
manner.

(7) We interpret (4) as follows:

We store the information that p in our memory before we interpret q. This information
[contributed by q] is again stored before we interpret r. Now we can construct from the
information that we have stored the information that if q then r. Finally this information
can be added to the information that p. [W]e do not need brackets to tell us how [. . .] to
store the information: the special elements if , then and end will tell us exactly what has
to be done. (Vermeulen 1994, p. 248)

2 Incremental semantics for Dynamic Propositional Logic (DPropL) with
sequences

2.1 DPropL syntax

(8) The syntax of DPropL.
Given a set of atomic texts (i.e., atomic propositional variables) A, the set of texts based on A (i.e.,
the set of well-formed propositional formulas), abbreviated TA, is the smallest set such that:
a. A Ď TA

b. K P TA
c. tif , then, endu Ď TA

d. If ϕ,ψ P TA, then ϕ;ψ P TA (text concatenation / conjunction).

Intuitively, K is the formula that is always false, i.e., rrKss “ F. We will overload the symbol K and use it
both for the syntactic object and for its semantic value.

The choice of basic expressions in DPropL is driven by our main goal for this logic: show how we can
provide an associative semantics for a conditional appearing in a text like (3) above. In particular, show how
semantic composition can proceed fully incrementally in a left-to-right, strictly word-by-word fashion, and
yet derive the intuitively correct truth conditions for the text, i.e., truth conditions in which the conditional
antecedent consists of only the second sentence (q), and the first sentence (p) is interpreted as conjoined
with the full conditional, not only with the conditional antecedent. That is, we want our logic to derive the
equivalence below:

(9) ppppp; ifq; qq; thenq; rq; endô p; pif ; q; then; r; endq

The choice of atomic formulas and sentential operators in (8) above is driven by the minimal syntactic
resources we need to formally set up the problem of deriving the equivalence in (9) above. That is, we need
a basic supply of atomic sentencesA (8d), and a basic way of concatenating / conjoining / merging simpler
texts into more complex ones (8d). Furthermore, our basic idea of how to derive the equivalence in (9) is to

2

introduce three special atomic formulas if , then, and end that can be conjoined / merged with any other
texts in the usual ;-based way, but that will receive a particular interpretation / semantic value. Whatever
semantic values we end up assigning them, they need to end up deriving the correct truth conditions for a
conditional. These truth conditions are assembled by means of three atomic formulas rather than a single
binary operator (as in classical logic) precisely because we want the interpretation to be fully incremental.

Why go to all this trouble only for conditionals? Conditionals are just a very simple, propositional-level
example of texts with non-associative meanings. If we find a way to interpret them fully incrementally,
i.e., in a fully associative semantics, we can probably generalize that solution to all other similarly non-
associative semantic operators, for example, quantifiers or adverbs of quantification. Quantifier restrictors
have to be semantically combined with nuclear scopes first, and with the surrounding text only later, in
much the same way that conditional antecedents need to be combined with the consequents first.

Similarly, we hope to be able to generalize our solution to other structures, e.g., conditionals with sen-
tence final if -clauses:

(10) The butler committed the murder (r) if the butler was working that night (q). then; r; if ; q; end

As Milward and Cooper (1994) were the first to explicitly notice (to our knowledge), incremental left-to-
right interpretation on one hand, and semantic interpretation as needed to derive the correct truth condi-
tions on the other hand place opposite requirements on how the interpretation of sentences like (10) should
proceed. Incremental interpretation requires the consequent r to be interpreted before the antecedent q,
while truth-conditionally, the antecedent q needs to be interpreted first and the consequent r needs to be
interpreted relative to, and therefore after, the antecedent. This problem is not restricted to classical static se-
mantics, it applies equally to dynamic frameworks (Kamp 1981, Heim 1982, Groenendijk and Stokhof 1991)
despite the fact that these frameworks have a notion of incrementally ‘threading’ interpretation contexts be-
tween sentences (as reflected in the meaning of dynamic conjunction). For more discussion of incremental
interpretation and related issues from this perspective, see also Chater et al. (1995).

Finally, the only clause in (8) above that is left to discuss is the one introducing falsum / bottom (8c). We
basically need this clause for the expressive completeness of our propositional logic: we have conditionals
and conjunctions, but no negation. The simplest thing to do is to add a 0-ary propositional operator in
terms of which we can define the unary negation operator, rather than add negation directly – and that
0-ary operator is K.

As shown in (11) below, negation can be defined in terms of implication and K, following the classical
abbreviation ϕ :“ ϕ Ñ K. Similarly, the formula J that is always true rrJss “ J can be defined in the
classical wayJ :“ K p“ K Ñ Kq. We will similarly overload the symbolJ and use it both for the syntactic
object and its semantic value. Finally, disjunction can be defined via the De Morgan laws, as shown below.

(11) Abbreviations:
a. ϕ :“ if ;ϕ; then;K; end

b. J :“ K p“ if ;K; then;K; endq

c. ϕ_ ψ :“ p ϕ; ψq

2.2 A sequence-based associative Semantics for DPropL: the basic idea

As we already mentioned, Vermeulen (1994, pp. 244-246) argues that if the semantics for DPropL is to
respect the principles of Pure Compositionality, Incrementality, and Break-in, the semantics will have to be
associative, i.e.:

(12) For any texts / formulas ϕ,ψ, χ, we have that:
rrpϕ;ψq;χss “ rrϕ; pψ;χqss.

That is, the semantic value of text conjunction ; has to be an associative operation over the semantic val-
ues of the concatenated texts. Letting the semantic value of conjunction rr ; ss be the operation ‚, associativity
requires it to satisfy the following constraint:

(13) For any texts / formulas ϕ,ψ, χ, we have that:
prrϕss ‚ rrψssq ‚ rrχss “ rrϕss ‚ prrψss ‚ rrχssq.

3

The problem with this general associativity requirement is that the conditional formula if ;ϕ; then;ψ; end
does not have an associative semantics, as exemplified by (4) above.

The basic solution is memory, i.e., make our semantic evaluation contexts more structured / fine-grained
in such a way that the history of previous updates (or at least the recent updated history) is kept track of.
“In our semantics we will allow ourselves to have more than one slot where information can be stored. We
will not only have a slot for our current state of information, but we will also have slots for some specific
information states that we used to be in. So we remember our information history.” (Vermeulen 1994,
pp. 247-248)

In particular, we interpret (4) as follows: “We store the information that p in our memory before we
interpret q. This information is again stored before we interpret r. Now we can construct from the infor-
mation that we have stored the information that if q then r. Finally this information can be added to the
information that p. Note that we do not need brackets to tell us how we have to store the information: the
special elements if , then and end will tell us exactly what has to be done.” (Vermeulen 1994, p. 248)

Our goal now is to formally define the semantics of DPropL so that we derive the informal interpretation
of conditionals outlined in (7) above.

All the update / interpretation operations in (7) will be encoded in the recursive definition of the in-
terpretation function rr¨ssM,c; in particular, they will be encoded in the ways evaluation contexts c (which
will encode update histories) are manipulated / updated when we interpret conjunction ; and the special
formulas if , then, and end.

2.3 Model structures: extended monoids

To define the interpretation function rr¨ssM,c, we need to discuss the kind of structures we will use for models
M, and for semantic evaluation contexts c.

