
Homework Assignment 5 – Solutions

October 16, 2013

1 Implementing the syntax of L0

This is the definition of L0 syntax we need to implement:

(1) L0 syntax:
a. Basic expressions:

i. Names: Dick, Noam, John, Muhammad
ii. One-place predicates: HasMustache, IsBald
iii. Two-place predicates: Knows, Loves

b. Formulas:
i. If δ is a one-place predicate and α is a name, then δ α is a formula. Make sure that you

display such a formula as δ(α) by appropriately defining show.
ii. If γ is a two-place predicate and α and β are names, then γ β α is a formula. Make sure

that you display such a formula as γ(α, β) by appropriately defining show.
iii. If ϕ is a formula, then ∼ ϕ (the negation of ϕ) is a formula.
iv. If ϕ and ψ are formulas, then ϕ ∧ ψ (the conjunction of ϕ and ψ) is a formula.
v. If ϕ and ψ are formulas, then ϕ ∨ ψ (the disjunction of ϕ and ψ) is a formula.

We define the syntax of L0 in a separate module:

ghci 1> : l L0syn

Note that this module imports the Data.List module:

(2) import Data.List

The L0syn module defines the recursive type of sentential formulas Form. The main difference from
the syntax of propositional logic introduced in the lecture notes is the definition of atomic formulas,
which are now defined in terms of names, one-place predicates and two-place predicates:

(3) Implementing the syntax of L0:

data Name = Dick | Noam | John | Muhammad deriving (Eq, Show)
data Pred1 = HasMustache | IsBald deriving (Eq, Show)
data Pred2 = Knows | Loves deriving (Eq, Show)
data Form = P1 Pred1 Name | P2 Pred2 Name Name |

Ng Form | Cnj [Form] | Dsj [Form] deriving Eq

These are the types of the five formula constructors:

1

ghci 2> : t P1
P1 :: Pred1→ Name→ Form

ghci 3> : t P2
P2 :: Pred2→ Name→ Name→ Form

ghci 4> : t Ng
Ng :: Form→ Form

ghci 5> : t Cnj
Cnj :: [Form]→ Form

ghci 6> : t Dsj
Dsj :: [Form]→ Form

The definition of the show function is modified as the hw assignment requires:

(4) instance Show Form where
show (P1 pred1 name) = show pred1 ++ "("++ show name ++ ")"
show (P2 pred2 name1 name2) = show pred2++ "("++ show name2++ ","++ show name1++ ")"
show (Ng f) = "~ "++ show f
show (Cnj fs) = "("++ intercalate " /\\ " (map show fs) ++ ")"
show (Dsj fs) = "("++ intercalate " \\/ " (map show fs) ++ ")"

We can now define formulas, both atomic and non-atomic:

ghci 7> let form1 = P1 HasMustache Noam

ghci 8> form1
HasMustache (Noam)

ghci 9> let form2 = P2 Loves John Dick

ghci 10> form2
Loves (Dick, John)

2

ghci 11> let form3 = Ng form1

ghci 12> form3
∼ HasMustache (Noam)

ghci 13> let form4 = Ng $ Dsj [form1, form2]

ghci 14> form4
∼ (HasMustache (Noam) ∨ Loves (Dick, John))

ghci 15> let form5 = Ng $ Cnj [form3, form4]

ghci 16> form5
∼ (∼ HasMustache (Noam) ∧ ∼ (HasMustache (Noam) ∨ Loves (Dick, John)))

2 The semantics of L0

We will implement a more general version of the semantics of L0 as follows:

• assume that all models have 4 entities Nixon, Chomsky, Mitchell and Ali, i.e., the domain of entities
is [Nixon, Chomsky, Mitchell, Ali]

• assume that the semantic values of the four names Dick, Noam, John, Muhammad are fixed in the
obvious way: Dick denotes (Richard) Nixon, Noam denotes Chomsky, John denotes Mitchell and
Muhammad denotes Ali

• generate all possible models that satisfy the above two constraints, i.e., generate all possible (com-
binations of) appropriate denotations for the one-place and two-place predicates listed above;

• in particular, one-place predicates should denote subsets of the domain of entities [Nixon, Chomsky,
Mitchell, Ali] and two-place predicates should denote sets of pairs of entities, i.e., subsets of [(x,
y) | x← [Nixon, Chomsky, Mitchell, Ali], y← [Nixon, Chomsky, Mitchell, Ali]]