While the semantic evaluation contexts c are more complex than the usual ones in classical (static) or
dynamic logic on account of the fact that they have to encode update histories, the models M themselves
are going to have a fairly simple structure: we will take them to be extended monoids in the sense of Visser
(2002). Vermeulen (1994) takes them to be Heyting algebras, but the extended monoids of Visser (2002) are
both more general, which will be useful when we move on to Dynamic Predicate Logic, and more directly
related to the relational models used in dynamic semantics.

Despite their mathematical simplicity, DPropL models can seem fairly abstract and unfamiliar to seman-
ticists, so we will take some time to introduce them more leisurely. Part of the abstractness of the models
is due to the fact that we are looking at propositional logic, so we will abstract away from the richness of
meaning that we find at sub-sentential level. This is just as in classical logic: the meaning / semantic value
of the sentence John likes Mary is very abstract when we’re only concerned with meanings at the sentential /
propositional level; the meaning is either J or K. In contrast, models for first-order logic are more complex,
but they are also more intuitive because they give us a basic handle on how various sub-sentential pieces
contribute to the meaning of the overall sentence.

We face a similar trade-off when we introduce models for DPropL: mathematically, they are very simple,
but this simplicity / abstractness obscures the intuitions that underlie various mathematical notions and
formalization choices. We will therefore discuss in a fair amount of detail how these simple / abstract
models can be made more complex / concrete in a way that anticipates the semantics of our Incremental
Dynamic Predicate Logic.

What should our models consist of? At a minimum, they need to contain an associative operation over
denotations that corresponds to conjunction – and we want the space of denotations to be closed under this
operation. For conjunction to behave in the intended way, there has to exist an identity element (basically,
J) for it. Finally, we also want a K element and an binary operation that would correspond to implication.
An extended monoid in the sense of Visser (2002) provides exactly this kind of structure.

2.3.1 Monoids

In particular, our monoid will be defined over a set I “ ti, j, k, . . . u of propositional denotations. In the
spirit of dynamic semantics, we label the elements of this set information states, but we should be clear
that ti, j, k, . . . u do not encode the partial variable assignments (‘embeddings’) of Discourse Representation

4

Theory (DRT; Kamp 1981, Kamp and Reyle 1993) or File Change Semantics (FCS; Heim 1982), or the total
variable assignments of Dynamic Predication Logic (DPL; Groenendijk and Stokhof 1991). They are instead
meant to encode full Discourse Representation Structure (DRS) / DPL formula denotations, i.e., binary
relations over partial / total variable assignments. Of course, since we’re working at the propositional
level right now, the information states i, j, k, ¨ ¨ ¨ P I are atomic – they do not have any internal structure.
But various abstract notions and definitions at the propositional level become easier to understand if we
already anticipate how they will be applied when we move to predicate logic.

Thus, the operation ‚ denoted by conjunction / concatenation ; together with the space of information
states I over which updates operate (and which are assembled into update histories) have to form a monoid
– defined in (14) below. We will first discuss two examples of monoids, after which we will discuss how to
extend monoids with the two operators K (falsum) of arity 0 and� (implication) of arity 2.

(14) A monoid is a tuple xI, ‚, idy consisting of a set I, a binary operation ‚ over that set, and a designated
element id P I that satisfies the following three axioms:

Ax1 Closure: for all i, j P I, i ‚ j P I.

Ax2 Associativity: for all i, j, k P I, pi ‚ jq ‚ k “ i ‚ pj ‚ kq.

Ax3 Identity element: there is an element id P I such that for all i P I, id ‚ i “ i ‚ id “ i.

Example 1: the finite-string monoid. For example, the set of all finite strings over a fixed alphabet Σ, e.g.,
Σ “ ta, b, cu, forms a monoid with string concatenation " as its binary operation and the empty string ε as
the identity element. This set of finite strings, called Σ˚, is of the form:

(15) Σ˚ “ tε, ap“ ε " a “ a " εq, b, c, aap“ a " aq, bbp“ b " bq, ccp“ c " cq,
abp“ a " bq, ba, ac, ca, bc, cb, aaa, aab, bcb, cccaabb, . . . u

We can verify that the tuple xΣ˚,", εy is a monoid by checking that it satisfies the three axioms in (14)
above.

(16) Ax1 Closure: for all α, β P Σ˚, α " β P Σ˚; e.g., aabb, ccbb P Σ˚, and also aabbccbb P Σ˚ X

Ax2 Associativity: for all α, β, γ P Σ˚, pα" βq" γ “ α"
pβ " γq, e.g., pa" bq" c “ a"

pb" cq “ abcX

Ax3 Identity element: the empty string ε, since for all α P Σ˚, ε " α “ α " ε “ α X

Example 2: the binary-relation monoid. Another example, which will be directly useful to us, is the
monoid formed by the set of all binary relations over a set S, with relation composition ˝ as the binary
operation and the identity relation on S as the identity element (the three axioms in (14) are easy to verify):

(17) Given a set S (of possible worlds, variable assignments, etc.), the tuple xR, ˝, Ridy is a monoid,
where:
a. R “ tR : R Ď S ˆ Su “ ℘pS ˆ Sq,

where S ˆ S “ txx, yy : x P S ^ y P Su and ℘ is the powerset operation
b. R ˝R1 “ txx, yy : DzpxRz ^ zR1yqu

(in prefix notation: R ˝R1 “ txx, yy : DzpRpx, zq ^R1pz, yqqu)
c. Rid “ txx, xy : x P Su

2.3.2 The ‘entailment’ partial order ď

Let us return now to the general definition of monoids in (14) above with an eye towards extending it with a
zero element K, which we will use as the denotation for falsum, and another binary operation�, which we
will use as the denotation for implication. First, for any monoid we can define a partial order ď as follows:

(18) We define a partial order ď over the elements of I: for any i, j P I, i ď j iff i ‚ j “ i.

Intuitively, this partial order encodes a notion of entailment. Its definition has the same structure as the
following basic theorem of propositional logic ((symbolizes entailment): p (q iff p^ q)(p.

5

Example 1: ď for the finite-string monoid. For the finite-string monoid, this partial order includes only
pairs of strings whose second member is the empty string ε: α " β “ α can be the case only if β “ ε.

Example 2: ď for the binary-relation monoid. For the binary-relation monoid, this partial order is much
richer: R ˝R1 “ R can be the case whenever the range of R (defined as (20) below) is a subset of the domain
ofR1 (defined as in (19) below) – which is exactly the notion of entailment in DPL (Groenendijk and Stokhof
1991, p. 67, Definition 20), symbolized as (DPL below.

(19) DompRq :“ tx P S : Dy P SpxRyqu

(20) RanpRq :“ ty P S : Dx P SpxRyqu

(21) ϕ (DPL ψ iff Ranprrϕssq Ď Domprrψssq (Groenendijk and Stokhof 1991, p. 67, Definition 20)

(22) A DPL-style definition of the partial order ď for the binary-relation monoid:
R ď R1 iff RanpRq Ď DompR1q and R1 Ď Rid

For the DPL-style notion of partial order in (22) above to actually satisfy the condition in (18), we need
the additional assumption that R1 Ď Rid – as we already indicated in (22). But this is in fact a harmless
assumption for our purposes. If following Visser (2002), we define diagpRq (the diagonal of the binary
relation R) as follows

(23) diagpRq “ txx, xy : x P DompRqu

it is easy to see that:

(24) For any two DPL formulas ϕ and ψ: Ranprrϕssq Ď Domprrψssq iff Ranprrϕssq Ď Dompdiagprrψssqq.

Since by definition diagpRq Ď Rid for any R, we see that the definition of DPL entailment can still be
applied in full generality even with the additional assumption in (22).

It is easy to show that the DPL-style definition of the partial order ď in (22) satisfies the condition in
(18):

(25) Let the partial order ď over binary relations be defined as: R ď R1 iff RanpRq Ď DompR1q and
R1 Ď Rid. If R ď R1, it then follows that R ˝R1 “ R. To see that, consider an arbitrary pair xx, yy:
a. xx, yy P R ˝R1 iff [by (17b)]
b. there is a z such that xRz and zR1y iff [since R1 Ď Rid]
c. xRy and y P DompR1q iff [since RanpRq Ď DompR1q]
d. xRy iff
e. xx, yy P R

2.3.3 Falsum K

Defining the ‘entailment’ partial order ď is just the first step towards extending our monoids with a notion
of falsum and a binary operation that corresponds to implication – since this is what we need for our DPropL
semantics.

With ď in hand, we define – and require the existence of – a zero element K as follows:

(26) There exists K P I such that for any i P I, K ‚ i “ i ‚ K “ K.1

That is, K is the least element in the partial order ď (both on the left and on the right of the ‚ operation).
Not all monoids can be extended in this way. For example, it is not clear how to extend the finite-string

monoid with a K element. But the binary-relation monoid has a natural K element:

(27) RK “ H p“ txx, xy : x P S ^ x ‰ xuq

It is easy to see that for any relation R P R, we have that R ˝RK “ RK ˝R “ RK.

1Note that K is unique. If not, there would be a K1 P I, K1 ‰ K satisfying the same ‘least element’ condition. By the definition of K,
we would have K ‚ K1 “ K1 ‚ K “ K. By the definition of K1, we would have K1 ‚ K “ K ‚ K1 “ K1. Hence K1 “ K. Contradiction.

6

2.3.4 Implication�

We also require the existence of a binary operation�, which will provide the basic denotation for implica-
tion, satisfying the constraint below:

(28) We define a binary operation� from Iˆ I to I such that for any i, j, k P I, i ď j � k iff i ‚ j ď k.

Continuing with the binary-relation monoid example, the binary operation � can be defined in the
same way that dynamic implication is defined in DRT (Kamp 1981, Kamp and Reyle 1993), FCS (Heim
1982), and DPL (Groenendijk and Stokhof 1991).

Dynamic implication is externally static and internally dynamic. This means that the result of combining
two binary relationsR andR1 is a subset ofRid (this is the externally static aspect), and the way the in which
R and R1 are combined involves linking the range of R and the domain of R1 in some fashion, in a way that
is similar but not identical to the way this happens in the case of relation composition ˝ (this is the internally
dynamic aspect).

(29) For any R,R1 P R: R� R1 “ txx, xy : x P S ^ ty P S : xRyu Ď ty P S : DzpyR1zquu

Informally, R � R1 is that subset of Rid which retains only the elements x P S whose image under the
first relationR is included in the domain of the second relationR1. That is, any element y that isR-accessible
from x is a good starting point for the second accessibility relation R1.

We can express the formula in (29) above more concisely if we use several abbreviations, in particular,
the abbreviation DompRq for the domain of a relation R, and the abbreviation for the image of an element
x P S under the relation R, symbolized as xR, and defined in (30) below. The image of x under R is the set
of all possible R outputs for the input x.

(30) xR :“ ty P S : xRyu

The definition of the binary operator� can now be rewritten as follows:

(31) For any R,R1 P R: R� R1 “ txx, xy : x P S ^ xR Ď DompR1qu

Let us check that the definition of R � R1 in (31) satisfies the condition in (28) above. To show this,
we need an extra assumption, namely that R2 Ď Rid. Just as in the case of the ‘entailment’ partial order ď
above, this is harmless: it is easily seen that R� R1 “ R� diagpR1q. And the relation diagpRq is a subset
of Rid by definition.

With the extra assumption that R2 Ď Rid, we can show that the definition of R� R1 in (31) satisfies the
condition in (28).

(32) R ď R1 � R2 iff R ˝R1 ď R2 (assuming R2 Ď Rid):
a. R ď R1 � R2 iff [by (18)]
b. R ˝ pR1 � R2q “ R iff [since R1 � R2 Ď Rid]
c. RanpRq Ď DompR1 � R2q iff [by (31)]
d. @x P RanpRqpxR1 Ď DompR2qq iff [by (17b)]
e. @x P DompRqpxpR ˝R1q Ď DompR2qq iff [by (19, 20, 30)]
f. RanpR ˝R1q Ď DompR2q iff [since R2 Ď Rid]
g. pR ˝R1q ˝R2 “ R ˝R1 iff [by (18)]
h. R ˝R1 ď R2

The resulting class of extended monoids xI, ‚, id,K,�y, i.e., monoids xI, ‚, idy extended with K and�,
will provide the right kind of models for DPropL.

7

2.4 Dynamic Predicate Logic (DPL) models as extended monoids

To make this even more concrete, we will anticipate our discussion of Incremental DPL here by showing
how the space of Dynamic Predicate Logic (DPL; Groenendijk and Stokhof 1991) formula denotations to-
gether with the right kind operations forms an extended monoid. This will be a variation on the general
binary-relation extended monoid we just discussed.

Recall that in DPL, the denotation of a formula ϕ, symbolized rrϕss, is a binary relation over variable
assignments. The set of variable assignments G is the set of all functions g from the set of variables V to the
domain of individuals D, i.e., G “ DV for short.

The domain of the relation denoted by rrϕss, symbolized as Domprrϕssq, is the set of all assignments g
that can be input assignments for ϕ. That is, Domprrϕssq is the set of all assignments g relative to which
ϕ is true. The range of this relation Ranprrϕssq is the set of all assignments h that are output assignments
after some input assignment or other is updated with ϕ. That is, Ranprrϕssq is the set of all assignments
that are the result of the update contributed by ϕ; subsequent formulas are interpreted relative to these
assignments. We also define the image gR of an assignment g under the binary relationR, which is the set
of all assignments that we can get when we update g withR.

(33) DompRq :“ tg : DhpgRhqu
(34) RanpRq :“ th : DgpgRhqu
(35) gR :“ th : gRhu

In particular:

• the DPL denotations of formulas over a set of variable assignments G, together with

• the denotation of dynamic conjunction ;, and

• the identity relation id over variable assignments, which is a test (in fact, the maximal test),

form a monoid.
The reason for this is that the DPL semantic values for formulas are binary relations over variable as-

signments, i.e., subsets of the Cartesian product G ˆ G, and the DPL denotation of dynamic conjunction is
relation compositionR ‚R1, defined as shown below.

(36) R ‚R1 “ txg, hy : DkpgRk ^ kR1hqu
(37) id “ txg, gy : g P Gu “ txg, hy P G ˆ G : g “ hu

Just as we did when we discussed the more general binary-relation monoid in the previous section, we
use the more intuitive infix notation gRh to indicate that the binary relationR relates g and h. The relation
R‚R1 that is the result of composition will relate two assignments g and h iff there exists some intermediate
assignment k such thatR takes us from g to k andR1 takes us from k to h.

We can easily check that x℘pG ˆ Gq, ‚, idy (where ℘ is the powerset operator) is a monoid.