• given all these models, define tautologies, satisfiability, contradictions, entailment and Context
Set updates just as we did in the lecture notes on propositional logic

We load the module that defines the semantics for L0:

ghci 17> : l L0sem

3

Note that this module imports the syntax module L0syn right at the very beginning (in addition to
the Data.List module):

(5) import Data.List
import L0syn

We begin by defining the domain of entities underlying all our models:

(6) data Entity = Nixon | Chomsky | Mitchell | Ali deriving (Eq, Show, Enum, Bounded)

This is type e (for entity) in Montagovian semantics.
We derive Eq b/c we want to be able to check whether two entities are identical or not. We derive

Show so that we can display this type of semantic value in ghci. We derive Enum because we can (since
all constructors have no fields / are of 0-arity).

Finally, we derive Bounded so that we can retrieve the full domain of entities in a convenient manner.
In particular, we define the list of all entities, and also the list of all entity pairs (needed for two-place
predicates) as follows:

(7) entities :: [Entity]
entities = [minBound . . maxBound]
entityPairs :: [(Entity, Entity)]
entityPairs = [(e1, e2) | e1← entities, e2← entities]

Here’s the result of these two definitions:

ghci 18> entities
[Nixon, Chomsky, Mitchell, Ali]

ghci 19> entityPairs
[(Nixon, Nixon),(Nixon, Chomsky),(Nixon, Mitchell),(Nixon, Ali),(Chomsky, Nixon),(Chomsky,
Chomsky),(Chomsky, Mitchell),(Chomsky, Ali),(Mitchell, Nixon),(Mitchell, Chomsky),(Mitchell,
Mitchell),(Mitchell, Ali),(Ali, Nixon),(Ali, Chomsky),(Ali, Mitchell),(Ali, Ali)]

Now let’s think about the type of the interpretation function eval for L0. The eval function should
take a basic interpretation function as its first argument (i.e., the model), a formula as its second argu-
ment, and return a truth value, namely the semantic value of the formula under consideration relative
to the model under consideration.

Since a basic interpretation function is just a function from basic expressions BasicExp (names, one-
place predicates and two-plae predicates) to corresponding semantic values – let’s call them associated
basic interpretations BasicInt – the type of the interpretation function eval is:

(8) eval ::(BasicExp→ BasicInt)→ Form→ Bool

The type Form of formulas is already defined in the L0syn module, and the type Bool is made avail-
able by default in Haskell. So we only need to define the type of basic expressions BasicExp and the
type of associated basic interpretations BasicInt.

Both these types are sum types:

• for the BasicExp type, we need to sum together names, one-place pred.s and two-place pred.s

• for the BasicInt type, we need to sum together Entity values (semantic values for names, i.e., type
e), Entity → Bool functions (semantic values for one-place pred.s, i.e., type 〈e, t〉) and Entity →
Entity→ Bool functions (semantic values for two-place pred.s, i.e., type 〈e, 〈e, t〉〉)

4

We therefore define the BasicExp and BasicInt types as shown below. We use record syntax for
both of them so that we can easily extract the individual expressions and the individual denotations
wrapped together in these sum types:

(9) a. data BasicExp = NameExp {nameExp :: Name} |
Pred1Exp {pred1Exp :: Pred1} |
Pred2Exp {pred2Exp :: Pred2}

b. data BasicInt = NameInt {nameInt :: Entity} |
Pred1Int {pred1Int ::(Entity→ Bool)} |
Pred2Int {pred2Int ::(Entity→ Entity→ Bool)}

Record syntax automatically makes available functions that extract particular types of basic expres-
sions or interpretations for basic expressions:

ghci 20> : t nameExp
nameExp :: BasicExp→ Name

ghci 21> : t pred1Exp
pred1Exp :: BasicExp→ Pred1

ghci 22> : t pred2Exp
pred2Exp :: BasicExp→ Pred2

ghci 23> : t nameInt
nameInt :: BasicInt→ Entity

ghci 24> : t pred1Int
pred1Int :: BasicInt→ Entity→ Bool

ghci 25> : t pred2Int
pred2Int :: BasicInt→ Entity→ Entity→ Bool

Our goal now is to define models / valuations for L0, which are functions from basic expressions
to their corresponding interpretations, i.e., functions of type BasicExp→ BasicInt.