(38) x℘pG ˆ Gq, ‚, idy is a monoid:

Ax1: for any binary relationsR,R1 Ď G ˆ G, their compositionR ‚R1 is also a subset of G ˆ G.

Ax2: xg, g1y P pR ‚R1q ‚R2 iff
Dh1p Dhp gRh^ hR1h1 q ^ h1R2g1 q iff
Dh, h1p gRh^ hR1h1 ^ h1R2g1 q iff
Dhp gRh^ Dh1p hR1h1 ^ h1R2g1 q q iff
xg, g1y P R ‚ pR1 ‚R2q.

Ax3: since the identity element id is the diagonal txg, hy P GˆG : g “ hu, we have that for any binary
relationR Ď G ˆ G,
xg, g1y P id ‚R iff
Dhpgidh^ hRg1q iff
Dhpg “ h^ hRg1q iff

8

xg, g1y P R iff
DhpgRh^ h “ g1q iff
DhpgRh^ hidg1q iff
xg, g1y P R ‚ id.

To complete our extended monoid construction, we only need to define K and � relative to the DPL
monoid. Following Visser (2002), we let K be the empty binary relation and define � as the dynamic
implication of Kamp (1981) (see also Heim 1982 and Groenendijk and Stokhof 1991).

(39) K “ H Ď G ˆ G
(40) R� R1 “ txg, gy : for all h such that gRh, there is an i such that hR1iu

“ txg, gy : gR Ď DompR1qu

We can check that for anyR Ď G ˆ G, we have that K ‚R “ R ‚ K “ K.2

We can also check that the above definition of dynamic implication satisfies the constraint R ‚R1 ď R2
iff R ď R1 � R2 – again, with the additional, and harmless, assumption that the binary relation R2 is a
test, i.e.,R2 Ď id. The reasoning is the same as in the more general proof outlined in (32) above.

As Visser (2002, p. 112) notes, if the semantics of negation ϕ negation is defined in the expected way:

(41) rr ϕss “ rrϕss, whereR :“ R� K (for anyR Ď G ˆ G)

we derive the DRT / FCS / DPL interpretation for dynamic negation:3

(42) R :“ R� K

R� K “

txg, gy : gR Ď DompKqu “
txg, gy : gR Ď Hu “
txg, gy : gR “ Hu “
txg, gy : g R DompRqu “
txg, gy : g P pGzDompRqqu

Finally, if we define the always-true formula J in the expected way, i.e., as K “ K� K we see that J is
the maximal test, i.e., J “ id:

(43) J :“ K p“ K� Kq

K� K “

txg, gy : gK Ď DompKqu “
txg, gy : H Ď Hu “

txg, gy : g P Gu “
id

We will return to a discussion of the semantics of DPL after we introduce the incremental semantics for
the simpler DPropL system.

2By the definition of relation composition ‚, a pair of assignments xg, hy belongs to the relation K ‚R iff DkpgKk ^ kRhq. Since K
is the empty set, it does not contain any pair of assignments, so there is no k such that gKk. Therefore, K ‚R is the empty relation K.
The same reasoning also establishes that R ‚ K is the empty relation K.

3In addition, anaphoric closure !, a.k.a. double negation, also receives the expected interpretation – its denotation is the diag
operator introduced above. Recall that the operator ! is called anaphoric closure because for any formula ϕ, !ϕ is a test, i.e., rr!ϕss “
rr ϕss “ diagprrϕssq Ď id.

It also follows that a doubly negated relation R “ diagpRq is not in general identical to the original relation R although their
domains are the same – just as in DPL.

(1) diagpRq :“ R p“ id� Rq

R “

txg, gy : g P pGzDomp Rqqu “
txg, gy : g P pGzpGzDompRqqqu “
txg, gy : g P DompRqu

9

2.5 Sequence semantics for DPropL

We already introduced the kind of models M that we will use in our recursive definition of the interpreta-
tion function for DPropL. They are extended monoids, i.e., monoids

• whose binary ‘merge’ operator ‚will provide the basic interpretation for conjunction

extended with

• a K element that will provide the basic interpretation for falsum, and

• a binary operator� that will provide the basic interpretation for conditionals.

In this subsection, we first introduce the notion of semantic evaluation contexts c that we will use in the
recursive definition of the interpretation function rr¨ssM,c for DPropL. We then provide that definition and
show how the resulting semantics for DPropL derives the intuitively correct truth conditions for our initial
example in (3) in a fully incremental, left-to-right fashion.

As already indicated, the elements i, j, ¨ ¨ ¨ P I of the extended DPropL monoid xI, ‚, id,K,�y will be
called info(rmation) states. But the reader should keep in mind that their intended interpretation – once
we get to predicate logic – is as binary relations over variable assignments rather than simply variable
assignments.

Given our basic info states i, j, k, . . . , we define an info history / info sequence σ as a finite non-empty
sequence of info states. The set of all info histories HI based on the set of info states I is therefore defined
as:

(44) HI “
Ť

nPN˚ I
n

We will often ‘unpack’ an info sequence σ with n components (n ě 1) as xσ1, . . . , σny, where σ1 is the
first info state (e.g., info state i) in the history and σn is the last info state in the history. Assuming this kind
of unpacking, we can rewrite the definition in (44) above in a more verbose but probably more readable
way as follows:

(45) HI “ txσ1, . . . , σny : n ě 1^ σ1, . . . , σn P Iu

A semantic evaluation context c is an info sequence / info history σ P HI. That is:

(46) The interpretation function for DPropL has the form rr¨ssM,σ , where M is an extended monoid over
the set I and σ is an info history over the same set.

Using info histories as semantic evaluation contexts formally encodes the basic proposal we put forth
above (following Vermeulen 1994): a fully incremental dynamic semantics requires a notion of memory /
update history. Info sequences encode this idea in a direct way.

Now that we fully defined the parameters of the interpretation function rr¨ss (i.e., models M and semantic
evaluation contexts c), we can turn to its recursive definition. The exact form of the definition is determined
by the way we conceptualize denotations of DPropL formulas.

At a very general level, the denotation / semantic value of a DPropL formula ϕ will have the same
general form as the semantic value of a formula in DPL: a binary relation over semantic evaluation contexts
c, i.e., a binary relation over the set of info histories HI.

Upon closer inspection, however, it turns out that we do not need the non-deterministic aspect of binary
relations, and instead we can restrict ourselves to partial functions. That is, we can restrict ourselves to
binary relations satisfying the extra condition that any element in their domain (i.e., any element for which
they are defined) is mapped to exactly one element in their range.

The reason for this is simple. In DPL, we need non-deterministic binary relations over evaluation con-
texts as formula denotations because DPL evaluation contexts are variable assignments, so existential quan-
tification has to be modeled as the non-deterministic introduction of a witness, i.e., the non-deterministic
update of the input evaluation context (this is exactly the same in classical, static predicate logic).

In DPropL, and as we will soon see, in Incremental DPL, evaluation contexts are sequences of info states.
What matters here is not that they are sequences, but that the info states i, j, k, . . . inside the sequences are

10

‘fully-fledged’ binary relations over variable assignments and not merely variable assignments. The non-
determinism needed to properly interpret existential quantification is therefore encapsulated inside info
states. So there is no need to be non-deterministic at the higher level of info sequences, which means that
formula denotations, which manipulate / update info sequences, can be simpler, i.e., deterministic.

In sum:

(47) The denotation of any DPropL formula ϕ is a partial function over info histories: rrϕss : HI Ñ HI.
That is, for an info sequence σ P HI, if σ P Domprrϕssq, we have that: rrϕsspσq “ σ1, for some σ1 P HI.

Following Vermeulen (1994), we will use the postfix notation σrrϕss instead of the usual rrϕsspσq because
it is more intuitive given our purposes:

(48) In postfix notation: σrrϕss “ σ1, i.e., interpreting a formula ϕ relative to an input info history σ means
that we update the info history σ with the semantic value rrϕss, and the (deterministic) result is a new
info history σ1.

The intuition motivating the postfix notation generalizes to sequences of updates, i.e., to partial function
composition, which is simply relation composition ‚ restricted to partial functions:

(49) We say that σprrϕss ‚ rrψssq “ σ1, or even more simply σrrϕssrrψss “ σ1, iff σ1 is the result of (determin-
istically) updating the info history σ with rrϕss first, and then with rrψss.
That is, σrrϕssrrψss “ pσrrϕssqrrψss “ σ1.

The postfix notation for partial functions is more intuitive, and more in-line with the infix notation we
use for binary relations.

The last issue we need to address before providing the recursive definition of the interpretation function
rr¨ssM,c for DPropL concerns the denotations of atomic formulas. For each atomic text / formula p P A,
we assume that an info state ip P I exists that encodes the information that p. These atomic formulas
are unanalyzable in DPropL but in DPL, they are tests contributed by lexical relations like SLEEPpxq or
LIKEpx, yq. The corresponding info states encode that x sleeps and that x likes y respectively.

(50) iSLEEPpxq “ txg, gy : gpxq P rrSLEEPssu

(51) iLIKEpx,yq “ txg, gy : xgpxq, gpyqy P rrLIKEssu

Note that iSLEEPpxq and iLIKEpx,yq are just the regular DPL semantic values for the atomic formulas SLEEPpxq
and LIKEpx, yq.

We are now ready to define a fully incremental semantics for DPropL. The recursive definition of the
interpretation function rr¨ssM is provided below. The model M is left implicit throughout.

(52) DPropL semantics (Vermeulen 1994)
a. Atomic formulas:

i. σrrKss “ xσ1, . . . , σn´1, σn ‚ Ky

ii. σrrpss “ xσ1, . . . , σn´1, σn ‚ ipy

iii. σrrif ss “ xσ1, . . . , σn´1, σn,Jy

iv. σrrthenss “ xσ1, . . . , σn´1, σn,Jy

v. σrrendss “ xσ1, . . . , σn´2 ‚ pσn´1 � σnqy

b. Conjunction:
i. σrrϕ;ψss “ σprrϕss ‚ rrψssq “ pσrrϕssqrrψss

c. Truth:
i. A formula ϕ is true in model M relative to an input info state i P I iff xiy rrϕss “ xiy.

ii. A formula ϕ is true in model M simpliciter iff it is true relative to the input info state J, i.e.,
iff xJy rrϕss “ xJy.

The definition in (52) might be easier to follow if we rewrite it in a more familiar format:

11

(53) DPropL semantics rewritten in a ‘classical’ format
a. Atomic formulas:

i. rrKssσ “ xσ1, . . . , σn´1, σn ‚ Ky

ii. rrpssσ “ xσ1, . . . , σn´1, σn ‚ ipy

iii. rrif ssσ “ xσ1, . . . , σn´1, σn,Jy

iv. rrthenssσ “ xσ1, . . . , σn´1, σn,Jy

v. rrendssσ “ xσ1, . . . , σn´2 ‚ pσn´1 � σnqy

b. Conjunction:

i. rrϕ;ψssσ “ rrψssσ
1

, where σ1 “ rrϕssσ

c. Truth:
i. A formula ϕ is true in model M relative to an input info state i P I iff rrϕssxiy “ xiy.

ii. A formula ϕ is true in model M simpliciter iff it is true relative to the input info state J, i.e.,
iff rrϕssxJy “ xJy.

Let us look at some examples. An atomic formula p (when we move to predicate logic, this could be
SLEEPpxq, or LIKEpx, yq, for example) is true in a model M simpliciter iff:

(54) p is true in model M iff [by the definition of truth]
rrpssxJy “ xJy iff [by the clause for atomic formulas]
xJ ‚ ipy “ xJy iff [by the properties of ‚ and J “ id]
xipy “ xJy iff ip “ J

This is as it should be: a formula p is true iff the info state ip that corresponds to it is in fact J.
The official version of DPropL semantics in (52) enables us to express this even more concisely:

(55) p is true in model M iff xJy “ xJy rrpss “ xJ ‚ ipy “ xipy

The definition in (52) gives us the right result for the text in (4) above. The reason we derive the correct
truth conditions for the text, and in particular for the conditional, while preserving a fully incremental left-
to-right interpretation procedure is due to the way the interpretations of if , then, and end work together.

In particular, if and then do not make any truth-conditional contribution; they simply open two new
slot in the info history relative to which the conditional is interpreted. Then, the contentful information
contributed by the antecedent and consequent of the conditional is stored in these two slots. This two pieces
of contentful information are merged in the appropriate way, i.e., by means of the implication operator�,
only when we reach end. This is shown in full detail below:

(56) xJy rrp; if ; q; then; r; endss “
xJ ‚ ipy rrif ; q; then; r; endss “
xipy rrif ; q; then; r; endss “
xip,Jy rrq; then; r; endss “
xip,J ‚ iqy rrthen; r; endss “
xip, iqy rrthen; r; endss “
xip, iq,Jy rrr; endss “
xip, iq,J ‚ iry rrendss “
xip, iq, iry rrendss “
xip ‚ piq � irqy

We can actually rewrite this derivation in a way that makes its similarities to typical semantic derivations
in classical first-oder logic much more obvious:

(57) rrp; if ; q; then; r; endssxJy “
rrif ; q; then; r; endssxJ‚ipy “
rrif ; q; then; r; endssxipy “
rrq; then; r; endssxip,Jy “

12

rrthen; r; endssxip,J‚iqy “
rrthen; r; endssxip,iqy “
rrr; endssxip,iq,Jy “
rrendssxip,iq,J‚iry “
rrendssxip,iq,iry “
xip ‚ piq � irqy

Depending on what the monoid elements ip, iq , and ir happen to be, the element ip ‚ piq � irq could be
J, in which case our sentence will be true relative to our model M, or not, in which case our sentence will
be false.

To summarize, the info-history-based semantics for DPropL:

• is fully incremental and associative because the semantic values / updates contributed by formulas
are partial functions, and conjunction / concatenation is interpreted as function composition, which
is by definition associative,

• and is able to incrementally derive the correct truth conditions for non-associative operators like con-
ditionals because its evaluation contexts have memory, i.e., are able to store update histories

2.5.1 Problems with the sequence semantics for DPropL

But the semantics in (52) is not completely satisfactory because the meanings of if and then are identical.
This incorrectly predicts that then could introduce the antecedent of a conditional, while if could introduce
the consequent, i.e., that if ; p; then; q; end is equivalent to then; p; if ; q; end.

Conditionals with a sentence-final antecedent exist, e.g., I will buy you a toy if you behave,4 but that does
not make them equivalent to the conditionals in which the antecedent and the consequent are exchanged,
e.g., If I buy you a toy, you will behave.