To this end, we first define three helper functions. The first two helper functions take lists of entities
and lists of entity pairs and convert them to appropriate semantic values for one-place pred.s and two-
place pred.s, respectively. We define them as shown below:

(10) a. list2Pred1Value :: [Entity]→ (Entity→ Bool)
list2Pred1Value xs = λx→ elem x xs

b. list2Pred2Value :: [(Entity, Entity)]→ (Entity→ Entity→ Bool)
list2Pred2Value xs = λy x→ elem (x, y) xs

The third helper function, named basicIntFun, takes two lists of entities and two lists of pairs of
entities as arguments – these are the denotations for our one-place pred.s and our two-place pred.s,

5

respectively – and returns a model, i.e., a function of type BasicExp → BasicInt, constructed based on
those 4 lists. As required in the hw assignment, we always assign the same entities to the four names.
The definition of this function is provided below:

(11) basicIntFun :: [Entity]→ [Entity]→ [(Entity, Entity)]→ [(Entity, Entity)]→ BasicExp→ BasicInt
basicIntFun (NameExp Dick) = NameInt Nixon
basicIntFun (NameExp Noam) = NameInt Chomsky
basicIntFun (NameExp John) = NameInt Mitchell
basicIntFun (NameExp Muhammad) = NameInt Ali
basicIntFun xs (Pred1Exp HasMustache) = Pred1Int (list2Pred1Value xs)
basicIntFun xs (Pred1Exp IsBald) = Pred1Int (list2Pred1Value xs)
basicIntFun xs (Pred2Exp Knows) = Pred2Int (list2Pred2Value xs)
basicIntFun xs (Pred2Exp Loves) = Pred2Int (list2Pred2Value xs)

We are now almost ready to generate all the models for L0. We only need to define a powerset
function that will generate all possible lists of entities and all possible lists of pairs of entities that we
will assign as denotations for our one-place pred.s and two-place pred.s, respectively. This function is
defined below:

(12) powerset :: [a]→ [[a]]
powerset [] = [[]]
powerset (x : xs) = map (x:) p ++ p where p = powerset xs

Make sure you understand this recursive definition. For example, make sure you understand why
powerset [1 . . 3] is evaluated as shown below. In particular: why are the elements of the powerset listed
in that particular order?

ghci 26> powerset [1 . . 3]
[[1, 2, 3], [1, 2], [1, 3], [1], [2, 3], [2], [3], []]

We are finally ready to provide the recursive definition of the eval function, which is actually the
definition of the semantics of L0. As we already indicated, the eval function is of type (BasicExp →
BasicInt)→ Form→ Bool:

• it takes a model / valuation as its first argument, i.e., an assignment of semantic values to basic
expressions, which is just a function of type BasicExp→ BasicInt;

• it takes a formula of type Form as its second argument;

• it returns a truth value of type Bool as its value; this truth value is the semantic value of the
formula under consideration relative to the model under considertation.

(13) The semantics of L0:

eval ::(BasicExp→ BasicInt)→ Form→ Bool
eval m (P1 pred1 name) =(pred1Int $ m (Pred1Exp pred1)) (nameInt $ m (NameExp name))
eval m (P2 pred2 name1 name2) =
(pred2Int $ m (Pred2Exp pred2)) (nameInt $ m (NameExp name1))

(nameInt $ m (NameExp name2))
eval m (Ng f) = ¬ (eval m f)
eval m (Cnj fs) = all (eval m) fs
eval m (Dsj fs) = any (eval m) fs

6

The final three clauses (for Ng, Cnj and Dsj) are the same as for the propositional logic semantics
we discussed in the lecture notes. Only the first two clauses, which deal with the interpretation of
atomic formulas, are different. In both cases, we make extensive use of the record-syntax functions
automatically made available by our definition of the BasicInt type.