3 Incremental semantics for DPropL with trees

The sequence semantics for DPropL is incremental and associative, but it sacrifices the difference in truth-
conditional / update status between the antecedent and the consequent of conditionals. Intuitively, we
want if to mark the ‘beginning’ of the conditional and then to mark the ‘elaboration’. In the sequence
semantics for DPropL in (52) above, both if and then simply marked that a new info state slot should be
opened at the end of the current info history.

One way to make finer-grained, more structured distinctions between info states in a history is to add
more structure to our notion of history. This is what Vermeulen (1994) basically proposes. We should
think of a conditional not simply as an element of the current info history but as a kind of embedded /
subordinate history. In Vermeulen’s terms, we should think of info histories not simply as sequences, but
as trees.

To improve readability, we will modify many aspects of the original formulation in Vermeulen (1994):
notational conventions, various definitional details, tree representations etc., To avoid cluttering the main
points, we will not indicate all these differences in the text; the reader should consult Vermeulen (1994,
pp. 250-253) for the original formulation.

3.1 From sequences to trees

Switching from sequences to trees is simply adding more structure to sequences. We can think of sequences
as trees with only one level of embedding or alternatively, we can think of trees as recursively-specified
sequences, i.e., as sequences that can contain other sequences.

To see this, consider two simple sequences of info states xiy and xi, jy. We can think of these as trees
with one level of embedding: the mother node is introduced by the angular brackets xy and the info states
inside the angular brackets specify the daughter nodes from left to right, as shown below.

4Although adding then at the beginning of the matrix clause is infelicitous in these cases.

13

(58) xiy :“ xy

��
i

xi, jy :“ xy

�� ��
i j

In general, sequences that contain other sequences can be similarly represented by means of trees. Some
examples are provided below.

(59) xxiyy :“ xy

��
xy

��
i

xi, xjyy :“ xy

�� ��
i xy

��
j

xi, xjy , xkyy :“ xy

�� �� ��
i xy

��

xy

��
j k

In general, we might need info trees, i.e., recursive info-state sequences, of arbitrary complexity. But for
the limited purposes of this paper, we simply need trees with unary, binary and ternary branching nodes
of a particular structure, defined below.

(60) The set HI of info histories over a set of info states I is the smallest set such that:
a. for any info state i P I, xiy P HI; in tree format: xy

��
i

P HI;

b. if i P I and σ P HI, then xi, σy P HI; in tree format: xy

����
i σ

P HI;

c. if i, j P I and σ P HI, then xi, xjy , σy P HI; in tree format: xy

������
i xy

��

σ

j

P HI;

Several examples of info histories licensed by the definition in (60) above are provided below, in both
sequence and tree format.

(61) a. xi, xj, xkyyy “ xy

�� ��
i xy

�� ��
j xy

��
k

b. xi, xjy , xk1, xk2yyy “ xy

�� �� ''
i xy

��

xy

�� ��
j k1 xy

��
k2

14

c. xi1, xj1y , xi2, xj2y , xkyyy “ xy

�� �� ''i1 xy

��

xy

�� �� ��
j1 i2 xy

��

xy

��
j2 k

3.2 Ways of updating tree-like info histories

There are three basic types of trees that are relevant for our incremental semantics:

• trees that are updated with a matrix clause or with a conjunction (either the first or the second con-
junct),

• trees that are updated with the antecedent of a conditional, and

• trees that are updated with the consequent of a conditional.

Typical examples of such trees are provided below. The info state in the tree that is targeted by the
update is enclosed in a circle.

(62) Types of updates:
a. Update with a main clause or conjunct: xy

��
i

– or in sequence format: x i©y;
b. Update with a conditional antecedent: xy

yy ��
i xy

��
j

info state
before

conditional
– or in sequence format: xi, x j©yy;

c. Update with a conditional consequent: xy

uu �� ''
i xy

��

xy

��
j k

info state
before

conditional

info state
after update with
conditional antec.

– or in sequence format: xi, xjy, x k©yy.

15

As the examples above show, different updates target different positions in the current tree-like info
history. This is how we are able to distinguish between updated contributed by if, i.e., updates with a
conditional antecedent, and updates contributed by then, i.e., updates with a conditional consequent.

The definition of the interpretation function will simply incorporate these informal ideas. To make this
definition more readable, we need to introduce a notational convention:

(63) a. An info history σ whose final subtree is ρ, i.e., such that ftreepσq “ ρ, is symbolized as σtρu.
b. The final subtree of an info history σ is recursively defined as follows:

i. ftreepxiyq “ xiy, for any i P I;

ii. ftreepxi, τyq “

"

xi, τy if τ “ xjy , for some j P I
ftreepτq otherwise

iii. ftreepxi, xjy , τyq “

"

xi, xjy , τy if τ “ xky , for some k P I
ftreepτq otherwise

c. If we have an info history of the form σtρu, i.e., an info history σ whose final subtree is ρ, and
we replace the final subtree ρ with an arbitrary tree ρ1, we abbreviate the resulting info history
by doubling the curly braces around the replacement tree ρ1, as in σttρ1uu.

Note that given the definition of info histories in (60) above, and of the ftree function in (63b) above,
the final subtree of any info history σ can have only one of the following three forms:

i. xiy (‘matrix’ level only);

ii. xi, xjyy (‘matrix’ and conditional antecedent);

iii. xi, xjy , xkyy (‘matrix’, conditional antecedent, and conditional consequent).

3.3 Semantics for DPropL with tree-Like info histories

We can now provide the final definition of the interpretation function rr¨ssM for DPropL. The model super-
script is omitted throughout.

(64) DPropL semantics – final version (Vermeulen 1994)
a. Atomic formulas:

i. rrKss “

»

–

σtxiyu ÞÑ σttxi ‚ Kyuu
σtxi, xjyyu ÞÑ σttxi, xj ‚ Kyyuu
σtxi, xjy , xkyyu ÞÑ σttxi, xjy , xk ‚ Kyyuu

fi

fl

That is:
σtxiyurrKss “ σttxi ‚ Kyuu – we update at ‘matrix’ level,
σtxi, xjyyurrKss “ σttxi, xj ‚ Kyyuu – we update inside a conditional antecedent, and
σtxi, xjy , xkyyurrKss “ σttxi, xjy , xk ‚ Kyyuu – we update inside a conditional consequent.

ii. rrpss “

»

–

σtxiyu ÞÑ σttxi ‚ ipyuu
σtxi, xjyyu ÞÑ σttxi, xj ‚ ipyyuu
σtxi, xjy , xkyyu ÞÑ σttxi, xjy , xk ‚ ipyyuu

fi

fl

That is:
σtxiyurrpss “ σttxi ‚ ipyuu – we update at ‘matrix’ level,
σtxi, xjyyurrpss “ σttxi, xj ‚ ipyyuu – we update inside a conditional antecedent, and
σtxi, xjy , xkyyurrpss “ σttxi, xjy , xk ‚ ipyyuu – we update inside a conditional consequent.

iii. rrif ss “

»

–

σtxiyu ÞÑ σttxi, xJyyuu
σtxi, xjyyu ÞÑ σttxi, xj, xJyyyuu
σtxi, xjy , xkyyu ÞÑ σttxi, xjy , xk, xJyyyuu

fi

fl

16

That is:
σtxiyurrif ss “ σttxi, xJyyuu – we start a conditional at ‘matrix’ level,
σtxi, xjyyurrif ss “ σttxi, xj, xJyyyuu – we start a conditional inside another conditional an-
tecedent, and
σtxi, xjy , xkyyurrif ss “ σttxi, xjy , xk, xJyyyuu – we start a conditional inside another condi-
tional consequent.

iv. rrthenss “
“

σtxi, xjyyu ÞÑ σttxi, xjy , xJyyuu
‰

That is:
σtxi, xjyyurrthenss “ σttxi, xjy , xJyyuu – if we have a conditional antecedent, we start a con-
ditional consequent; otherwise undefined.

v. rrendss “
“

σtxi, xjy , xkyyu ÞÑ σttxi ‚ pj � kqyuu
‰

That is:
σtxi, xjy , xkyyurrendss “ σttxi ‚ pj � kqyuu – if we have both a conditional antecedent and a
conditional consequent, we form a conditional and merge it with the ‘matrix’ info state; oth-
erwise undefined.

b. Conjunction:
i. rrϕ;ψss “

“

σ ÞÑ pσrrϕssqrrψss
‰

That is:
σrrϕ;ψss “ pσrrϕssqrrψss

c. Truth:
i. A formula ϕ is true in model M relative to an input info state i P I iff xiy rrϕss “ xiy.

ii. A formula ϕ is true in model M simpliciter iff it is true relative to the input info state J, i.e.,
iff xJy rrϕss “ xJy.

Just like the sequence-based definition, this definition gives us the right result for the text in (4) above.
But it also preserves the difference in truth-conditional / update status between the antecedent and the
consequent of conditionals: the rrthenss update is a partial function defined only on info histories in which
the update contributed by a conditional antecedent is already present.

(65) xJy rrp; if ; q; then; r; endss “
xJ ‚ ipy rrif ; q; then; r; endss “
xip, xJyy rrq; then; r; endss “
xip, xJ ‚ iqyy rrthen; r; endss “
xip, xiqy , xJyy rrr; endss “
xip, xiqy , xJ ‚ iryy rrendss “
xip ‚ piq � irqy

4 The almost standard semantics for Dynamic Predicate Logic (DPL)

(66) DPL semantics – almost standard version based on Groenendijk and Stokhof (1991)

a. Atomic formulas:
i. rrKssDPL “ txg, gy : g ‰ gu “ H

17

ii. If π is an n-place predicate and x1, . . . , xn are variables, then
rrπpx1, . . . , xnqss

DPL “ txg, gy : xgpx1q, . . . , gpxnqy P rrπss
DPLu.

iii. If x and y are terms, then rrx “ yssDPL “ txg, gy : gpxq “ gpyqu.
b. Formulas (sentential connectives):

i. rrϕ; ψssDPL “ rrϕssDPL ‚ rrψssDPL

ii. rrϕÑ ψssDPL “ rrϕssDPL � rrψssDPL

“ txg, gy : grrϕssDPL Ď DomprrψssDPLqu

c. Formulas (random assignment):
i. rrrυsssDPL “ txg, hy : grυshu,

where grυsh :“ @υ1 ‰ υpgpυ1q “ hpυ1qq, i.e.,
g differs from h at most with respect to the value of υ.

d. Abbreviations:
i. rr„ ϕssDPL “ rrϕÑ KssDPL

“ txg, gy : g R Domprrϕssqu

ii. rrDυϕssDPL “ rrrυs; ϕssDPL “ rrrυsssDPL ‚ rrϕssDPL

“ txg, gy : grrrυsssDPL XDomprrϕssDPLq ‰ Hu

iii. rr@υϕssDPL “ rrrυs Ñ ϕssDPL “ rrrυsssDPL � rrϕssDPL

“ txg, gy : grrrυsssDPL Ď DomprrϕssDPLqu

e. Truth:
i. A formula ϕ is true in model M relative to an input assignment g iff there is an output

assignment h such that xg, hy P rrϕssDPL, i.e., iff g P DomprrϕssDPLq.

5 Incremental DPL (IDPL): tree semantics for DPL

It is probably clear by now that the ‘memory’-based solution proposed by Vermeulen (1994) for DPropL
will extend to DPL, especially given the format of DPL semantics presented above and the particular for-
mulation of DPropL semantics we introduced.

More specifically, the semantics of the existential quantifier Dxpϕq, i.e., rxs;ϕ, is automatically associa-
tive because it simply involves dynamically conjoining two formulas. And as far as the non-associative
semantics for the universal quantifier @xpϕq is concerned, Vermeulen’s solution for implication generalizes
as soon as we observe that the universal is simply dynamic implication rxs Ñ ϕ, or using the Vermeulen
(1994) syntax: if ; rxs; then;ϕ; end.

(67) Atomic info states. We associate an info state, i.e., a binary relation over assignments, with ev-
ery atomic formula. These info states are just the standard DPL denotations of the corresponding
formulas:
a. Rπpx1,...,xnq “ txg, gy : xgpx1q, . . . , gpxnqy P rrπssu

b. Rx“y “ txg, gy : gpxq “ gpyqu

c. Rrυs “ txg, hy : grυshu

d. If we have a set of n atomic formulas ϕ1, . . . , ϕn, we will abbreviate the merge of the correspond-
ing info states asRϕ1‚¨¨¨‚ϕn :“ Rϕ1 ‚ ¨ ¨ ¨ ‚Rϕn .

(68) Incremental DPL (IDPL) semantics

a. Atomic formulas:

i. rrKss “

»

–

σtxRyu ÞÑ σttxR ‚ Kyuu
σtxR, xR1yyu ÞÑ σttxR, xR1 ‚ Kyyuu
σtxR, xR1y , xR2yyu ÞÑ σttxR, xR1y , xR2 ‚ Kyyuu

fi

fl

ii. rrπpx1, . . . , xnqss “

»

–

σtxRyu ÞÑ σtt
@

R ‚Rπpx1,...,xnq

D

uu

σtxR, xR1yyu ÞÑ σtt
@

R,
@

R1 ‚Rπpx1,...,xnq

DD

uu

σtxR, xR1y , xR2yyu ÞÑ σtt
@

R, xR1y ,
@

R2 ‚Rπpx1,...,xnq

DD

uu

fi

fl

18

iii. rrx “ yss “

»

–

σtxRyu ÞÑ σttxR ‚Rx“yyuu
σtxR, xR1yyu ÞÑ σttxR, xR1 ‚Rx“yyyuu
σtxR, xR1y , xR2yyu ÞÑ σttxR, xR1y , xR2 ‚Rx“yyyuu

fi

fl

iv. rrrυsss “

»

–

σtxRyu ÞÑ σtt
@

R ‚Rrυs
D

uu

σtxR, xR1yyu ÞÑ σtt
@

R,
@

R1 ‚Rrυs
DD

uu

σtxR, xR1y , xR2yyu ÞÑ σtt
@

R, xR1y ,
@

R2 ‚Rrυs
DD

uu

fi

fl

v. rrif ss “

»

–

σtxRyu ÞÑ σttxR, xJyyuu
σtxR, xR1yyu ÞÑ σttxR, xR1, xJyyyuu
σtxR, xR1y , xR2yyu ÞÑ σttxR, xR1y , xR2, xJyyyuu

fi

fl

vi. rrthenss “
“

σtxR, xR1yyu ÞÑ σttxR, xR1y , xJyyuu
‰

vii. rrendss “
“

σtxR, xR1y , xR2yyu ÞÑ σttxR ‚ pR1 � R2qyuu
‰

b. Formulas (conjunction):
i. rrϕ;ψss “

“

σ ÞÑ pσrrϕssqrrψss
‰

c. Abbreviations:
i. rrϕÑ ψss “ rrif ;ϕ; then;ψ; endss

ii. rr„ ϕss “ rrϕÑ Kss

iii. rrDυϕss “ rrrυs; ϕss
iv. rr@υϕss “ rrrυs Ñ ϕss

d. Truth:
i. A formula ϕ is true in model M relative to an input info state R Ď G ˆ G iff there exists an

output info stateR1 Ď G ˆ G that is non-empty (i.e.,R1 ‰ K) such that xRy rrϕss “ xR1y.