An example will make these first two clauses much clearer. Let’s take the first model in our allVals
list and name it exampleInt1 for convenience.

ghci 27> let exampleInt1 = allVals !! 0

The semantic values we assign to names, one-place pred.s and two-place pred.s have the same sum
type BasicInt:

ghci 28> : t exampleInt1 (NameExp Dick)
exampleInt1 (NameExp Dick) :: BasicInt

ghci 29> : t exampleInt1 (Pred1Exp HasMustache)
exampleInt1 (Pred1Exp HasMustache) :: BasicInt

ghci 30> : t exampleInt1 (Pred2Exp Knows)
exampleInt1 (Pred2Exp Knows) :: BasicInt

But the functions nameInt, pred1Int and pred2Int we automatically made available when we used
record syntax to define the sum type BasicInt assign names, one-place pred.s and two-place pred.s
denotations of the appropriate types:

ghci 31> : t nameInt (exampleInt1 (NameExp Dick))
nameInt (exampleInt1 (NameExp Dick)) :: Entity

ghci 32> : t pred1Int (exampleInt1 (Pred1Exp HasMustache))
pred1Int (exampleInt1 (Pred1Exp HasMustache)) :: Entity→ Bool

ghci 33> : t pred2Int (exampleInt1 (Pred2Exp Knows))
pred2Int (exampleInt1 (Pred2Exp Knows)) :: Entity→ Entity→ Bool

It is precisely these denotations that we use when we want to determine whether an atomic formula
is true or not:

• when we want to evaluate an atomic formula of the form P1 pred1 name, i.e., in which a one-place
predicate is predicated of a name, we need to extract the function of type Entity→ Bool assigned
to pred1 by model m, which we do by means of pred1Int $ m (Pred1Exp pred1), and we need to
apply this function to the entity denoted by name in model m, which we extract by means of
nameInt $ m (NameExp name);

7

• correspondingly, when we want to evaluate an atomic formula of the form P2 pred2 name1 name2,
i.e., in which a two-place predicate relates two names, we need to extract the function of type
Entity → Entity → Bool assigned to pred2 by model m, which we do by means of pred2Int $
m (Pred2Exp pred2), and we need to apply this functions to the entities denoted by name1 and
name2, which we extract by means of nameInt $ m (NameExp name1) and nameInt $ m (NameExp name1).

Now that we understand the general structure of all the clauses of the eval function, we can check
whether our models satisfy the requirements specified in the hw assignment. In particular, we want to
check that all the names receive their appropriate denotations – and they do:

ghci 34> nameInt (exampleInt1 (NameExp Dick))
Nixon

ghci 35> nameInt (exampleInt1 (NameExp Noam))

Chomsky

ghci 36> nameInt (exampleInt1 (NameExp John))
Mitchell

ghci 37> nameInt (exampleInt1 (NameExp Muhammad))
Ali

To finish examining the model exampleInt1, we take a look at the denotations of one-place and two-
place pred.s:

ghci 38> [x | x← entities, pred1Int (exampleInt1 (Pred1Exp HasMustache)) x]
[Nixon, Chomsky, Mitchell, Ali]

ghci 39> [x | x← entities, pred1Int (exampleInt1 (Pred1Exp IsBald)) x]
[Nixon, Chomsky, Mitchell, Ali]

ghci 40> [(x, y) | x← entities, y← entities, pred2Int (exampleInt1 (Pred2Exp Knows)) y x]
[(Nixon, Nixon),(Nixon, Chomsky),(Nixon, Mitchell),(Nixon, Ali),(Chomsky, Nixon),(Chomsky,
Chomsky),(Chomsky, Mitchell),(Chomsky, Ali),(Mitchell, Nixon),(Mitchell, Chomsky),(Mitchell,
Mitchell),(Mitchell, Ali),(Ali, Nixon),(Ali, Chomsky),(Ali, Mitchell),(Ali, Ali)]

ghci 41> [(x, y) | x← entities, y← entities, pred2Int (exampleInt1 (Pred2Exp Loves)) y x]
[(Nixon, Nixon),(Nixon, Chomsky),(Nixon, Mitchell),(Nixon, Ali),(Chomsky, Nixon),(Chomsky,
Chomsky),(Chomsky, Mitchell),(Chomsky, Ali),(Mitchell, Nixon),(Mitchell, Chomsky),(Mitchell,
Mitchell),(Mitchell, Ali),(Ali, Nixon),(Ali, Chomsky),(Ali, Mitchell),(Ali, Ali)]