IDPL preserves thr DPL equivalences that enable it to account for donkey anaphora. In particular,
existentials have unlimited scope over conjuncts to the right and they can freely scope out of conditional
antecedents:

(69) pDυϕq; ψ ô

prυs; ϕq; ψ ô

rυs; pϕ; ψq ô

Dυpϕ; ψq

(70) pDυϕq Ñ ψ ô

prυs; ϕq Ñ ψ ô

if ; rυs;ϕ; then;ψ; end ô

if ; rυs; then; if ;ϕ; then;ψ; end; end ô

rυs Ñ pϕÑ ψq ô

@υpϕÑ ψq

The typical donkey conditional and its IDPL translation are provided below. The resulting formula can
be strictly incrementally interpreted and the correct truth conditions are derived.

(71) If ax farmer owns ay donkey, hex beats ity .

(72) a. DxpFARMERpxq; DypDONKEYpyq; OWNpx, yqqq Ñ BEATpx, yq

b. if ; rxs; FARMERpxq; rys; DONKEYpyq; OWNpx, yq; then; BEATpx, yq; end

(73) xJy rrif ; rxs; FARMERpxq; rys; DONKEYpyq; OWNpx, yq; then; BEATpx, yq; endss “
xJ, xJyy rrrxs; FARMERpxq; rys; DONKEYpyq; OWNpx, yq; then; BEATpx, yq; endss “
@

J,
@

J ‚Rrxs
DD

rrFARMERpxq; rys; DONKEYpyq; OWNpx, yq; then; BEATpx, yq; endss “
@

J,
@

Rrxs ‚RFARMERpxq

DD

rrrys; DONKEYpyq; OWNpx, yq; then; BEATpx, yq; endss “
@

J,
@

Rrxs ‚RFARMERpxq ‚Rrys
DD

rrDONKEYpyq; OWNpx, yq; then; BEATpx, yq; endss “
@

J,
@

Rrxs ‚RFARMERpxq ‚Rrys ‚RDONKEYpyq

DD

rrOWNpx, yq; then; BEATpx, yq; endss “
@

J,
@

Rrxs ‚RFARMERpxq ‚Rrys ‚RDONKEYpyq ‚ROWNpx,yq

DD

rrthen; BEATpx, yq; endss “
@

J,
@

Rrxs‚FARMERpxq‚rys‚DONKEYpyq‚OWNpx,yq

D

, xJy
D

rrBEATpx, yq; endss “

19

@

J,
@

Rrxs‚FARMERpxq‚rys‚DONKEYpyq‚OWNpx,yq

D

,
@

J ‚RBEATpx,yq

DD

rrendss “
@

J ‚ pRrxs‚FARMERpxq‚rys‚DONKEYpyq‚OWNpx,yq � RBEATpx,yqq
D

“
@

Rrxs‚FARMERpxq‚rys‚DONKEYpyq‚OWNpx,yq � RBEATpx,yq

D

“
@

xg, gy : gRrxs‚FARMERpxq‚rys‚DONKEYpyq‚OWNpx,yq Ď DompRBEATpx,yqq
(D

“

xtxg, gy : all pairs xα, βy s.t. α P rrFARMERss, β P rrDONKEYss, xα, βy P rrOWNss
are s.t. xα, βy P rrBEATssuy

6 Conclusion

While our discussion of Incremental DPL semantics has been very terse (we hope to improve on it in the
future), it accomplishes the main goal for this paper, namely motivating and fully defining a strictly in-
cremental semantics for dynamic predicate logic. This semantics extends the incremental semantics for
dynamic propositional logic introduced in Vermeulen (1994), borrowing central notions from Visser (2002).

The resulting logical system (Incremental DPL) can derive correct truth conditions for apparently non-
incremental structures like donkey conditionals in a strictly incremental fashion. That is, the correct mean-
ings for donkey conditionals are derived by means of a strictly left-to-right compositional procedure.

This is accomplished without having to type-shift the meanings of the individual words (as in Steedman
2001, for example), and with dynamic conjunction / sequencing as the only compositional operation.

References

Chater, Nick et al. (1995). “What is incremental interpretation?” In: Incremental Interpretation (Edinburgh
Working Papers in Cognitive Science). Ed. by David Milward and Patrick Sturt. Vol. 11. Edinburgh: Edin-
burgh University, pp. 1–23.

Groenendijk, Jeroen and Martin Stokhof (1991). “Dynamic Predicate Logic”. In: Linguistics and Philosophy
14.1, pp. 39–100.

Heim, Irene (1982). “The semantics of definite and indefinite noun phrases (published 1988, New York:
Garland)”. PhD thesis. Amherst, MA: UMass Amherst.

Kamp, Hans (1981). “A Theory of Truth and Semantic Representation”. In: Formal Methods in the Study of
Language. Ed. by Jeroen Groenendijk et al. Amsterdam: Mathematical Centre Tracts, pp. 277–322.

Kamp, Hans and Uwe Reyle (1993). From Discourse to Logic. Introduction to Model theoretic Semantics of Natural
Language, Formal Logic and Discourse Representation Theory. Dordrecht: Kluwer.

Milward, David and Robin Cooper (1994). “Incremental interpretation: Applications, Theory, and Relation-
ship to Dynamic Semantics”. In: The 15th International Conference on Computational Linguistics (COLING
94). Kyoto, Japan: COLING 94 Organizing Comm., pp. 748–754.

Steedman, Mark (2001). The Syntactic Process. Cambridge, MA: MIT Press.
Vermeulen, C.F.M. (1994). “Incremental Semantics for Propositional Texts”. In: Notre Dame Journal of Formal

Logic 35.2, pp. 243–271.
Visser, Albert (2002). “The Donkey and the Monoid”. In: Journal of Logic, Language and Information 11,

pp. 107–131.

20

	Introduction and basic proposal
	Incremental semantics for Dynamic Propositional Logic (DPropL) with sequences
	DPropL syntax
	A sequence-based associative Semantics for DPropL: the basic idea
	Model structures: extended monoids
	Monoids
	The `entailment' partial order
	Falsum
	Implication

	Dynamic Predicate Logic (DPL) models as extended monoids
	Sequence semantics for DPropL
	Problems with the sequence semantics for DPropL

	Incremental semantics for DPropL with trees
	From sequences to trees
	Ways of updating tree-like info histories
	Semantics for DPropL with tree-Like info histories

	The almost standard semantics for Dynamic Predicate Logic (DPL)
	Incremental DPL (IDPL): tree semantics for DPL
	Conclusion