8

It is precisely the denotations of these predicates that vary from model to model. For example, if
we look at the 2000010th model, some of the denotations of these predicates are different:

ghci 42> let exampleInt2 = allVals !! 2000009

ghci 43> [x | x← entities, pred1Int (exampleInt2 (Pred1Exp HasMustache)) x]
[Nixon, Chomsky, Mitchell, Ali]

ghci 44> [x | x← entities, pred1Int (exampleInt2 (Pred1Exp IsBald)) x]
[Nixon, Chomsky, Mitchell, Ali]

ghci 45> [(x, y) | x← entities, y← entities, pred2Int (exampleInt2 (Pred2Exp Knows)) y x]
[(Nixon, Nixon),(Nixon, Chomsky),(Nixon, Mitchell),(Nixon, Ali),(Chomsky, Nixon),(Chomsky,
Chomsky),(Chomsky, Mitchell),(Chomsky, Ali),(Mitchell, Nixon),(Mitchell, Chomsky),(Mitchell,
Mitchell),(Ali, Ali)]

ghci 46> [(x, y) | x← entities, y← entities, pred2Int (exampleInt2 (Pred2Exp Loves)) y x]
[(Nixon, Chomsky),(Nixon, Mitchell),(Nixon, Ali),(Chomsky, Nixon),(Chomsky, Mitchell),
(Chomsky, Ali),(Mitchell, Chomsky),(Mitchell, Mitchell),(Mitchell, Ali),(Ali, Chomsky),(Ali,
Mitchell)]

We evaluate formulas relative to these models in the expected way:

ghci 47> eval exampleInt1 (P2 Loves Noam Noam)

True

ghci 48> eval exampleInt2 (P2 Loves Noam Noam)

False

ghci 49> eval exampleInt1 $ Ng (P2 Loves Noam Noam)

False

ghci 50> eval exampleInt2 $ Ng (P2 Loves Noam Noam)

True

9

3 Tautologies, satisfiability and contradictions

Because we can generate all models for a formula, we can in principle check if the formula is a tautology
(true in any model), satisfiable (true in at least one model) or a contradiction (true in no model /
unsatisfiable), just like we did for propositional logic.

The definition of the relevant predicates are provided below:

(14) tautology :: Form→ Bool
tautology f = all (λm→ eval m f) allVals

(15) satisfiable :: Form→ Bool
satisfiable f = any (λm→ eval m f) allVals

(16) contradiction :: Form→ Bool
contradiction = ¬ ◦ satisfiable

But actually evaluating whether these predicates are true or false when applied to particular for-
mulas is not really feasible.

This is because the number of models in our allVals list is extremely big:

ghci 51> 2 ↑ 4 ∗ 2 ↑ 4 ∗ 2 ↑ 16 ∗ 2 ↑ 16
1099511627776

While Haskell’s laziness enables us to work with a very large list like allVals as long as we don’t try
to actually evaluate to much of it, evaluating the above predicates might require evaluating the entire
allVals list, which is not really feasible.

If a formula is satisfiable, we might find a satisfying model fairly quickly, e.g.:

ghci 52> satisfiable (P1 HasMustache John)
True

ghci 53> satisfiable $ Dsj [P1 HasMustache John, Ng (P1 HasMustache John)]
True

ghci 54> satisfiable $ P2 Loves Noam Noam
True

ghci 55> satisfiable $ Ng (P2 Loves Noam Noam)

True

But this is not guaranteed to happen. And checking for tautologies or contradictions definitely
requires evaluating the entire allVals list.

Compiling the Haskell program will help a little bit. But what we really need is to think about
better ways to identify tautologies and contradictions that do not involve a naive brute-force search
through the space of all possible models.

10

4 Checking for entailment between two formulas

The same point applies to determining entailment between two formulas. It is easy to define entailment
(it’s the same definition as the one for propositional logic):

(17) implies :: Form→ Form→ Bool
implies f1 f2 = contradiction (Cnj [f1, Ng f2])

But actually checking whether a formula f1 entails another formula f2 requires evaluating all the
models in allVals, so it is pretty hopeless.

5 Context Set update

We define the update function as shown below:

(18) update :: [(BasicExp→ BasicInt)]→ Form→ [(BasicExp→ BasicInt)]
update vals f = [m | m← vals, eval m f]

Calling this function is easy to evaluate as long as the input Context Set is not too large, for example:

ghci 56> let cs1 = take 2000010 allVals

ghci 57> length cs1
2000010

ghci 58> let cs2 = update cs1 (P2 Loves Noam Noam)

ghci 59> length cs2
1000448

11

	Implementing the syntax of L0
	The semantics of L0
	Tautologies, satisfiability and contradictions
	Checking for entailment between two formulas
	Context Set update

